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Sample size calculations for model

validation in linear regression analysis

Show-Li Jan1 and Gwowen Shieh2*
Abstract

Background: Linear regression analysis is a widely used statistical technique in practical applications. For planning
and appraising validation studies of simple linear regression, an approximate sample size formula has been
proposed for the joint test of intercept and slope coefficients.

Methods: The purpose of this article is to reveal the potential drawback of the existing approximation and to
provide an alternative and exact solution of power and sample size calculations for model validation in linear
regression analysis.

Results: A fetal weight example is included to illustrate the underlying discrepancy between the exact and
approximate methods. Moreover, extensive numerical assessments were conducted to examine the relative
performance of the two distinct procedures.

Conclusions: The results show that the exact approach has a distinct advantage over the current method
with greater accuracy and high robustness.
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Background
Regression analysis is the most commonly applied
statistical method of all scientific fields. The extensive util-
ity incurs continuous investigations to give various inter-
pretations, extensions, and computing algorithms for the
development and formulation of empirical models. Gen-
eral guidelines and fundamental principles on regression
analysis have been well documented in the standard texts
of Cohen et al. [1], Kutner et al. [2], and Montgomery,
Peck, and Vining [3], among others. Among the methodo-
logical issues and statistical implications of regression ana-
lysis, model adequacy and validity represent two vital
aspects for justifying the usefulness of the underlying re-
gression model. In the process of model selection, residual
analysis and diagnostic checking are employed to identify
influential observations, leverage, outliers, multicollinear-
ity, and other lack of fit problems. Alternatively, model
validation refers to the plausibility and generalizability of
the regression function in terms of the stability and suit-
ability of the regression coefficients.
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In particular, it is emphasized in Kutner et al. ([2], Sec-
tion 9.6), Montgomery, Peck, and Vining ([3], Section
11.2), and Snee [4] that there are three approaches to
assessing the validity of regression models: (1) compari-
son of model predictions and coefficients with physical
theory, prior experience, theoretical models, and other
simulation results; (2) collection of new data to check
model predictions; and (3) data splitting in which reser-
vation of a portion of the available data is used to obtain
an independent measure of the model prediction
accuracy. Essentially, the fundamental utilities between
model selection and model validation should be properly
recognized and distinguished because a refined model
that fits the data does not necessarily guarantee predic-
tion accuracy. Further details and related issues can be
found in the importance texts of Kutner et al. [2] and
Montgomery, Peck, and Vining [3] and the references
therein.
The present article focuses on the validation process

of linear regression analysis for comparison with postu-
lated or acclaimed models. In linear regression, the focus
is often concerned with the existence and magnitude of
the slope coefficients. However, the quality of estimation
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and prediction in associating the response variable with
the predictor variables is determined by the closely
intertwined intercept and slope coefficients. It is of prac-
tical importance to conduct a joint test of intercept and
slope coefficients in order to verify the compatibility
with established or theoretical formulations. For ex-
ample, Maddahi et al. [5] compared left ventricular myo-
cardial weights of dogs by nuclear magnetic resonance
imaging with actual measurements for different methods
using simple linear regression analysis. The results were
tested, both individually and simultaneously, whether
the intercept was different from zero and the slope was
different form unity. Also, Rose and McCallum [6] pro-
posed a simple regression formula for estimating the
logarithm of feta weight with the sum of the ultrasound
measurements of biparietal diameter, mean abdominal
diameter, and femur length. Note that the birth weights
differ among ethic groups, cohort characteristics, and
time periods. Thus, it is of considerable interest for re-
lated research to validate or compare the magnitudes of
intercept and slope coefficients in their formulation.
The importance and implications of statistical power

analysis in research studies are well addressed in Cohen
[7], Kramer and Blasey [8], Murphy, Myros, and Wolach
[9], and Ryan [10], among others. In the context of mul-
tiple regression and correlation, the distinct notions of
fixed and random regression settings were emphasized
and explicated in power and sample size calculations by
Gatsonis and Sampson [11], Mendoza and Stafford [12],
Sampson [13], and Shieh [14–16]. On the other hand,
Kelley [17], Krishnamoorthy and Xia [18], and Shieh [19]
discussed sample size determinations for constructing pre-
cise confidence intervals of strength of association. It is
noteworthy that analysis of covariance (ANCOVA) models
involving both categorical and continuous predictors incur
different hypothesis testing procedures. Accordingly, they
require unique power procedures as discussed in Shieh
[20] and Tang [21], among others.
For the purposes of planning research designs and val-

idating model formulation, a sample size procedure was
presented in Colosimo et al. [22]. The presented formula
has a computationally appealing expression and main-
tains reasonable accuracy in their simulation study.
However, the particular method involves a convenient
substitution of fixed mean parameter for random pre-
dictor variables. Their illustrations were not detailed
enough to address the extent and impact of such simpli-
fication in sample size computations. Consequently, the
adequacy of the sample size procedure described in
Colosimo et al. [22] requires further clarification and no
research to date has examined its properties under dif-
ferent situations.
The statistical inferences for the regression coeffi-

cients are based on the conditional distribution of the
continuous predictors. However, unlike the fixed fac-
tor configurations and treatment levels in analysis of
variance (ANOVA) and other experimental designs,
the continuous measurements of the predictor vari-
ables in regression studies are typically available only
after the data has been collected. For advance plan-
ning research design, the distribution and power func-
tions of the test procedure need to be appraised over
possible values of the predictors. Thus, it is important
to recognize the stochastic nature of the predictor
variables. The fundamental differences between fixed
and random models have been explicated in Binkley
and Abbot [23], Cramer and Appelbaum [24], Samp-
son [13], and Shaffer [25]. Despite the complexity as-
sociated with the unconditional properties of the test
procedure, the inferential procedures are the same
under both fixed and random formulations. Hence,
the usual rejection rule and critical value remain un-
changed. The distinction between the two modeling
approaches becomes critical for power analysis and
sample size planning.
The joint test of intercept and slope coefficients in

linear regression is more involved than the individual
tests of intercept or slope parameters. A general lin-
ear hypothesis setting is required to perform the
simultaneous test of both intercept and slope coeffi-
cients as shown in Rencher and Schaalje ([26], Sec-
tion 8.4.2). However, it is essential to emphasize that
they did not address the corresponding power and
sample size issues. In view of the limited results in
current literature, this article aims to present power
and sample size procedure for the joint test of inter-
cept and slope coefficients with specific recognition
of the stochastic features of predictor variables. First,
exact power function and sample size procedure for
detecting intercept and slope differences of simple
linear regression are derived under random modeling
framework assuming predictor variables have inde-
pendent and identical normal distribution. Then, the
technical presentation is extended to the general context
of multiple linear regression. Then, a numerical example
of model validation is employed to demonstrate the essen-
tial discrepancy between the exact and approximate
methods. The accuracy and robustness of the contending
methods are appraised through simulation studies under a
wide range of model configurations with normal and
non-normal predictors.
Methods
Simple linear regression
Consider the simple linear regression model for associat-
ing the response variable Y with the predictor variable
X:
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Y i ¼ βI þ XiβS þ εi; ð1Þ
where Yi is the observed value of the response variable
Y; Xi is the recorded value of the continuous predictor
X; βI and βS are unknown intercept and slope parame-
ters; and εi are iid N(0, σ2) random errors for i = 1, …, N.
To examine the existence and magnitude of the inter-
cept and slope coefficients {βI, βS}, the statistical infer-
ences are based on the least squares estimators β̂I and

β̂S , where β̂I = Y – Xβ̂S , β̂S = SSXY/SSX, Y =
PN

i¼1Yi/N,

X =
PN

i¼1Xi/N, SSXY =
PN

i¼1(Xi – X)(Yi – Y ), and SSX =PN
i¼1 (Xi – X )2. It follows from the standard results in

Rencher and Schaalje ([26], Section 7.6.3) that the esti-

mators {β̂I , β̂S} have the bivariate normal distribution

β̂∼N2 β; σ2WX
� �

; ð2Þ
where

β̂ ¼ β̂I
β̂S

" #
; β ¼ βI

βS

� �
; WX ¼ WX11 WX12

WX21 WX22

� �
;

WX11 = 1/N + X
2
/SSX, WX12 =WX21 = − X /SSX, and

WX22 = 1/SSX. The subscript X of WX emphasizes the el-
ements {WX11, WX12, WX21, WX22} of the variance and
covariance matrix are functions of the predictor vari-
ables. Also, σ̂2 = SSE/ν is the usual unbiased estimator
of σ2, where SSE = SSY – SSXY2/SSX is the error sum of

squares, SSY =
PN

i¼1 (Yi – Y )2, and ν =N – 2. Note that

the least squares estimators β̂I and β̂S are independent

of σ̂2.
A joint test of the intercept and slope coefficients can

be conducted with the hypothesis

H0 :
βI
βS

� �
¼ βI0

βS0

� �
versus H1 :

βI
βS

� �
≠

βI0
βS0

� �
:

ð3Þ
Following the model assumption in Eq. 1, the likeli-

hood ratio statistic for the joint test of intercept and
slope is

F J ¼
β̂
T
DW

‐1
X β̂D

� �
=2

σ̂2
; ð4Þ

where β̂D = [β̂ID , β̂SD ]
T, β̂ID = β̂I – βI0, and β̂SD = β̂S –

βS0. Under the null hypothesis, it can be shown that

F J∼F 2; νð Þ; ð5Þ
where F(2, ν) is an F distribution with 2 and ν de-
grees of freedom. Hence, H0 is rejected at the signifi-
cance level α if

F J > F2; ν; α; ð6Þ
where F2, ν, α is the upper (100·α)th percentile of the F(2,
ν) distribution. In general, the joint test statistic FJ has
the nonnull distribution for the given values of X and
SSX:

F J X; SSX
� 	

∼F 2; ν;Δ Jð Þ

 ð7Þ

where

Δ J ¼
N βID þ XβSD
� �2 þ β2SDSSX

n o
σ2

: ð8Þ

Hence, the noncentral F distribution F(c, ν, ΔJ) is a
function of the predictor values {Xi, i = 1, …, N} only
through the summary statistics X and SSX.
The joint test of the intercept and slope coefficients

given in Eq. 3 can be viewed as a special case of the gen-
eral linear hypothesis considered in Rencher and
Schaalje ([26], Section 8.4.2). However, two important
aspects of this study should be pointed out. First, unlike
the current consideration, the associated F test and re-
lated statistical properties in Rencher and Schaalje [26]
are presented under the standard settings with fixed pre-
dictor values. Second, they did not address the power
and sample size issues under random modeling formula-
tions. Accordingly, their fundamental results are ex-
tended here to accommodate the predictor features in
power and sample size calculations for the validation of
simple linear regression models.
The statistical inferences about the regression coeffi-

cients are based on the conditional distribution of the
continuous variables {Xi, i = 1, …, N}. Therefore, the
resulting analysis would be specific to the observed
values of the predictors. It is clear that, before conduct-
ing a research study, the actual values of predictors are
not available beforehand just as the major responses. In
view of the stochastic nature of the summary statistics X
and SSX, it is essential to recognize and assess the distri-
bution of the test statistic over possible values of the
predictors. To demonstrate the impact of the predictor
features on power and sample size calculations, the nor-
mality setting is commonly employed to provide a con-
venient basis for analytical derivation and empirical
examination of random predictors as in Gatsonis and
Sampson [11], Sampson [13], and Shieh [14]. However,
it is important to note that the power and sample size
calculations of Gatsonis and Sampson [11], Sampson
[13], and Shieh [14, 15] for detecting slope coefficients
in multiple regression analysis are not applicable for
assessing differences in intercept and slope coefficients
considered here.
Specifically, the continuous predictor variables {Xi, i = 1,

..., N} are assumed to have independent and identical nor-
mal distribution N(μX, σ2X ). With the normal assumption,
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it can be readily established that X ~ N(μX, σ2X /N) and K
= SSX/σ2X ~ χ2(κ) where κ =N – 1. Thus, the noncentrality
ΔJ in Eq. 8 can be expressed as

Δ J ¼
N aþ bZð Þ2 þ dK

� �
σ2

; ð9Þ

where a = βID + μXβSD, b = (d/N)1/2, d = β2SDσ
2
X , and Z =

(X – μX)/(σ2X /N)
1/2 ~ N(0, 1). As a consequence, the FJ

statistic has the two-stage distribution

F J j K ; Z½ � � F 2; ν; Δ Jð Þ; K � χ2 κð Þ;
and Z � N 0; 1ð Þ:

ð10Þ
Note that the two random variables K and Z are inde-

pendent. Moreover, the corresponding power function
for the simultaneous test can be formulated as

Ψ J ¼ EKEZ P F 2; ν;Δ Jð Þ > F2;v;α
� �� 	

; ð11Þ
where the expectations EK and EZ are taken with respect
to the distributions of K and Z, respectively.
Alternatively, Colosimo et al. ([22], Section 3.2) de-

scribed a simple and naive method to obtain an uncon-
ditional distribution of FJ. They substituted the sample
values of the predictor variables in the noncentrality ΔJ

with the corresponding expected value E[Xi] = μX for i =
1, ..., N. Thus, the distribution of FJ is approximated by a
noncentral F distribution:

F J � F 2; ν; ΔCð Þ; ð12Þ
where ΔC = (Na2)/σ2. The suggested power function of
Colosimo et al. [22] for the joint test of intercept and
slope coefficients is

ΨC ¼ P F 2; ν;ΔCð Þ > F2; v; α
� �

: ð13Þ
It is vital to note that the approximate power function

ΨC only involves a noncentral F distribution, whereas
the normal predictor distributions lead to the exact and
more complex power formula ΨJ that consists of a joint
chi-square and normal mixture of noncentral F distribu-
tions. Evidently, the power function ΨC is relatively sim-
pler to compute than the exact formula ΨJ. But the
approximate nature of ΨC does not involve all of the
predictor features in power computations.
It follows from large sample theory that Z and K/N

converge to 0 and 1, respectively. Hence, the
sample-size-adjusted noncentrality quantity ΔJ/N ap-
proaches Δ�

J as the sample size N increases to infinity,
where

Δ�
J ¼

βID þ μXβSD
� �2 þ β2SDσ

2
X

σ2
: ð14Þ
Hence, Δ�
J provides a convenient measurement of ef-

fect size for the joint appraisal of intercept and slope co-
efficients. It can be immediately seen from the
noncentrality term of the approximate power function
ΨC that Δ�

C = ΔC/N = (βID + μXβSD)
2/σ2 < Δ�

J with the ex-

ceptions that βSD = 0 and/or σ2X = 0. Consequently, the
estimated power ΨC is generally less than that of ΨJ even
for large sample sizes when all other configurations re-
main constant. It is shown later that while the computa-
tion is more involved for the complex power function
ΨJ, the exact approach has a clear advantage over the
approximate procedure in accurate power calculations.
For advance planning of a research design, the presented
power formulas can be employed to calculate the sample
size N needed to attain the specified power 1 – β for the
chosen significance level α, null values {βI0, βS0}, coeffi-
cient parameters {βI, βS}, variance component σ2, and
predictor mean and variance {μX, σ2X }. It usually involves
an incremental search with a small initial value to find
the optimal solution for achieving the desired power
performance.

Multiple linear regression
The power and sample size calculations for the general
scenario of multiple linear regression with more than
one predictor are discussed next. Consider the multiple
linear regression model with response variable Yi and p
predictor variables (Xi1, ..., Xip) for i = 1, ..., N:

Y ¼ Xβþ ε; ð15Þ
where Y = (Y1, ..., YN)

T is an N × 1 vector with Yi being
the observed measurement of the ith subject; X = (1N,
XS) with 1N is the N × 1 vector of all 1’s, XS = (XS1, ...,
XSN)

T is an N × p matrix, XSi = (Xi1, ..., Xip)
T, Xi1, ..., Xip

are the observed values of the p predictor variables of
the ith subject; β = (βI, β

T
S )

T is a (p + 1) × 1 vector with
βS = (β1, ..., βp)

T and βI, β1, ..., βp are unknown coefficient
parameters; and ε = (ε1, ..., εN)

T is an N × 1 vector with εi
are iid N(0, σ2) random variables.
For the joint test of intercept and slope coefficients in

terms of

H0 : β ¼ θ versus H1 : β ≠ θ; ð16Þ
it can be shown from Rencher and Schaalje ([6], Sec-

tion 8.4.2) that the test statistic is

FMJ ¼
β̂� θ

� �T
XTX
� �

β̂� θ
� �
 �

= pþ 1ð Þ
σ̂2

; ð17Þ

where σ̂2 = SSE/ν is the usual unbiased estimator of σ2.
Under the null hypothesis, FMJ has an F distribution
with p + 1 and ν degrees of freedom
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FMJ � F pþ 1; vð Þ ð18Þ

The joint test can be conducted by reject H0 at the sig-
nificance level α if FMJ > F(p + 1), ν, α. In general, FMJ has
the nonnull distribution for the given values of XS:

FMJ � F pþ 1; ν; ΔMJð Þ; ð19Þ

where F(p + 1, ν, ΔMJ) is a noncentral F distribution with
p + 1 and ν degrees of freedom and noncentrality param-
eter ΔMJ with

ΔMJ ¼
β� θð ÞT XTX

� �
β� θð Þ

n o
σ2

: ð20Þ

It is essential to emphasize that the inferences in
Rencher and Schaalje [26] are concerned mainly with
the slope coefficients βS. As noted in the context of sim-
ple linear regression, the fundamental results concerning
fixed predictor values are extended here to power and
sample size calculations for the validation of linear re-
gression models under random predictor settings.
In view of the random nature of the predictor vari-

ables, the continuous predictor variables {XSi, i = 1, ...,
N} are assumed to have independent multinormal distri-
butions Np(μX, ΣX). With the multinormal assumptions,

it can be readily established that XS =
PN

i¼1 XSi/N ~

Np(μX, ΣX/N) and A =
PN

i¼1 (XSi – XS )(XSi – XS )
T ~

Wp(κ, ΣX), where Wp(κ, ΣX) is a Wishart distribution
with κ degrees of freedom and covariance matrix ΣX,
and κ =N – 1. Thus, the noncentrality ΔMJ can be re-
written as

ΔMJ ¼
N βID þ βT

SDXS
� �2 þ βTSDAβSD

n o
σ2

; ð21Þ

where βID = βI – θI and βSD = βS – θS. Using the pre-
scribed distributions of XS and A, it can be shown that
βID + βT

SDXS = a + bZ ~ N(a, b2), Z ~ N(0, 1), and K = βT
SD

AβSD/d ~ χ2(κ), where a = βID + βTSDμX, b = (d/N)1/2, and

d = βT
SDΣXβSD . Note that the two random variables K

and Z are independent. It is conceptually simple and
computationally convenient to subsume the stochastic
features of XS and A in terms of Z and K. Accordingly,
the noncentrality quantity ΔJ is formulated as

ΔMJ ¼
N aþ bZð Þ2 þ dK

� �
σ2

: ð22Þ

Thus, under the multinormal predictor assumptions,
the FMJ statistic has the two-stage distribution
FMJ j K ;Z½ � � F pþ 1; ν; ΔMJð Þ;K � χ2 κð Þ;
and Z � N 0; 1ð Þ:

ð23Þ

The corresponding power function for the simultan-
eous test can be termed as

ΨMJ ¼ EKEZ P F pþ 1; ν; ΔMJð Þ > F pþ1ð Þ;ν;α
� �� 	

;

ð24Þ
where the expectations EK and EZ are taken with respect
to the distribution of K and Z, respectively. Evidently,
when p = 1, the test statistic FMJ and power function
ΨMJ reduce to the simplified formulas of FM and ΨJ

given in Eqs. 4 and 11, respectively.

Results
An illustration
To demonstrate the prescribed power and sample size
procedures, the simplified formula for estimating fetal
weight in Rose and McCallum [6] is used as a bench-
mark for validation. Although there are several different
methods for estimating the fetal weight, it was demon-
strated in Anderson et al. [27] that the simple linear re-
gression formula of Rose and McCallum [6] compares
favorably with other techniques. Based on the ultrasound
examinations conducted in the Stanford University Hos-
pital labor and delivery suite between January 1981 and
March 1984, they presented a useful formula for predict-
ing the natural logarithm of birth weight with the sum of
head, abdomen, and limb ultrasound measurements as
given by the equation: ln(BW) = 4.198 + 0.143·X, where X
= biparietal diameter +mean abdominal diameter + femur
length (in centimeters). The average birth weight of their
study population was 2275 g with a range of 490–5300 g.
The detailed comparisons and related discussions of viable
equations for estimating fetal weight can be found in An-
derson et al. [27] and the references therein.
Conceivably, there are underlying differences in fetal

weight between different ethnic origins, cohort groups,
and time periods. To validate the simple formula for a
target population, it requires a detailed scheme to deter-
mine the necessary sample size so that the conducted
study has a decent assurance in detecting the potential
discrepancy. For illustration, the intercept and slope co-
efficients are set as βI = 4.1 and βS = 0.15, respectively.
The error component is selected to be σ2 = 0.095. The
characteristics of the ultrasound measurements are rep-
resented by the mean μX = 24.2 and variance σ2X = 6.
Note that these configurations assure that the expected
fetal weight of the designated population E[BW] =
E[exp(4.1 + 0.15·X + ε)] = 2275.52 coincides the average
magnitude of birth weighs reported in Rose and



Jan and Shieh BMC Medical Research Methodology           (2019) 19:54 Page 6 of 9
McCallum [6]. To test the hypothesis of H0: (βI, βS)
= (4.198, 0.143) versus H1: (βI, βS) ≠ (4.198, 0.143) with
the significance level α = 0.05, numerical computations
showed that the sample sizes of NE = 173 and 227 are re-
quired for the exact approach to attain the target power
of 0.8 and 0.9, respectively. Because of the sample sizes
need to be integer values in practice, the attained power
is slightly greater than the nominal power level. In these
two cases, the achieved powers of the two sample sizes
are ΨJ = 0.8001 and 0.9010, respectively. These results
were computed with the supplementary algorithms pre-
sented in Additional files 1 and 2. For ease of application,
the prescribed configurations are incorporated in the user
specification sections of the SAS/IML programs.
On the other hand, the matching sample sizes com-

puted with the approximate method of Colosimo et al.
[22] are NC = 183 and 239 with the attained powers of
ΨC = 0.8010 and 0.9002, respectively. Therefore, the sim-
ple method of Colosimo et al. [22] clearly requires 183–
173 = 10 and 239–227 = 12 more babies than the exact
formula to satisfy the nominal power performance. Ac-
tually, the exact power function gives the values ΨJ =
0.8236 and 0.9161 with the sample sizes 183 and 239, re-
spectively. Hence, the resulting power differences be-
tween the two magnitudes of sample size are 0.8236–
0.8001 = 0.0235 and 0.9161–0.9010 = 0.0151. To enhance
the illustration, the computed sample size, estimated
power, and difference for the exact and approximate
procedures are summarized in Table 1. The sample size
and power calculations show that the approximate
power function ΨC tends to underestimate powers be-
cause the simplification of noncentrality parameter in
the noncentral F distribution. Correspondingly, the ap-
proximate method of Colosimo et al. [22] often overesti-
mates the required sample sizes for validation analysis.
It is essential to note that adopting a small sample size
will cause a study that has insufficient power to demon-
strate model difference. In this case of Colosimo et al.
[22], their method may lead to an over-sized study that
wastes time, money, and other resources. More import-
antly, the hypothesis tests of validation studies are
over-rejected and yield erroneous conclusions. It is of
both practical usefulness and theoretical concern to fur-
ther assess the intrinsic implications of the two distinct
Table 1 Computed sample size, estimated power, and difference
for the exact and approximate procedures with {βI, βS} = {4.1, 0.15},
{βI0, βS0} = {4.198, 0.143}, σ2 = 0.095, μX = 24.2, σ2

X = 6, and Type I
error α = 0.05

Nominal
power

Exact approach Approximate method Difference

N Estimated power N Estimated power N Power

0.80 173 0.8001 183 0.8236 10 0.0235

0.90 227 0.9010 239 0.9161 12 0.0151
procedures for other settings. Detailed empirical studies
are described next to evaluate and compare their accur-
acy under a wide variety of model configurations.

Numerical comparisons
In view of the potential discrepancy between the exact
and approximate procedures, numerical investigations of
power and sample size calculations were conducted
under a wide range of model configurations in two stud-
ies. The first assessment focuses on the situations with
normal predictor variables, while the second study con-
cerns the robustness of the two methods under several
prominent situations of non-normal predictors.

Normal predictors
For ease of comparison, the model settings in Colosimo
et al. [22] are considered and expanded to reveal the dis-
tinct behavior of the contending procedures. Specifically,
the null and alternative hypotheses are

H0 :
βI
βS

� �
¼ 0

1

� �
versus H1 :

βI
βS

� �
≠

0
1

� �
;

where {βI, βS} = {d, 1 + d} and {βID, βSD} = {d, d} with d =
0.3, 0.4, and 0.5. Note that these coefficient settings are
equivalent to those with {βI, βS} = {βI0 + d, βS0 + d} be-
cause they lead to the same differences {βID, βSD} = {d, d}
and the resulting power functions remain identical. The
error component is fixed as σ2 = 1 and the predictors X
are assumed to have normal distributions with mean μX
= {0, 0.5, 1} and variance σ2X = {0.5, 1, 2}. Overall these
considerations result in a total of 27 different combined
settings. These combinations of model configurations
were chosen to represent the possible characteristics that
are likely to be encountered in actual applications and
also to maintain a reasonable range for the magnitudes
of sample size without making unrealistic assessments.
Throughout this empirical investigation, the signifi-

cance level and nominal power are fixed as α = 0.05 and
1 – β = 0.90, respectively. With the prescribed specifica-
tions, the required sample sizes are computed for the
exact procedure with the power function ΨJ. The com-
puted sample sizes of the nine combined predictor mean
and variance patterns are summarized in Table 2, Table
S1 and Table S2 for the coefficient difference d = 0.3, 0.4,
and 0.5, respectively. As suggested by a referee, Tables
S1 and S2 are presented in Additional files 3 and 4, re-
spectively. In order to evaluate the accuracy of power
calculations, the estimated power of the exact and ap-
proximate procedures are also presented. Note that the
attained values of the exact approach are marginally lar-
ger than the nominal level 0.90. In contrast, the esti-
mated powers of the approximation of Colosimo et al.
[22] are all less than 0.90 and the difference is quite



Table 2 Computed sample size, estimated power, and simulated power for Normal predictors with {βI, βS} = {0.3, 1.3}, {βI0, βS0} = {0,
1}, σ2 = 1, Type I error α = 0.05, and nominal power 1 – β = 0.90

μX σ2X N Simulated
power

Exact approach Approximate method

Simulated power Error Simulated power Error

0 0.5 99 0.9049 0.9025 −0.0024 0.7524 −0.1525

1 76 0.8997 0.9030 0.0033 0.6257 −0.2740

2 53 0.9058 0.9050 −0.0008 0.4602 −0.4456

0.5 0.5 56 0.9029 0.9055 0.0026 0.8430 −0.0599

1 48 0.8993 0.9024 0.0031 0.7756 −0.1237

2 38 0.8997 0.9006 0.0009 0.6604 −0.2393

1 0.5 35 0.9015 0.9013 −0.0002 0.8682 −0.0333

1 33 0.9075 0.9089 0.0014 0.8445 −0.0630

2 28 0.8993 0.9016 0.0023 0.7689 −0.1304
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substantial in some cases. Then, Monte Carlo simulation
studies of 10,000 iterations were performed to compute
the simulated power for the designated sample sizes and
parameter configurations. For each replicate, N predictor
values were generated from the designated normal distri-
bution N(μX, σ2X ). The resulting values of normal pre-
dictor, intercept and slope coefficients {βI, βS}, and error
variance σ2, in turn, determine the configurations for
producing N normal outcomes of the simple linear re-
gression model defined in Eq. 1. Next, the test statistic
FJ was computed and the simulated power was the pro-
portion of the 10,000 replicates whose test statistics FJ
exceed the corresponding critical value F2, ν, 0.05. The ad-
equacy of the two sample size procedures is determined
by the error between the estimate power and the simu-
lated power. The simulated power and error are also
summarized in Table 2, Table S1 and Table S2 for all
twenty-seven design schemes.
It can be seen from these results that the discrepancy

between the estimated power and the simulated power is
considerably small for the proposed exact technique for
all model configurations considered here. Specifically,
the resulting errors of the 27 designs are all within the
small range of − 0.0087 to 0.0056. On the other hand,
the estimated powers of the approximate method are
constantly smaller than the simulated powers. The out-
comes show a clear pattern that absolute error decreases
with coefficient difference d and predictor mean μX, and
increases with predictor variance σ2X , when all other
configurations are held constant. Notably, the associated
absolute errors can be as large as 0.4456, 0.4295, and
0.4183 when μX = 0 and σ2X = 2 for d = 0.3, 0.4, and 0.5
in Table 2, Table S1, Table S2, respectively. It should be
noted that most of the sample sizes reported in the em-
pirical examination of Colosimo et al. [22] (Table 1) are
rather large and impractical. This may explain why the
performance of the approximate formula was acceptable
in their study. In fact, some of their cases with smaller
sample sizes also showed the same phenomenon that
the simple method leads to an underestimate of power
level and an overestimated sample size required to
achieve the nominal power. Essentially, the simplicity of
the approximate formula does come with a huge price in
terms of inaccurate power and sample size calculations.

Non-normal predictors
To address the sensitivity issues of the two techniques,
power and sample size calculations were also conducted
for the regression models with non-normal predictors.
For illustration, the model settings in Table 2 with {βID,
βSD} = {0.3, 0.3} are modified by assuming the predictors
have four different sets of distributions: Exponential(1),
Gamma(2, 1), Laplace(1), and Uniform(0, 1). For ease of
comparison, the designated distributions were linearly
transformed to have mean μX and variance σ2X as re-
ported in the previous study. Hence, the computed sam-
ple sizes associated with the exact procedure and
estimated powers of the two methods remain identical
for the four non-normal distributions. The simulated
powers were obtained with the Monte Carlo simulation
studies of 10,000 iterations under the selected model
configurations and non-normal predictor distributions.
Similar to the numerical assessments in the preceding
study, the computed sample sizes, simulated powers,
estimated powers, and associated errors of the two
competing procedures are presented in Tables S3-S6
of Additional files 5, 6, 7, 8 for the four types of
non-normal predictors, respectively.
Regarding the robustness properties of the two

procedures, the results in suggest that the performance
of the exact approach is slightly affected by the
non-normal covariate settings. The high skewness and
kurtosis of the Exponential distribution apparently has a
more prominent impact on the normal-based power
function than the other three cases of Gamma, Laplace,
and Uniform distributions. Note that the approximate
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method only depends on the mean values of the predic-
tors and is presumably less sensitive to the variation of
predictor distributions. However, the accuracy margin-
ally improved in some cases, but generally maintains al-
most the same performance as in the normal setting
presented in Table 2. In short, the sensitivity and robust-
ness of the suggested exact technique depends on the
level of how badly predictor distributions depart from
normality structure. On the other hand, the performance
assessments show that the exact procedure still give ac-
ceptable results even in the situations with non-normal
predictors considered here. More importantly, these em-
pirical evidences reveal that the exact approach is rela-
tively more reliable and accurate than the approximate
method to be recommended as a trustworthy technique
for power and sample calculations.
Discussion
In practice, a research study requires adequate statistical
power and sufficient sample size to detect scientifically
credible effects. Although multiple linear regression is a
well-recognized statistical tool, the corresponding power
and sample size problem for model validation has not
been adequately examined in the literature. To enhance
the usefulness of the joint test of intercept and slope
coefficients in linear regression analysis, this article pre-
sents theoretical discussions and computational algo-
rithms for power and sample size calculations under the
random modeling framework. The stochastic nature of
predictor variables is taken into account by assuming
that they have an independent and identical normal dis-
tribution. In contrast, the existing method of Colosimo
et al. [22] adopted a direct replacement of mean values
for the predictor variables. Consequently, the proposed
exact approach has the prominent advantage of
accommodating the complete distributional features of
normal predictors whereas the simple approximation of
Colosimo et al. [22] only includes the mean parameters
of the predictor variables.
Conclusions
The presented analytic derivations and empirical results
indicate that the approximate formula of Colosimo et al.
[22] generally does not give accurate power and sample
size calculations. According to the overall accuracy and ro-
bustness, the exact approach clearly outperforms the ap-
proximate methods as a useful tool in planning validation
study. Although the numerical illustration only involves a
predictor variable, it embodies the underlying principle
and critical feature of linear regression that can be useful
in conducting similar evaluations for the more general
framework of multiple linear regression.
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