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Abstract

Background: Major challenges in understanding the functional consequences of genetic risk factors for human
disease are which tissues and cell types are affected and the limited availability of suitable tissue. The aim of this
study was to evaluate tissue-specific genotype-epigenetic characteristics in DNA samples from both endometrium
and blood collected from women at different stages of the menstrual cycle and relate results to genetic risk factors
for reproductive traits and diseases.

Results: We analysed DNA methylation (DNAm) data from endometrium and blood samples from 66 European
women. Methylation profiles were compared between stages of the menstrual cycle, and changes in methylation
overlaid with changes in transcription and genotypes. We observed large changes in methylation (27,262 DNAm
probes) across the menstrual cycle in endometrium that were not observed in blood. Individual genotype data was
tested for association with methylation at 443,016 and 443,101 DNAm probes in endometrium and blood respectively
to identify methylation quantitative trait loci (mQTLs). A total of 4546 sentinel cis-mQTLs (P < 1.13 × 10−10) and 434
sentinel trans-mQTLs (P < 2.29 × 10−12) were detected in endometrium and 6615 sentinel cis-mQTLs (P < 1.13 × 10−10)
and 590 sentinel trans-mQTLs (P < 2.29 × 10−12) were detected in blood. Following secondary analyses, conducted to
test for overlap between mQTLs in the two tissues, we found that 62% of endometrial cis-mQTLs were also observed in
blood and the genetic effects between tissues were highly correlated. A number of mQTL SNPs were associated with
reproductive traits and diseases, including one mQTL located in a known risk region for endometriosis (near GREB1).

Conclusions: We report novel findings characterising genetic regulation of methylation in endometrium and the
association of endometrial mQTLs with endometriosis risk and other reproductive traits and diseases. The high
correlation of genetic effects between tissues highlights the potential to exploit the power of large mQTL datasets in
endometrial research and identify target genes for functional studies. However, tissue-specific methylation profiles and
genetic effects also highlight the importance of also using disease-relevant tissues when investigating molecular
mechanisms of disease risk.
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Background
Genetic risk factors for complex disease mostly reside
in non-coding regions of the genome [1, 2] and studies
integrating results from genome-wide association stud-
ies and the genetic effects on methylation and gene ex-
pression provide a powerful approach to understand
the functional consequences of these genetic risk fac-
tors. DNA methylation (DNAm) is one of the most
common forms of epigenetic modification and involves
the addition of a methyl group to the carbon-5 pos-
ition of cytosine, often occurring at CpG sites [3].
Methylation is essential in facilitating embryonic devel-
opment, chromosomal infrastructure, cell viability, im-
printing, X chromosome-inactivation and transcription
[3–6]. Methylation patterns in DNA samples from
blood are associated with disease pathogenesis and are
influenced by underlying genetic variation [7–10]. Dif-
ficulty accessing disease-relevant tissues has meant
many studies make use of large gene expression and
methylation datasets from peripheral blood as a proxy.
However, differences in methylation profiles contribute
to tissue-specific functions [11–13] and understanding
tissue specificity of methylation signals is important to
help interpret the role of methylation in disease risk.
The human endometrium is a highly specialised tis-

sue lining the inside of the uterus and is essential to
implantation, development of the placenta, and suc-
cessful pregnancy [14]. Endometrium undergoes a
cyclic process of cellular proliferation, differentiation,
degradation, and regeneration [14, 15]. This dynamic
process is accompanied by marked changes in gene ex-
pression that occur in response to changes in circulating
concentrations of the steroid hormones oestradiol and
progesterone [14, 16–18]. Methylation profiles in human
endometrium also change across the menstrual cycle with
thousands of genes differentially methylated between cycle
stages [19–22].
This study aimed to compare DNA methylation patterns

in both endometrium and blood collected from women
sampled at different stages across the menstrual cycle. We
identified methylation quantitative trait loci (mQTLs) in
endometrium and correlated the mQTLs with blood
mQTLs in the same women, and with larger mQTL data-
sets. We then evaluated overlap of mQTLs in endomet-
rium with oestrogen receptor (ESR) binding sites and the
overlap of mQTLs in both tissues with genomic regions
associated with risk for endometriosis and other repro-
ductive disorders. Results from this study provide novel
insight into genetic control of methylation in human
endometrium through the identification of endometrial
mQTLs. Our work highlights methylation differences be-
tween blood and endometrial tissues across the menstrual
cycle, and similarities between blood and endometrium in
genetic regulation of methylation.

Results
Genome-wide methylation profiles
We analysed genome-wide methylation profiles in endo-
metrium from 66 European women who attended clinics
at the Royal Women’s Hospital in Melbourne, Australia.
Following quality control (QC) filtering, a total of
443,016 and 443,101 DNAm probes remained for
analyses in endometrial tissue samples and blood samples,
respectively. Both endometrium and blood had a similar
proportion of probes sites consistently hypomethylated
(Fig. 1a). However, a larger proportion of probes sites
in blood were consistently hypermethylated (Fig. 1a)
(Additional file 1: Supplementary Note 1). CpG probe
sites were annotated according to their proximity to
CpG islands using the Illumina Human Methylation 450
BeadChip manifest file (see Additional file 1: Supplementary
Note 1 for definitions and detailed results). Hypomethylated
sites were more common in CpG islands and hypermethy-
lated sites were more common in open sea regions in both
endometrium and blood (Fig. 1b, c).
We see very similar genome-wide methylation profiles

between menstrual (M), proliferative (P) and secretory
(S) phases of menstrual cycle in endometrium. In all
cycle phases, we observed 35.2–36% of probes consist-
ently hypomethylated in at least 90% of individuals and
22.6–23.9% of probes consistently hypermethylated in
individuals (Fig. 2). We also see similar methylation pat-
terns for probes located in CpG islands, shores, shelves
and open sea regions across all three phases (Additional
file 2: Figure S1).

Differential DNA methylation
To investigate changes in methylation across the men-
strual cycle in endometrium and blood, we performed a
differential methylation analysis between the prolifera-
tive (P) phase and secretory (S) phase of menstrual cycle.
Stage of cycle was determined by histological assessment
of endometrial tissue. We detected significant differences
in methylation in endometrium for 6% of DNAm probe
sites (n = 27,262) across the menstrual cycle comparing
the P phase and S phases of the cycle (FDR < 0.05, P <
3.07 × 10−3) (Additional file 3: Table S1). Each DNAm
probe site was annotated to the gene with the closest
transcription start site (11,281 genes). The top 30 differ-
entially methylated DNAm probe sites between the two
phases of the menstrual cycle in endometrial tissue are
listed in Table 1 and shown in Additional file 2: Figure
S2. Marked changes in the methylation of 40 DNAm
probe sites with the largest fold change between the pro-
liferative and secretory phase are shown in Additional
file 2: Figure S3. The majority of differentially methyl-
ated DNAm probe sites (51.9%) were concentrated in
open sea locations and CpG island shores (25.3%)
throughout the genome (Additional file 3: Table S2,
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Additional file 2: Figure S4). Differences observed across
the cycle in endometrial tissue were not reflected in
blood and are likely, in part, to reflect changes in cell
composition.
Gene lists corresponding to the closest transcription start

sites (TSS) to differentially methylated DNAm probe sites
in endometrial tissue across the cycle were compared to
genes found to be differentially expressed between the same
stages in endometrial tissue using data from Fung et al.
[17]. Over a quarter of genes annotated to differentially

methylated sites (3215 genes) were also differentially
expressed between the proliferative and secretory phases
(Additional file 2: Figure S5). This overlap with differentially
expressed genes was significantly different to the propor-
tion expected by chance (chi-square statistic = 5.10, P =
0.02).

mQTL analysis
Using genotype information from each individual, we
performed an expression quantitative trait loci (eQTL)

Fig. 1 a Density plot showing the distribution of beta values measured at each DNA methylation (DNAm) probe in endometrium and blood. b Density
plot showing the distribution of beta values measured at each DNAm probe in endometrium, values grouped according to location to CPG islands. c
Density plot showing the distribution of beta values measured at each DNAm probe in blood, values grouped according to location to CPG islands

Fig. 2 Density plot showing the distribution of beta values measured at each DNA methylation (DNAm) probe in endometrium from three
menstrual cycle hases, the menstrual phase, proliferative phase and secretory phase
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analysis to identify associations between SNPs and DNAm
probes in both endometrial tissue and blood. In endomet-
rial tissue, we observed 4546 sentinel cis-mQTLs (P <
1.13 × 10−10) and 434 sentinel trans-mQTLs (P < 2.29 ×
10−12), using a Bonferroni threshold to correct for multiple
testing. Sentinel cis-mQTLs were defined as the mQTL
with the most significant P value for each DNAm probe
and sentinel trans-mQTLs were defined as mQTLs
harbouring independent (R2 < 0.5) SNPs on a different
chromosome to the associated DNAm site. There
were similar numbers in blood DNA with 6615 sentinel
cis-mQTLs (P < 1.13 × 10−10) and 590 sentinel trans-mQTLs
(P < 2.29 × 10−12) (Fig. 3). The 30 most significant cis-
mQTLs identified in endometrial tissue are listed in Table 2

and the 30 most significant cis-mQTLs identified in blood
are listed in Table 3. Conditional analysis on cis-mQTLs
reaching Bonferroni significance identified secondary
cis-mQTL signals for 9 DNAm probe sites in endometrial
tissue and 44 DNAm probe sites in blood. Only 23 DNAm
probe sites were both differentially methylated across the
cycle and had a cis-mQTL in endometrial tissue. We found
no interaction between genotype and stage of cycle at these
23 DNAm probe sites.

Overlap between endometrial and blood mQTLs
We were able to test how well our blood mQTL dataset
reproduced previously identified mQTL signals by over-
lapping our signals with summary data from a

Table 1 Differentially methylated DNAm probe sites in endometrium. The top 30 significantly differentially methylated DNAm probe
sites between the proliferative (P) and secretory (S) phase (PvsS)

DNAm probe site ID Log2 fold change P value Adjusted P value Probe start (hg19) Closest TSS gene name

cg16201273 0.146 7.96E-15 3.53E-09 80,855,803 ZMIZ1

cg20888995 0.146 2.74E-11 6.06E-06 56,822,059 ARHGEF3

cg01713086 0.128 1.44E-10 1.60E-05 28,268,413 ZNF395

cg07730183 0.096 1.45E-10 1.60E-05 2,136,400 TSC2

cg22934449 0.093 4.52E-10 3.72E-05 104,199,723 ZFYVE21

cg21369890 0.137 5.28E-10 3.72E-05 86,099,963 AK024998

cg06669056 0.096 6.17E-10 3.72E-05 5,570,715 C4orf6

cg25237396 − 0.092 6.71E-10 3.72E-05 802,148 MIR4745

cg17900103 0.114 1.45E-09 6.33E-05 20,940,931 PINK1

cg22185879 − 0.087 1.53E-09 6.33E-05 62,153,192 PPDPF

cg23235622 0.096 1.57E-09 6.33E-05 34,039,299 CEP250

cg25735294 0.103 2.99E-09 1.10E-04 186,353,671 FETUB

cg02248729 − 0.047 4.76E-09 1.62E-04 80,555,018 FOXK2

cg12082793 0.097 6.48E-09 2.05E-04 20,218,923 OTUD3

cg11224737 0.133 8.02E-09 2.37E-04 72,991,072 LOC728978

cg26479868 0.082 1.00E-08 2.77E-04 29,916,194 TMTC1

cg09714100 − 0.092 1.31E-08 3.42E-04 44,821,342 SIK1

cg27133780 0.133 1.41E-08 3.46E-04 32,474,743 CMTM7

cg21163015 0.108 1.82E-08 4.25E-04 140,658,386 FLJ40292

cg02118194 − 0.040 2.37E-08 5.09E-04 46,404,488 MYPOP

cg03018949 0.062 2.68E-08 5.09E-04 127,371,608 C10orf122

cg26469099 0.085 2.78E-08 5.09E-04 4,144,866 PARP11

cg22182975 0.071 2.86E-08 5.09E-04 167,571,122 GPR31

cg05224671 0.090 3.15E-08 5.09E-04 65,435,408 RAB15

cg09616559 − 0.066 3.22E-08 5.09E-04 25,921,150 Y_RNA

cg22416376 0.092 3.33E-08 5.09E-04 17,395,271 SLC7A2

cg09100343 0.075 3.34E-08 5.09E-04 57,147,152 CPNE2

cg25420952 0.084 3.46E-08 5.09E-04 116,841,084 AMBP

cg18645625 0.102 3.48E-08 5.09E-04 79,699,531 ZFYVE16

cg21642947 − 0.062 3.83E-08 5.09E-04 62,153,431 PPDPF
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meta-analysis of the Lothian Birth Cohorts (LBC) and
Brisbane Systems Genetics Study (BSGS) datasets from
1980 individuals [23]. Approximately 70% of cis-mQTLs
identified in blood in this study have been reported in
blood previously. This replication shows that our blood
data are consistent with larger blood mQTL datasets
that themselves can act as a proxy to increase the power
of subsequent analyses. Focusing on our matched endo-
metrium and blood data, 60% of endometrial tissue
cis-mQTLs were also found in our blood cis-mQTL set.
Similarly, when compared to the larger LBC-BSGS blood
mQTL dataset, 62% of endometrial tissue cis-mQTLs
were also seen in a larger blood dataset. The 30
cis-mQTLs with the largest effect size in endometrial tis-
sue that are also in blood are shown in Additional file 2:
Figure S6, the majority displaying effect sizes in the same
direction. It is important to note however that the detec-
tion of differences in effect size between tissues is
dependent on sample size and the power to detect differ-
ences [24].
Using the rb method outlined by Qi et al. [24], we esti-

mated the correlation in genetic effects between
cis-mQTLs in endometrium and blood, and found a high
correlation between tissues from the same individuals
(rb = 0.78). This correlation was similar to the correlation
in cis-mQTL effects between brain and blood (rb = 0.78)
in the Qi et al. [24] study.

Overlap with reproductive traits and pathologies
GWAS overlap
To investigate possible endometriosis-associated disease
mechanisms impacted by epigenetic regulation in the
endometrium, we identified any cis-mQTL mSNPs
(mSNP—SNP with a significant mQTL) in genomic regions
previously associated with endometriosis. Five mSNPs asso-
ciated with DNAm probe sites closest to GREB1, C11orf46,
NR2C1, KDR and WNT4 are located within regions associ-
ated with endometriosis risk (Table 4).
Using Functional Mapping and Annotation of

Genome-Wide Association (FUMA) to test for overlap
between mSNPs and SNPs associated with traits and dis-
eases in the GWAS catalogue, we identified 632 mSNPs
that matched, or were in linkage disequilibrium with the
SNPs in the GWAS catalogue that are significantly asso-
ciated with 482 different traits and diseases (Additional
file 3: Table S3). Some of the overlapping SNPs included
those associated with reproductive traits and diseases
such as age at first birth, birth weight, endometriosis,
ovarian cancer, and age of menarche and menopause.

Summary-data-based Mendelian randomisation
To test for a causal/pleiotropic relationship between
methylation status, genotype and endometriosis, we applied
summary-data-based Mendelian randomisation (SMR) and
heterogeneity in dependent instruments (HEIDI) methods

Fig. 3 Manhattan plots of endometrial tissue (top; panels a, b) and blood (bottom; panels c, d) cis (left; panels a, c) and trans-mQTLs (right;
panels b, d). Each point represents an mSNP, chromosomes are defined by alternating purple and orange points and the red line indicates a
Bonferroni threshold of P < 1.13 × 10−10 for cis-eQTLs and P < 2.29 × 10−12 for trans-eQTLs
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[25] to endometriosis meta-analysis summary data from
Sapkota et al. [26] and our endometrial mQTL summary
data. A total of five DNAm probe sites passed the SMR test
(PSMR < 1.2 × 10−5). These five sites were annotated to
growth regulating oestrogen receptor binding 1 (GREB1)
and SNP rs59129126, Metazoa_SRP and SNP rs28689909,
and kinase insert domain receptor (KDR) (3 DNAm probe
sites) and SNPs rs62304733 and rs6554237 (Table 5). Only
two of the five DNAm probe sites, those annotated to
GREB1 and Metazoa_SRP, were not rejected by the HEIDI
test with PHEIDI > 0.01 (Fig. 4).
The SMR analysis was repeated using blood mQTL

summary data from the larger LBC-BSGS blood dataset.
Six signals passed the SMR test (PSMR < 5.6 × 10−7) and
were not rejected by the HEIDI test (PHEIDI > 3.8 × 10−3)

test. These included two DNAm probe sites closest to
GREB1, two closest to WNT4, one closest to Meta-
zoa_SRP and one closest to C11orf46 (Table 6).
Using a multi-omic approach within the SMR software

and endometrial eQTL data from Fung et al. [27]; we in-
tegrated both our endometrial mQTL dataset and the
eQTL dataset to identify any association between genetic
regulation of a methylation site and transcription of a
gene and vice versa. We used endometrial expression
quantitative trait loci (eQTLs) as the outcome and endo-
metrial mQTLs as the exposure (M2T analysis [8]) and
identified 472 associations between 414 methylation
probes and 186 gene expression probes (Additional file 3:
Table S4). Alternatively using endometrial mQTLs as
the outcome and endometrial eQTLs as the exposure

Table 2 Top 30 most significant cis-mQTLs in endometrium

CHR SNP BP A1 BETA SE P value DNAm probe site ID Probe start (hg19) Closest TSS gene name

3 rs6783741 43,455,926 T 0.4525 0.00261 2.23E-60 cg11035303 43,465,453 SNRK

4 rs5856334 16,076,153 AT 0.3958 0.002547 1.94E-58 cg17858192 16,077,757 PROM1

3 3:61237223:T:C 61,237,223 T 0.4387 0.002831 2.20E-58 cg17573813 61,237,223 FHIT

14 rs12436555 24,634,825 A − 0.4469 0.003038 1.85E-57 cg02898977 24,662,177 IPO4

11 rs73555593 107,462,942 A 0.4494 0.003092 3.00E-57 cg22355889 107,461,585 ELMOD1

4 rs6854452 39,446,337 A 0.4824 0.003458 1.62E-56 cg19311470 39,460,490 RPL9

17 rs3833162 27,071,442 G 0.6435 0.004835 1.10E-55 cg04212500 27,184,483 ERAL1

20 rs3764715 1,287,051 A − 0.3891 0.002947 1.52E-55 cg17341969 1,287,000 SDCBP2

1 rs6697965 220,943,801 C 0.4621 0.003507 1.67E-55 cg12466610 220,950,155 MARCH12

17 rs9897355 80,078,095 G 0.4414 0.003403 3.19E-55 cg25388952 80,084,596 CCDC57

13 rs1040961 40,108,008 G 0.4808 0.003773 6.55E-55 cg17707870 40,107,957 AK021977

5 rs113644940 174,915,503 T − 0.4505 0.003674 3.16E-54 cg20462978 174,911,722 SFXN1

6 rs660594 31,837,250 G 0.3695 0.003024 3.66E-54 cg20370184 31,838,494 SLC44A4

3 rs76046201 15,365,139 T − 0.4432 0.003671 5.98E-54 cg09627057 15,377,670 SH3BP5

2 rs6706223 33,944,002 G 0.4451 0.00374 1.07E-53 cg04131969 33,951,597 MYADML

6 rs9380143 29,802,045 T − 0.4279 0.003698 3.38E-53 cg03570263 30,040,291 RNF39

6 rs138009982 170,453,220 A 0.4388 0.003921 1.33E-52 cg11400162 170,455,448 LOC154449

6 rs72860388 32,904,703 T − 0.3676 0.003288 1.38E-52 cg21992044 32,918,073 HLA-DMA

7 rs7807520 2,087,545 C − 0.4547 0.004083 1.63E-52 cg21598190 2,099,404 MAD1L1

9 rs13299342 136,141,504 A − 0.4277 0.003848 1.74E-52 cg13683939 136,152,547 ABO

1 rs35195267 92,398,884 T 0.3806 0.003438 2.08E-52 cg01081438 92,417,998 BRDT

15 rs376992916 65,245,209 T − 0.4207 0.003825 2.68E-52 cg25879395 65,272,510 SPG21

8 rs11167041 142,258,889 A − 0.4478 0.004167 6.95E-52 cg04123498 142,283,514 SLC45A4

8 rs12675160 140,918,110 A − 0.4302 0.004021 8.29E-52 cg16191297 140,926,659 AX748239

7 rs1108056 101,834,081 A − 0.4235 0.003977 1.01E-51 cg18088486 101,837,098 SH2B2

7 rs798558 2,758,935 G − 0.4117 0.003963 2.79E-51 cg17393140 2,764,079 AMZ1

1 rs12074147 40,203,722 C − 0.4137 0.004 3.35E-51 cg07703391 40,225,995 AB075489

8 rs7822181 10,049,872 T − 0.4409 0.00427 3.57E-51 cg26077133 10,049,821 MSRA

12 rs7139321 123,719,528 T 0.4135 0.004077 7.40E-51 cg09084244 123,757,810 CDK2AP1

11 rs678679 35,608,275 T − 0.4807 0.004747 7.90E-51 cg26465155 35,611,044 FJX1
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Table 3 Top 30 most significant cis-mQTLs in blood

CHR SNP BP A1 BETA SE P value DNAm probe Site ID Probe start (hg19) Closest TSS
gene name

3 rs6783741 43,455,926 T 0.448 0.001743 2.21E-67 cg11035303 43,465,453 SNRK

6 6:29699301:TGAGAGA :TGAGA 29,699,301 TGAGAGA 0.4433 0.002662 1.16E-59 cg27230769 29,705,998 HLA-F-AS1

8 rs12675160 140,918,110 A − 0.4395 0.002672 1.91E-59 cg16191297 140,926,659 AX748239

15 rs4776894 67,416,445 C − 0.4491 0.002948 4.42E-58 cg07882838 67,417,557 SMAD3

2 rs6706223 33,944,002 G 0.4457 0.002985 1.00E-57 cg04131969 33,951,597 MYADML

6 rs9380143 29,802,045 T − 0.4285 0.002918 2.00E-57 cg03570263 30,040,291 RNF39

13 rs1040961 40,108,008 G 0.4481 0.003182 1.10E-56 cg17707870 40,107,957 AK021977

4 rs5856334 16,076,153 AT 0.4034 0.002962 4.31E-56 cg17858192 16,077,757 PROM1

4 rs6854452 39,446,337 A 0.4776 0.003507 4.33E-56 cg19311470 39,460,490 RPL9

11 rs73555593 107,462,942 A 0.4321 0.003249 1.15E-55 cg22355889 107,461,585 ELMOD1

3 rs1054190 119,536,718 T − 0.3963 0.002991 1.32E-55 cg12414339 119,536,718 NR1I2

1 rs6687657 33,599,737 T − 0.4317 0.003277 1.68E-55 cg12386614 33,608,003 AX747064

7 rs62444879 2,048,470 G − 0.4355 0.003316 1.90E-55 cg03723481 2,071,723 MAD1L1

11 rs10750097 116,664,040 G 0.4412 0.003384 2.59E-55 cg12556569 116,663,989 APOA5

19 rs1433089 52,506,985 C − 0.435 0.003369 3.81E-55 cg01561758 52,514,395 ZNF615

6 rs138009982 170,453,220 A 0.4368 0.003437 7.35E-55 cg11400162 170,455,448 LOC154449

2 rs61702354 25,970,644 A 0.3672 0.002935 1.40E-54 cg17717333 26,101,647 ASXL2

14 rs35595004 52,733,244 A − 0.4397 0.00357 2.64E-54 cg23022053 52,733,193 PTGDR

10 rs10900074 45,071,312 A − 0.427 0.003469 2.70E-54 cg02113055 45,072,470 CXCL12

12 rs928993 52,798,364 A − 0.4268 0.003471 2.83E-54 cg19393008 52,798,313 KRT82

6 rs3130978 31,082,188 A − 0.4033 0.003301 3.65E-54 cg24926791 31,082,137 PSORS1C1

21 rs1721 46,349,496 T − 0.4368 0.003577 3.76E-54 cg02464073 46,349,496 ITGB2

9 rs11789671 120,504,614 A − 0.414 0.003395 3.94E-54 cg21242448 120,510,244 TLR4

11 rs11230502 60,607,476 A − 0.4072 0.003374 6.09E-54 cg06394820 60,608,241 CCDC86

12 rs7139321 123,719,528 T 0.4466 0.00372 7.49E-54 cg09084244 123,757,810 CDK2AP1

7 rs1108056 101,834,081 A − 0.4386 0.003676 9.75E-54 cg18088486 101,837,098 SH2B2

1 rs284307 10,739,255 C − 0.3581 0.003024 1.33E-53 cg13387643 10,737,562 Mir_584

12 rs10777168 76,651,353 C 0.407 0.003444 1.43E-53 cg26864661 76,661,181 BBS10

20 rs6073257 42,561,422 C 0.3894 0.00333 2.19E-53 cg26365090 42,574,362 TOX2

16 rs12149056 58,690,964 A − 0.4447 0.003819 2.62E-53 cg05876883 58,704,445 SLC38A7

Table 4 Endometrial cis-mQTL mSNPs associated with endometriosis

CHR SNP BP BETA P value DNAm probe site ID Probe start (hg19) Closest TSS gene name GWAS P value

2 rs16857668 11,723,110 − 0.3996 2.95e-41 cg16908938 11,728,029 GREB1 2.345E-15

11 rs11031006 30,226,528 0.07907 2.42e-06 cg26197155 30,344,676 C11orf46 8.558E-08

12 rs35223035 95,675,326 0.05842 4.94e-05 cg06948737 95,471,414 NR2C1 R2 = 0.89 with GWAS SNP
rs4762326
(P = 2.20E-09)

4 rs1551641 55,993,915 0.0592 0.0001091 cg07123701 56,024,384 KDR 3.736E-11

1 rs12405695 22,365,689 − 0.09405 0.0001206 cg03519931 22,466,137 WNT4 1.297E-14
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Table 5 Results of the SMR analysis conducted using endometrial mQTLs and summary statistics from an endometriosis meta-
analysis

CHR DNAm probe site ID Closest TSS gene name Probe bp Top SNP Top SNP bp A1 p_SMR p_HET

2 cg16908938 GREB1 11,728,029 rs59129126 11,728,388 C 1.58E-07 1.25E-01

4 cg10360906 KDR 56,023,701 rs62304733 56,024,199 C 7.87E-07 9.34E-04

4 cg09978860 KDR 56,023,920 rs62304733 56,024,199 C 2.85E-06 8.37E-03

4 cg01777861 KDR 56,023,794 rs6554237 56,025,361 T 5.74E-06 8.46E-03

2 cg07314298 Metazoa_SRP 11,723,111 rs28689909 11,735,061 A 7.93E-06 1.26E-02

Fig. 4 Association of methylation differences near the GREB1 locus and endometriosis risk. a Location of GREB1 transcripts on chromosome 2
with marked locations of the lead endometriosis risk SNP (rs11674184) for the GREB1 locus (pink), the GREB1 gene expression array probe
(ILMN_1721170) position (purple), the location of mQTL DNAm probe (cg16908938) (orange) and mQTL SNP (rs59129126) (green) passing the
SMR analysis. b Expression of ILMN_1721170 in endometrial samples from women with different genotypes at rs59129126. c Methylation at
DNAm probe cg16908938 in endometrial samples from women with different genotypes at rs59129126. d SMR locus plot showing the results at
GREB1/Metazoa_SRP locus for endometriosis. Results of the latest GWAS meta-analysis are shown in the top plot, grey dots representing the P
values for SNPs and diamonds representing the P values for DNAm probe sites from the SMR test. Sites highlighted in red passed the SMR test.
The middle and bottom plots show the endometrial mQTL P values of SNPs from this study for the DNAm probe sites nearest to GREB1 and
Metazoa_SRP respectively
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(T2M analysis), we identified 353 associations between
308 methylation probes and 157 gene expression probes
that passed the SMR and HEIDI tests (Additional file 3:
Table S5). We observed 275 associations overlapping be-
tween M2T and T2M analyses, the majority of loci
showing opposite directions of effect (Additional file 1:
Supplementary Note 2). This is consistent with both
pleiotropy and the hypothesis that genotypes can regu-
late gene expression by altering the methylation at
nearby DNAm probe sites and also can potentially affect
methylation at DNAm probe sites via changes in gene
expression. An estimated ~ 26% of the DNAm probe
sites targeted the closest gene whilst the remaining sites
target more distant genes. An example of a DNAm
probe site targeting the most immediate gene, threonine
synthase like 2 (THNSL2), is shown in Fig. 5, both the
DNAm probe site and associated SNP located within the
THNSL2 promotor. An example of a DNAm probe site
targeting a more distant gene, IGF-like family receptor 1
(IGFLR1/TMEM149), is shown in Fig. 6. We mapped
the position of the associated M2T DNAm probe sites,
which also have mQTLs in blood, to annotated regulatory
regions and found that ~ 90% were within known
regulatory elements. M2T DNAm probes were signifi-
cantly enriched in promoters (fold-change = 1.52, P =
2.18 × 10−8) and were significantly less represented in
quiescent regions (fold-change = 0.57, P = 9.78 × 10−9)
when compared to randomly sampled probes with
matched variance (Additional file 2: Figure S7).
SMR was also used to test for any associations be-

tween endometrial eQTLs and various other traits and
diseases. We found pleiotropic associations between 409
probes and 17 traits including those relating to repro-
ductive biology, age at menopause and ovarian cancer

(Additional file 3: Table S6). Approximately 63% of
mQTLs that passed the SMR test and were not rejected
by the HEIDI test for these traits were also present in
blood. However, for mQTLs associated with menopause
and ovarian cancer, only 6 of the 26 mQTLs were also in
blood. This suggests that tissue-specific effects may con-
tribute to these phenotypes.

Functional annotation
Gene pathways potentially impacted by changes in
methylation in endometrium were investigated using the
pathway enrichment analysis in FUMA. No MsigDB
Hallmark pathways were enriched for genes with tran-
scription start sites closest to DNAm probe sites differ-
entially methylated between stages of the menstrual
cycle. Significantly enriched pathways for overlapping
gene sets between differentially methylated and differen-
tially expressed genes include epithelial mesenchymal
transition, oestrogen response, IL2 STAT5 signalling and
TNFA signalling via NFKB (Additional file 2: Figure S8).
To identify gene pathways potentially affected by gen-

etic regulation of methylation in endometrium and/or
blood, we also conducted a pathway analysis of genes
annotated to cis-mQTL probes. Pathway analysis showed
that ultraviolet (UV) response, early oestrogen response
and epithelial mesenchymal transition were the most
significantly enriched hallmark pathways in both endo-
metrial tissue and blood; GO biological processes such as
intracellular signal transduction, regulation of cell differ-
entiation and positive regulation of molecular function
were also highly enriched in both tissues (Table 7). The
majority of enriched hallmark pathways were consistent
across both blood and endometrium with the exception of
pancreas beta cells, hedgehog signalling and the PI3K/

Table 6 Results of the SMR analysis conducted using blood mQTLs and summary statistics from an endometriosis meta-analysis

CHR DNAm probe Site ID Closest TSS gene name Probe bp Top SNP Top SNP bp A1 b_SMR p_SMR p_HET

2 cg02584498 GREB1 11,674,057 rs77294520 11,660,955 C 0.149038 1.01E-11 0.009952231

2 cg10849854 GREB1 11,674,557 rs77294520 11,660,955 C 0.250387 4.40E-10 0.000121199

4 cg10360906 KDR 56,023,751 rs11936364 56,019,253 T − 0.075528 2.43E-09 0.000696251

4 cg01777861 KDR 56,023,843 rs7696256 56,023,747 G − 0.096417 3.38E-09 0.000267448

4 cg09978860 KDR 56,023,921 rs11936364 56,019,253 T − 0.0974429 3.70E-09 0.000221536

1 cg25011003 WNT4 22,470,341 rs55938609 22,470,451 C 0.280871 4.71E-09 0.181277

4 cg16572876 KDR 56,024,045 rs11936364 56,019,253 T − 0.144697 1.17E-08 0.000408871

4 cg20092376 KDR 56,023,423 rs6837695 56,015,840 T − 0.148622 1.17E-08 0.000631242

4 cg07123701 KDR 56,024,434 rs11936364 56,019,253 T − 0.151501 1.29E-08 0.000349096

2 cg16908938 GREB1 11,728,079 rs59129126 11,728,388 C 0.0779192 1.34E-08 0.04232295

2 cg07314298 Metazoa
_SRP

11,723,111 rs59129126 11,728,388 C 0.105449 1.88E-08 0.1823231

1 cg15582954 WNT4 22,470,343 rs55938609 22,470,451 C 0.361317 7.96E-08 0.3437667

11 cg26197155 C11orf46 30,344,725 rs12271187 30,319,259 A − 0.112429 1.71E-07 0.8086896
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AKT/MTOR signally pathways, which were only enriched
in blood mQTLs, and peroxisome and angiogenesis path-
ways that were only enriched in endometrium (Additional
file 3: Table S7 and S8). Similarly, whilst 85% of the
enriched GO biological process pathways are shared be-
tween blood and endometrium, there are some more
biologically relevant pathways that are tissue specific
such as artery development, lymphocyte differentiation
and cardiac cell development in blood and regulation of
meiotic cell cycle, regulation of epithelial structure
maintenance and regulation of embryonic development
in endometrium (Additional file 3: Table S7 and S8).
Both blood and endometrium cis-mQTLs had very

similar methylome patterns in the context of CpG loca-
tions; an average of 47% of cis-mQTLs were located in
open sea regions of the genome followed by 24% located
in shores and 17% in CpG islands (Additional file 3:
Table S9, Additional file 2: Figure S9). mQTL DNAm

probes were also annotated to predicted regulatory re-
gions, the majority located in promoters and quiescent
regions (Additional file 1: Supplementary Note 2).
Using available data on the genomic location of

oestrogen receptor (ESR) binding sites, we identified 414
differentially methylated DNAm probes that overlapped
ESR binding sites (Additional file 3: Table S10). We also
identified 791 cis-mQTL mSNPs that were within ESR
binding sites (Additional file 3: Table S11). Pathway ana-
lysis identified that the early (P = 5.16 × 10−12) and
late (P = 5.43 × 10−5) oestrogen response pathway and
the cholesterol homeostasis pathway (P = 9.18 × 10−6)
were most significantly enriched for genes closest to
these mQTL DNAm probe sites.

Discussion
We analysed genetic control of methylation in human
endometrium and compared results with methylation in

Fig. 5 An mQTL affecting gene expression of THNSL2 immediately adjacent to the DNAm probe. a Location of genes on chromosome 2
surrounding an eQTL for THNSL2 and nearby mQTL. The location of the eQTL gene expression probe is highlighted in purple, the mQTL DNAm
probe is highlighted in orange and the mQTL and eQTL SNP is highlighted in green. The arrow indicates the association of the mQTL SNP with
expression of the THNSL2 probe. b Expression of the THNSL2 probe (ILMN_2173294) in endometrium from women with different genotypes at
rs6547758. c Methylation of the cg24977027 probe in endometrium from women with different genotypes at rs6547758. d SMR locus plot
showing the endometrial eQTL P values of SNPs for the THNSL2 probe (ILMN_2173294) (top) and mQTL P values of SNPs from this study for the
DNAm probe cg24977027 (bottom)
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DNA from blood samples collected from the women at
the same time. We observed marked changes in DNAm
in the endometrium across the menstrual cycle for some
probes in agreement with previous studies [19–21]. The
66 women were sampled at different stages of the men-
strual cycle and 6% of DNAm probe sites (27,262 sites)
showed evidence of differential methylation across the
cycle. The endometrium is a biologically and transcrip-
tionally dynamic tissue with significant changes in gene
expression across the menstrual cycle [15, 17, 28]. Genes
previously reported as differentially expressed across the
cycle that were also assigned to differentially methylated
sites across the menstrual cycle were significantly enriched
in the oestrogen response pathway and 1.5% of differen-
tially methylated probes are located in ESR binding sites.
Oestrogen plays a major role in regulating proliferation of
epithelial and stromal cells during the proliferative phase
of the menstrual cycle [29–31]. Differences in methylation
between cycle stages were not observed in matched blood

samples from the same women. Therefore, our findings
highlight tissue-specific features of methylation signals in
endometrium, although it is not known if the differential
methylation is a reflection of differential methylation be-
tween cell types and the changes in the cellular compos-
ition across the cycle.
We identified 4546 sentinel cis-mQTLs and 434 senti-

nel trans-mQTLs in endometrial tissue samples. There
was a high correlation of genetic effects (rb = 0.78) and
overlap (~ 60%) in mQTLs between endometrium and
blood samples from the same women and results were
similar when comparing with a much larger sample of
mQTLs in blood samples from unrelated individuals
[23]. Of interest were the subset of mQTLs not present
in blood and that overlapped oestrogen receptor binding
sites, suggesting possible tissue-specific effects. Two exam-
ples were mQTLs at loci near the G protein-coupled
oestrogen receptor 1 (GPER) and Plectin (PLEC). GPER is a
membrane protein from the seven-transmembrane (7TM)

Fig. 6 An mQTL affecting gene expression distal to DNAm probe. a Location of genes on chromosome 19 surrounding an mQTL closest to
ARHGAP33 and nearby eQTL for IGFLR1(TMEM149). The location of the eQTL gene expression probe is highlighted in purple, the mQTL DNAm
probe is highlighted in orange and the mQTL and eQTL SNP is highlighted in green. The arrow indicates the association of the mQTL SNP with
expression of the IGFLR1 probe. b Expression of the IGFLR1 probe (ILMN_1786426) in endometrium from women with different genotypes at
rs62112162. c Methylation of the cg16569309 probe in endometrium from women with different genotypes at rs62112162. d SMR locus plot
showing the endometrial eQTL P values of SNPs for the IGFLR1 probe (ILMN_1786426) (top) and mQTL P values of SNPs from this study for the
DNAm probe cg16569309 (bottom)
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Table 7 Top hallmark and GO biological processes pathways enriched for genes closest to DNAm probe sites in cis-mQTLs in
endometrium and blood

Tissue GeneSet N n P value Adjusted P

Endometrial mQTLs Go intracellular signal transduction 1568 237 1.92E-29 5.50E-26

Go regulation of multicellular organismal development 1667 247 2.48E-29 5.50E-26

Go regulation of transport 1799 257 5.10E-28 7.54E-25

Go regulation of cell differentiation 1488 224 1.29E-27 1.43E-24

Go regulation of cell proliferation 1492 221 2.73E-26 2.42E-23

Go neurogenesis 1401 211 4.37E-26 3.23E-23

Go regulation of cell death 1471 218 5.66E-26 3.58E-23

Go locomotion 1111 179 1.16E-25 6.41E-23

Go positive regulation of molecular function 1786 248 3.00E-25 1.48E-22

Go regulation of transcription from rna polymerase ii promoter 1780 246 9.31E-25 4.13E-22

Hallmark uv response dn 144 37 9.77E-13 4.88E-11

Hallmark oestrogen response early 200 41 1.94E-10 4.84E-09

Hallmark epithelial mesenchymal transition 199 34 6.07E-07 8.57E-06

Hallmark complement 200 34 6.86E-07 8.57E-06

Hallmark androgen response 100 21 1.68E-06 9.69E-06

Hallmark hypoxia 200 33 1.94E-06 9.69E-06

Hallmark allograft rejection 200 33 1.94E-06 9.69E-06

Hallmark il2 stat5 signalling 200 33 1.94E-06 9.69E-06

Hallmark p53 pathway 200 33 1.94E-06 9.69E-06

Hallmark myogenesis 200 33 1.94E-06 9.69E-06

Blood mQTLs Go intracellular signal transduction 1568 330 9.02e-46 4.00e-42

Go positive regulation of molecular function 1786 345 2.00e-39 4.44e-36

Go neurogenesis 1401 291 3.12e-39 4.62e-36

Go regulation of multicellular organismal development 1667 326 2.39e-38 2.29e-35

Go regulation of hydrolase activity 1325 278 2.58e-38 2.29e-35

Go regulation of intracellular signal transduction 1651 322 1.23e-37 9.08e-35

Go positive regulation of catalytic activity 1515 302 3.82e-37 2.12e-34

Go tissue development 1508 301 3.91e-37 2.12e-34

Go locomotion 1111 244 4.78e-37 2.12e-34

Go regulation of cell differentiation 1488 298 4.79e-37 2.12e-34

Hallmark uv response dn 144 48 5.31e-16 2.66e-14

Hallmark oestrogen response early 200 56 1.74e-14 4.35e-13

Hallmark epithelial mesenchymal transition 199 48 3.49e-10 5.25e-09

Hallmark complement 200 48 4.20e-10 5.25e-09

Hallmark oestrogen response late 200 46 4.04e-09 4.04e-08

Hallmark myogenesis 200 45 1.20e-08 1.00e-07

Hallmark mitotic spindle 200 44 3.48e-08 2.49e-07

Hallmark p53 pathway 200 43 9.80e-08 6.12e-07

Hallmark apical junction 199 42 2.32e-07 1.22e-06

Hallmark tnfa signalling via nfkb 200 42 2.68e-07 1.22e-06
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GPCR family, localised to the endoplasmic reticulum [32].
This receptor mediates both rapid non-genomic signalling
cascades and transcriptional changes that regulate cell pro-
liferation and apoptosis in response to oestrogen [32, 33].
GPER has the potential to play an important regulatory role
in the proliferation and regeneration of endometrium
in response to an increase in circulating oestrogen dur-
ing the proliferative phase of the menstrual cycle. PLEC
belongs to a family of proteins that function as cytolin-
kers/plakins and play an important role in maintaining
cytoskeleton structure and subsequently cell and tissue
integrity, and cell adhesion [34]. PLEC is upregulated
from the early to mid-secretory stage of the cycle in
normal women and decreases again from mid to
late-secretory stage during end of receptive period [35].
PLEC has been reported as downregulated in endomet-
rium of women with repeated embryo implantation failure
[36], and in women with endometriosis during the win-
dow of implantation [37], suggesting an important role in
female fertility. The differences in DNA methylation
across the menstrual cycle and mQTLs specific to the
endometrium support the need for both tissue-specific
studies and comparisons between tissues to understand
regulation of epigenetic signals and their role in disease.
However, much larger studies in target tissues such as
endometrium will be necessary to have sufficient power to
detect the tissue-specific mQTLs that may be associated
with genetic effects on disease risk.
SMR analysis identified significant overlap of mQTLs

with five endometriosis GWAS signals. Results include
new evidence that the risk SNPs on chromosome 2 alter
methylation at DNAm probe sites located within 350 bp
of the GREB1 transcription start site in blood and another
within the 3′UTR of a GREB1 transcript in both endomet-
rium and blood. GREB1 is an oestrogen-responsive gene
involved in the oestrogen receptor-regulated pathway, es-
sential for oestrogen receptor transcription [38]. GREB1
has also been reported to regulate proliferation in breast,
prostate, and ovarian cancers [39–42].
Evidence for mQTLs near GREB1 is an interesting

result as we did not detect any genetic effects on GREB1
gene or protein expression in endometrium previously
[17, 43]. Changes in methylation can result in alternative
splicing [44] and the risk SNPs may alter methylation
and expression of particular GREB1 transcripts that
could not be individually identified from the microarray.
The absence of an eQTL for GREB1 could also suggest
epigenetic regulation of post-transcriptional modifica-
tions through mechanisms including microRNA regula-
tion of GREB1 [45, 46], association with protein QTLs
(pQTLs) independent of mRNA expression [47, 48],
RNA folding, accessibility of functional sites [49, 50] or
post-transcriptional modifications such as N6-methyladeno-
sine (m6A) methylation which are enriched in stop codons

and 3′UTRs [45, 51, 52]. Investigation into transcript-spe-
cific and post-transcriptional effects at this locus are
needed to confirm any effects on GREB1. The absence
of one of the SMR significant mQTLs (cg02584498-
rs77294520) in endometrium may indicate tissue-spe-
cific effects or limited power in our endometrial dataset
to detect the mQTL.
Three probes nearest to KDR also passed the SMR ana-

lysis in both endometrium and blood, but were rejected by
the HEIDI test, suggesting significant heterogeneity and the
possibility of multiple causal variants. KDR is a vascular
endothelial growth factor receptor involved in the prolifera-
tion and differentiation of endothelial cells with a potential
role in implantation and successful pregnancy [53–55]. The
association of GREB1 and KDR mQTLs with endometriosis
risk in both endometrium and blood may suggest the bio-
logical mechanisms that increase endometriosis risk may
not be specific to endometrium.
The SMR analyses also detected target genes for DNAm

probe sites with pleiotropic associations for mQTLs asso-
ciated with age at menopause and ovarian cancer, many of
which were not replicated in blood. These associations
may implicate tissue-specific mQTLs, such as those in
oestrogen-responsive tissues, in reproductive disease.
Some examples of instances whereby genomic regula-
tion of methylation may influence reproductive traits
and pathologies include the ZNF346/UIMC1, SYCP2L
and HOX gene loci. The ZNF346/UIMC1 locus is
strongly associated with age at menopause and forms
part the BRCA1-A complex, which regulates oestrogen
receptor transcription and DNA repair, both of which
are important in regulating endometrial oestrogen re-
sponse and meiosis [56, 57]. The SYCP2L locus associated
with age at menopause also had a pleiotropic relationship
with an endometrial mQTL in this region. SYCP2L is a
paralog of the synaptonemal complex protein 2 and is
known to localise to centromeres in oocytes and promote
primordial oocyte survival [57, 58]. Finally, a locus sur-
rounded by HOX genes on chromosome 2 and containing
an endometrial mQTL has been associated with epithelial
ovarian cancer; many of the HOX genes in the region are
known to regulate embryogenesis and neoplastic develop-
ment [59]. The significant associations between endomet-
rial mQTLs and various traits and diseases highlight the
importance of our findings in the broader scientific com-
munity, identifying genetic regulatory mechanisms that
are contributing to disease phenotypes.
We also identified pleiotropic associations between

methylation at 414 methylation probes and altered ex-
pression for 186 gene expression probes, where both are
associated with a shared causal variant. DNAm probes
associated with gene expression were enriched in pro-
moters, supporting the hypothesis that DNAm probe
sites located in regulatory regions can affect gene
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expression of the associated genes in endometrium, as
shown previously in blood [8]. The high proportion of
DNAm probe sites (> 70%) mapping to distant genes is
important when interpreting the mechanisms behind
transcription regulation. DNAm probe sites located fur-
ther away from their target gene may reside in regula-
tory regions such as enhancers that can interact with
distant target genes through mechanisms such as chro-
matin looping [60, 61]. One example of a distant target,
IGFLR1(TMEM149), has expression associated with a
SNP and DNAm site ~ 35 kb downstream. The locus
containing the SNP and DNAm is located within 400 bp
of a regulatory region, a CTCF binding site, annotated in
the Ensembl regulatory build [62]. CTCF protein is
known to mediate chromatin looping and may represent
a possible mechanism of regulation of IGFLR1 expres-
sion [63, 64]. Most disease-associated loci are within
non-coding regions [65–67], including loci associated
with the endometrial-related diseases endometriosis [26]
and endometrial cancer [68]. Therefore, understanding
how regulatory regions in these non-coding regions can
affect distant target genes is important in understanding
both endometrial biology and disease mechanisms.
An important limitation of this study is the small sample

size which limits the statistical power to detect robust dif-
ferences in methylation in endometrium. Previous epigen-
etic studies using the 450 k methylation beadchip and a
significance level of P = 2.4 × 10−7 reported that 59 and 186
samples would have 80% power to detect mean differences
in methylation of 15% and 8% respectively [69]. Power cal-
culations by Rahmioglu et al. [21] show that 500 samples
are needed to detect mean changes in methylation of 2%
with 80% power in endometrium. Using the pwr.t2n.test
function in R, we calculated that we had 80% power to
detect a mean difference in methylation of 10% at a signifi-
cance level of P = 0.05 and 25% at a genome-wide signifi-
cance level of P = 1.13 × 10−7. Using variance estimates
from our data, we estimated that 155 samples could detect
a mean difference of 8% and ~ 3000 samples would be re-
quired to detect a mean methylation differences of 2%,
similar to estimates by Saffari et. el [69] (Additional file 3:
Table S12). Larger sample sizes would be needed to detect
smaller effects of disease and menstrual cycle phase on
methylation in endometrium. However, even with a limited
sample size, we were able to detect over 4000 significant
endometrial cis-mQTLs, the majority of which were previ-
ously reported in larger blood studies [23].
Another limitation of this study is results have not been

adjusted for change in cell composition. There is currently
no published method of estimating cell type composition
in endometrial samples. Differences in methylation be-
tween menstrual cycle phases reported in this study are
also likely to reflect changes in cell composition. Due to
the complexity of endometrial tissue and the presence of

several different cell types including stromal cells, epithe-
lial cells and infiltrating immune cells, development of an
accurate cell composition correction requires extensive re-
search to characterise omic signatures of the individual
cell types and validate a method to correct for differences
in cell composition in endometrium.

Conclusions
This is the first study to identify mQTLs in human endo-
metrium, and shows significant overlap and correlation be-
tween mQTLs seen in endometrium with those observed
in blood from the same and independent individuals. The
high degree of overlap supports the use of large blood
mQTL datasets as a proxy for endometrium to increase
power to detect target genes for endometrial traits and dis-
eases. There was evidence for variation in genome-wide
methylation profiles across the menstrual cycle for a
proportion of sites in human endometrium, changes not
observed in blood, and our results highlight possible
tissue-specific effects for mQTLs and enriched pathways
not shared between blood and endometrium. We show that
genomic regulation of methylation in endometrium has the
potential to influence endometrial biology and overlap of
mQTLs with risk loci for endometriosis and ovarian cancer
indicate a role of methylation in reproductive diseases. Lar-
ger sample sizes are needed to identify effects of disease on
methylation in endometrium and identify tissue-specific
mQTLs that may be involved in endometrial biology and
disease.

Methods
Sample collection
A total of 66 women of reproductive age (31.08 ±
6.64 years) and from European ancestry were selected
for inclusion in the study. Women were recruited when
attending clinics at the Royal Women’s Hospital in
Melbourne, Australia, following informed written con-
sent. The study was approved by the Human Research
Ethics Committees of the Royal Women’s Hospital,
Melbourne, the QIMR Berghofer Medical Research
Institute and The University of Queensland (Projects
11-24 and 16-43). All sample and data collection was
performed in accordance with institutional approved
guidelines and regulations.
The clinical history for each participant was obtained

alongside surgical notes and pathology results. Whole
blood samples were collected prior to surgery. Endomet-
rial tissue was collected by curettage during laparoscopic
surgery for investigation of recurring pelvic pain and/or
infertility. Forty-five of the 66 women were diagnosed
with endometriosis. All women were free from exogenous
hormone treatment in the 3 months prior to surgery.
Menstrual cycle stage for each participant was categorised
by an experienced pathologist into menstrual (M) = 3,
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early proliferative (EP) = 1, mid proliferative (MP) = 27,
late proliferative (LP) = 5, early secretory (ES) = 6, mid
secretory (MS) = 14 and late secretory (LS) = 10.

DNA extraction, methylation array and genotyping
Buffy coat was isolated from whole blood for DNA extrac-
tion using a salting out method [70]. Endometrial tissue
samples were stored in RNAlater (Life Technologies,
Grand Island, NY, USA) at − 80 °C until RNA/DNA ex-
traction. Genomic DNA was extracted from homogenised
endometrial tissues using the AllPrep DNA/RNA mini kit
according to the manufacturer’s instructions (QIAGEN,
Valencia, CA).
Bisulfite conversions were performed in 96-well plates

using the EZ-96 DNA Methylation Direct Kit (Zymo
Research, Irvine, CA, USA). Prior to conversion, DNA
concentrations were determined by Quant-iT™ Pico-
Green™ dsDNA Reagent (Life Technologies, Carlsbad,
CA, USA) and standardised to 500 ng DNA per sample.
Bisulfite converted DNA samples were hybridised to
Illumina Human Methylation 450 BeadChips using the
Infinium HD Methylation protocol and Tecan robotics
(Illumina, San Diego, CA, USA). Samples were scanned
using an Illumina iScan Reader. Methylation at each site
was measured as a ratio of the intensities of methylated
and un-methylated alleles at the DNAm probe site rep-
resented as β values [71].
Genomic DNA extracted from whole blood was geno-

typed on the HumanCoreExome chips and Infinium Psy-
chArray (Illumina Inc., San Diego) [27]. Genotype data
was filtered using the program PLINK ver 1.9 [72, 73].
SNPs not genotyped in at least 95% of individuals were
removed (-geno 0.05 command) along with SNPs with a
minor allele frequency (MAF) < 0.05 (-maf 0.05 com-
mand) and with Hardy-Weinberg Equilibrium (HWE) P
< 1 × 10−6 (-hwe 0.000001 command). A total of 282,625
SNPs were used for imputation using the 1000 Genomes
Phase 3 V5 reference panel. Genotypes were phased with
ShapeIt V2 prior to imputation on the Michigan Imput-
ation Server [74]. Additional quality control was per-
formed on imputed genotypes to remove SNPs of poor
quality (R2 < 0.8) or low MAF < 0.05, leaving 5,162,603
autosomal SNPs for subsequent analysis.

Methylation quality control and normalisation
Quality control and normalisation of raw methylation data
was performed separately for blood and tissue samples
using the R package “Meffil” [75]. Genotype data present
in the methylation array data was compared to genotypes
of the same samples run on the HumanCoreExome chips
and Infinium PsychArray (Illumina Inc., San Diego). Ge-
notypes for all samples matched 65 corresponding SNP
probes on the microarray confirming no sample error be-
tween the methylation profiles for endometrium and

blood. QC parameters outlined in the Meffil manual were
used for the blood and endometrial dataset (https://
github.com/perishky/meffil). DNAm probes that did not
exceed the background signal and met a detection P value
of < 0.01 in > 10% of samples were removed (220 DNAm
probes in endometrial tissue and 184 DNAm probes in
blood) alongside probes with low bead numbers in > 10%
of samples (418 DNAm probes in endometrial tissue and
346 DNAm probes in blood). There were no sample out-
liers with poor probe detection with > 90% of DNAm
probes detected in all samples. Using control probes, ten
principal components were used to adjust the methylation
levels for technical effects. DNAm probe sites found to
target multiple genomic regions as previously annotated
by Price et al. [76] were also removed. Functional normal-
isation was applied to remove global differences in methy-
lation data and to extend quantile normalisation of
control probes across the data.

DNAm principle component analysis and covariate effects
The presence of potentially cofounding sources of vari-
ation in the data was investigated through principal com-
ponent (PC) analysis of DNAm profiles and association of
top PCs with known covariates for both blood and tissue
datasets. Principal components were computed from nor-
malised methylation profiles for endometrium and blood.
A significant association between methylation beadchip
(P = 2.14 × 10−6) and PC two and between stage of cycle
(P = 3.19 × 10−4) and PC one was observed in endomet-
rium. We also detected a significant association between
methylation beadchip (P = 1.92 × 10−15) and age (P =
0.008), with PC two and three respectively, in blood. No
significant effect of endometriosis status was observed. All
covariates were corrected for in later analyses where
appropriate.

Differential DNA methylation
To identify changes in the methylation state of DNAm
probe sites between stages of the menstrual cycle, we
performed a differential methylation analysis on both
the blood and endometrial tissue methylation datasets.
To increase the number of samples within each group,
and power for subsequent analyses, we combined men-
strual cycle stages into three main phases; menstrual
(M) stage (n = 3), EP, MP and LP stages were merged
into the proliferative (P) phase (n = 33) and the ES, MS
and LS stages were merged into the secretory (S) phase
(n = 30). We subsequently removed M stage samples
from the differential analysis due to the small sample
size and limited power. Following QC of the methylation
data, 443,101 DNAm probe sites for blood and 443,016
DNAm probe sites for endometrial tissue were retained
for inclusion in the cycle stage analysis. We used the
eBayes method implemented in the limma package to
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compute a moderated t statistic and fold change be-
tween P and S phases.
To test for any confounding effects of endometriosis

status, we also tested for differently methylated DNAm
probes between women with and without endometriosis.
Tests were conducted using the eBayes method for indi-
viduals in the same menstrual cycle phase and using all
samples by including stage of cycle as an additional co-
variate. No differentially methylated DNAm probes were
detected.

mQTL analysis
We tested the association between genotype and DNAm
probe site methylation in both blood and endometrial
tissue datasets to identify mQTLs. All 443,101 DNAm
probe sites in blood and 443,016 DNAm probe sites in
endometrium passing QC were included in the mQTL
analysis. Associations between 5,162,603 SNP genotypes
and normalised methylation intensities were tested using
a linear regression model in the software PLINK ver 1.9
(-linear command). Covariates, including age, presence
of endometriosis, stage of cycle and methylation chip,
were adjusted for in the analysis. The distance distribution
of significant (FDR < 0.05) mQTL SNPs from their associ-
ated DNAm probes within 1 Mb showed that the vast ma-
jority of SNPs (92%) were within 250 kb of the probe site
(Additional file 2: Figure S10). To capture the majority of
cis-mQTLs and limit multiple testing, cis-mQTLs were
defined as ± 250 kb between the SNP and the DNAm
probe site start position. Trans-mQTLs were defined as
associations between a SNP and DNAm probe site located
on different chromosomes. To identify secondary inde-
pendent cis-mQTL signals, we performed conditional
analysis on sentinel cis-mQTLs that met a Bonferroni
significance threshold of P < 1.13 × 10−10. The condi-
tional analysis was conducted by repeating the associ-
ation analysis between genotype and DNAm probe site
methylation conditioning on the primary SNP.

Context-specific mQTL analysis and overlap with
differentially methylated DNAm probe sites
We tested for overlap between the differentially methylated
DNAm probe sites and mQTLs. To test for interaction
between genotype and stage of cycle on DNAm probe site
methylation, we used the context-specific analysis method
outlined by Fung et al. [17]. Briefly, we used linear regres-
sion to test for interaction between stage and genotype
using the observed normalised methylation level of a probe
as the dependent variable and fitting the regression coeffi-
cient of the genotype, regression coefficient of the stage of
cycle and the regression coefficient of the interaction be-
tween genotype and stage of cycle. We tested 23 cis-mQTL
probes passing Bonferroni correction in endometrial tissue

that corresponded to genes differentially methylated be-
tween P and S phases of the menstrual cycle.

Overlap between endometrial and blood mQTLs
Using blood mQTLs detected in a large meta-analysis of
the Lothian Birth Cohorts (LBC) and Brisbane Systems
Genetics Study (BSGS) datasets consisting of 1980 indi-
viduals [23], we were able to assess the overlap between
our endometrial and blood mQTLs and those from a
more highly powered study in blood. The LBC-BSGS
dataset consists of 94,338 sentinel cis-mQTLs with a sig-
nificance of at least P < 5 × 10−8 and SNPs within 2 Mb
distance from each probe. mQTLs were considered to
overlap if they had the same probe and associated SNP.
Additionally, overlap was defined in terms of linkage
disequilibrium (LD) r2 > 0.7 between the mSNP in the
LBC-BSGS dataset and the endometrial mSNP based on
the 1000 Genome phase 3 reference panel.
Tissue specificity of endometrial mQTLs was investi-

gated by identifying the presence of mQTLs found in
endometrial tissue in blood. Tissue mQTLs were tested
for overlap with both the blood mQTL set from this
study and the larger LBC-BSGS dataset. Overlap was de-
fined in the same manner as described previously.
The correlation of cis-mQTL effects between endo-

metrium and blood from the same individuals was esti-
mated using the rb method developed by Qi et al. [24].
mQTL effect sizes and standard errors were standar-
dised between tissues based on z-statistics using the
method described in Zhu et al. [25]. Top cis-mQTLs
(P < 5 × 10−8) were taken from the LBC-BSGS blood
dataset as an independent reference set. The top
cis-mQTLs from the reference set were then extracted
from our endometrium and blood set; cis-mQTLs not
present in our sets were excluded and the remaining
cis-mQTLs were used to estimate the correlation.

Overlap with endometriosis risk loci and reproductive traits
GWAS overlap
Summary data available from Sapkota et al. [26] generated
from ~ 15,000 European endometriosis cases were used to
test overlap with our endometrial mQTLs. Overlap was
determined if sentinel mQTL mSNPs matched those iden-
tified at the 19 endometriosis risk loci or if sentinel mQTL
mSNPs had a minimum LD of r2 > 0.7 with the GWAS
SNP. The Functional Mapping and Annotation of
Genome-Wide Association (FUMA) SNP2GENE function
was also used to test mSNPs for association with other
traits and diseases from the GWAS catalogue.

Summary-data-based Mendelian randomisation
Using SMR software developed by Zhu et al. [25], we
tested for pleiotropic association between DNAm probe
site methylation and endometriosis. Summary data from
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the Sapkota et al. [26] meta-analysis was used alongside
summary data from mQTLs identified in this study as
input for the analysis. A total of 4546 DNAm probe sites
reaching Bonferroni significance were included in the ana-
lysis and a study-wide significance threshold of PSMR =
1.10 × 10−5 was applied. Heterogeneity of SMR estimates
at surrounding SNPs (in LD with the top cis-mQTL) was
tested using HEIDI which is incorporated in the SMR
software. A PHEIDI of < 0.05/m, where m is the number of
probes passing the SMR test, was used to suggest hetero-
geneity of SMR estimates in the cis-region. The SMR ana-
lysis was repeated in blood using summary data from the
large blood LBC-BSGS mQTL dataset [23].
The SMR software also allows the integration of

multiple-omic datasets to infer a likely regulatory mech-
anism. We used this multi-omic analysis option to test
the association between endometrial mQTLs from this
study and eQTLs from our previous study [27], using
only probes that passed Benjamini-Hochberg false dis-
covery rate (FDR) cut off of 0.05. This analysis was per-
formed using gene expression as the outcome and
methylation as the exposure in a M2T analysis and was
performed again using expression as the exposure and
methylation as the outcome in a T2M analysis, as previ-
ously described in Wu et al. [8].
To investigate the possible impact of endometrial mQTLs

in other phenotypes, we conducted further SMR analyses
using GWAS summary datasets for a range of traits includ-
ing body mass index (BMI), body fat percentage, leptin,
lipid levels including high-density lipoprotein (HDL),
low-density lipoprotein (LDL), total cholesterol (TC) and
triglycerides (TG), coronary artery disease, heart rate,
rheumatoid arthritis, celiac disease, inflammatory bowel
disease, ulcerative colitis, type 1 diabetes, type 2 diabetes,
glucose levels, insulin levels, attention deficit hyperactivity
disorder (ADHD), Alzheimer’s, schizophrenia, bipolar dis-
order, major depressive disorder, autism, motor neurone
disease, age-related macular degeneration and osteoporosis.
We also included reproductive traits such as maternal birth
weight, age of menopause, maternal gestational weight gain
and epithelial ovarian cancer [57].

Functional annotation
Applying locational data for ESR binding sites previ-
ously identified by Carrol et al. [77], we sought to iden-
tify any overlaps between differentially methylated
DNAm probes and sentinel mSNPs for cis-mQTLs and
ESR binding sites. Regulatory elements within which
mQTL loci may act were annotated using data available
from the Roadmap Epigenomics Mapping Consortium
(REMC) and ENCODE [78, 79]. Due to the absence of
chromatin state information for endometrium, we used
chromatin state model based imputation data for 23

blood cell lines from 127 epigenomes in which 12
histone-modification marks were used to predict 25
chromatin states [80]. Functionally similar annotations
were combined into 14 categories as suggested by Wu
et al. [8]. Endometrial mQTLs also identified in blood
were annotated to the 14 categories of functionally
similar chromatin states. Using the method outlined in
Wu et al. [8], we performed an enrichment analysis to
test for enrichment of DNAm probes significantly asso-
ciated with gene expression in the M2T analysis, in the
14 functional categories.

Pathway analysis
To identify pathways potentially affected by or regulating
changes in methylation across the cycle, we performed a
pathway analysis using the “GENE2FUNC” function on
the FUMA GWAS web-based platform [81]. DNAm
probe sites differentially methylated between phases of
the menstrual cycle were annotated to the nearest TSS,
and the resulting gene lists were used as input for the
pathway analysis. The same was done for cis-mQTLs
meeting Bonferroni genome-wide significance.
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