Skip to main content
. 2019 Mar 6;22:101748. doi: 10.1016/j.nicl.2019.101748

Table 1.

Brief review of methods employed by recent studies that have used machine learning and statistical learning techniques to predict PD from MRI modalities.

Author, year Number of subjects Methods employed Accuracy (%)
Salvatore et al., 2014 PD (n = 28) VBM PD vs HC: 83.2
PSP (n = 28) Principal component analysis PSP vs HC: 86.2
HC (n = 28) SVM PSP vs PD: 84.7
Cherubini et al., 2014a, Cherubini et al., 2014b Tremor dominant PD (n = 15) VBM, DTI
ET with rest tremor (n = 15) SVM
Cherubini et al., 2014a, Cherubini et al., 2014b PD (n = 57) VBM, DTI 100
PSP (n = 21) SVM
Rana et al., 2015 PD (n = 30) Region of interest based 86.67
HC (n = 30) SVM
Singh and Samavedham, 2015 PPMI cohort Self-organizing maps 99.9
PD (n = 518) SVM
SWEDD (n = 68)
HC (n = 245)
Huppertz et al., 2016 PD (n = 204) Volumetry 80
PSP-RS (n = 106) SVM
MSA-C (n = 21)
MSA-P (n = 60)
Adeli et al., 2016 PPMI cohort Joint feature-sample selection 81.9
PD (n = 374)
HC (n = 169)
Abos et al., 2017 PD (n = 27) Functional connectome 80
HC (n = 38) SVM
Peran et al.,2018 PD (n = 26) VBM, T2* relaxometry, DTI PD vs MSA: 96
MSA-P (n = 16)
MSA-C (n = 13) Self-organizing maps
HC (n = 26)
Amoroso et al., 2018 PPMI cohort Connectivity measures 93
PD (n = 374) SVM
HC (n = 169)
Ariz et al., 2019 PD (n = 40) NM-MRI based atlas of 79.9
HC (n = 39) Substantia nigra

DTI: Diffusion tensor imaging; ET: Essential tremor; HC: Healthy controls: MSA-C: Multiple system atrophy with predominant cerebellar features; MSA-P: Multiple system atrophy with predominant parkinsonian features; NM-MRI: Neuromelanin sensitive magnetic resonance imaging; PD: Parkinson's disease; PPMI:Parkinson's Progression Markers Initiative; PSP: Progressive supranuclear palsy; PSP-RS: Progressive supranuclear palsy-Richardson syndrome; SVM: Support vector machine; SWEDD: Scans without evidence of dopaminergic deficit; VBM: Voxel based morphometry.