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Abstract

Purpose.—Interaction is the process of behavior adaption between two or more participants 

primarily based on what they visually perceive. It is an important aspect of traffic participation and 

supports a safe and efficient flow of traffic. However, prior driving simulator studies investigating 

the effects of vision impairment have typically used pre-programmed pedestrians that did not 

interact with the human driver. In the current study we used a linked pedestrian and driving 

simulator setting to increase the ecological validity of the experimental paradigm. We evaluated 

the effects of mild vision loss on interactions between drivers and human-controlled, interactive 

pedestrians compared to preprogrammed, non-interactive pedestrians.
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Method.—Young subjects (mean age 31 years) wore safety goggles with diffusing filters that 

reduced visual acuity to 20/50 Snellen and contrast sensitivity to 1.49 log units. Two types of 

crossings (zebra vs. free lane) and two types of pedestrians (non-interactive vs. interactive) were 

presented to the driver using a multiple simulator setting. Gaze, safety and time series measures 

were analyzed to quantify the behavior of the participants during the different crossing situations.

Results.—Simulated vision impairment significantly increased the time taken to first fixate on 

the pedestrian, but only had mild adverse effects on safety measures and subsequent interactions. 

By comparison, pedestrian type and crossing type were found to significantly affect interaction 

measures. In crossings with the interactive pedestrians the behavior adaption between the driver 

and the pedestrian took longer and was less correlated in contrast to the situations with the non-

interactive pedestrian.

Conclusion.—Mild vision impairment (slightly worse than the common 20/40 requirement for 

driving) had little effect on interactions with pedestrians once they were detected and only had 

mild adverse consequences on driving safety. Time series measures were sensitive to differences in 

behavior adaption between road users depending on the level of interaction and type of crossing 

situation.

Keywords

simulated vision impairment; social interaction in traffic; driver pedestrian interaction; time series 
analysis

1. INTRODUCTION

The car, since its development in the late 19th century, is still one of the most important 

technical developments for humanity. It enables the individual human being to be part of 

society and travel from place to place thus helping to maintain independence. Humans have 

to be mobile and this individual mobility cumulates in traffic. People become traffic 

participants with all their abilities and disabilities, which likely affect the traffic system. One 

major aspect of traffic participation is the ability of drivers to sense, perceive and interact 

safely with other road users. Interaction usually involves externally visible and goal-oriented 

behavior adaptation of traffic participants relative to one another when they intend to use the 

same space, a road segment which might become the conflict zone (see appendix C and D), 

e.g., adapting speed to the traffic flow when merging onto a freeway or in response to a 

pedestrian about to step onto a crosswalk. Given that the number of pedestrian fatalities in 

the United States has risen by 27% between 2007 and 2016 (Retting & Schwartz, 2018), it is 

important to investigate factors that might impede safe interactions between drivers and 

pedestrians.

Exchange of non-verbal visual cues is an important component of interactions between 

drivers and pedestrians. For example, hand gestures, body pose, walking/driving speed and 

gaze/head direction are all visual cues that may be used to express intention in a potential 

driver-pedestrian encounter (Sucha, Dostal, & Risser, 2017; Guéguen, Meineri, & Eyssartier, 

2015; Katz, Zaidel, & Elgrishi, 1975; Rasouli, Kotseruba, & Tsotsos, 2017; Ren, Jiang, & 

Wang, 2016; Schmidt & Färber, 2009). In fact, it has been estimated that up to 90 % of the 
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necessary information during driving is visual (Bubb, Bengler, Grünen, & Vollrath, 2015; 

Hills, 1980; Olson & Farber, 1996). Given the potential importance of visual cues, the goal 

of the current study was to evaluate the effects of mild vision impairment (reduced visual 

acuity and reduced contrast sensitivity) on driver-pedestrian interactions.

Prior studies investigating interactions between normally-sighted drivers and pedestrians 

have mostly been conducted in on-road settings and have highlighted the importance of both 

visual cues and other situational factors in driver-pedestrian interactions. Katz et al. (1975), 

for example, showed that the type of crossing (marked vs. unmarked), orienting of 

pedestrian (i.e. looking at the driver), distance of vehicle (and its speed) and pedestrian as 

well as the number of crossing pedestrians all played significant roles. Further, in the 

interaction, behavior initiated by the driver at the time the pedestrian started to cross, was 

dominant. In 2009, Schmidt and Färber studied how the crossing intention of pedestrians can 

be perceived by the driver from different pedestrian movement patterns. Most of the 

information related to the crossing intention was conveyed by the pedestrian’s head 

orientation (28%) and walking dynamics (24%). Two similar studies (Guéguen et al., 2015; 

Ren et al., 2016) also focused on gaze behavior of pedestrians and its effect on driver’s 

stopping rate. They found that pedestrians who looked at oncoming drivers forced more 

drivers to stop compared to pedestrians who did not. Similarly, Rasouli et al. (2017) reported 

that 90% of the pedestrians in their study gazed at the driver before they crossed the road, 

especially at unmarked crossings, and Sucha et al. (2017) reported that 84% of pedestrians 

sought eye contact with the driver at zebra crossings. In a recent on-road study by 

Schneemann and Gohl (2016) the authors found that, in ambiguous crossing situations in 

particular, drivers based their behavior mainly on two things: (1) the gaze of the pedestrian 

and (2) the reaction of the pedestrians in regard to the speed reduction of the driver. The 

authors concluded that in line with prior studies (e.g. Schmidt & Färber, 2009) mutual eye-

contact is important for a successful and hence a safe interaction between pedestrians and 

drivers.

In a questionnaire survey, Papadimitriou, Lassarre, and Yannis (2017) found two main 

opposite groups of pedestrian behaviors. Group one with a negative unmotivated attitude and 

behavior was characterized by high risk-taking and impatience; illegal crossing behavior was 

not perceived as wrong or unsafe by this group. The second, positive and compliant group, 

with a strong walking motivation scored higher on risk perception and reported less risk-

taking behaviors in the questionnaire. This group usually walked for pleasure and health.

Although open-road settings provide the most realistic situations for studying the effects of 

vision impairment on drivers’ responses to pedestrians, there are several challenges with 

little control over the experimental and environmental conditions. The precise location and 

timing of where and when pedestrians cross the road is likely to vary widely even when 

driving along a standardized route, and most importantly, safety of both road users is a 

concern. By comparison, a driving simulator provides a safe, controlled and repeatable test 

environment. We are not aware of any driving simulator studies investigating interactions 

between visually impaired drivers and pedestrians. Prior driving simulator studies have 

evaluated the reactions of visually impaired drivers to pedestrians using paradigms in which 

drivers responded by pressing the horn whenever they saw a pedestrian (Alberti, Horowitz, 
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Bronstad, & Bowers, 2014; Alberti, Peli, & Bowers, 2014; Bowers, Ananyev, Mandel, 

Goldstein, & Peli, 2014; Bronstad, Albu, Bowers, Goldstein, & Peli, 2015; Bronstad, 

Bowers, Albu, Goldstein, & Peli, 2013). Drivers with impaired visual acuity and contrast 

sensitivity (from macular degeneration) had increased response times compared to normally-

sighted drivers (Alberti, Horowitz et al., 2014; Bronstad et al., 2013; Bronstad et al., 2015). 

However, in real traffic situations, drivers do not just press the horn when they detect 

pedestrians (or other road users) on a collision course. Both parties negotiate the situation 

under the given circumstances and regulations – they look at each other, evaluate the other 

road user’s behaviors and intentions and respond accordingly; i.e., they interact, as discussed 

previously.

Given this fundamental need for drivers and pedestrians to interact, the current study used a 

linked driving simulator setting. A pedestrian simulator and a driving simulator were linked 

so that both the pedestrian and driver could meet and interact within the same virtual 

environment. This method has successfully been used in different combinations in prior 

studies investigating mutual behavior adaption processes (i.e. social interaction) among 

different types of normally-sighted road users for example pedestrians, motorcycles and 

vehicles, (Hancock & de Ridder, 2003; Lehsing, Benz, & Bengler, 2016; Lehsing, Kracke, & 

Bengler, 2015; Mühlbacher, Preuk, Lehsing, Will, & Dotzauer, 2017; Will, 2017). The 

behavior adaption between two individuals takes time; hence, a time series analysis 

approach was used. This allowed a quantification of the degree of mutual adaption, how long 

the adaptation took and which road user was dominating the adaption process (Lehsing et 

al., 2015).

In the current study, we investigated how a mild vision loss comprising reduced visual acuity 

and reduced contrast sensitivity affected the behavior adaption between a driver and a 

pedestrian in pedestrian crossing situations with respect to gaze behaviors, driving safety 

(criticality) measures and social interaction metrics. We were specifically interested in the 

situation of a person with visual acuity around 20/50, who would likely still be driving. 

(Visual acuity of 20/50 is just slightly worse than the 20/40 requirement for an unrestricted 

license in many states and countries). Simulated rather than real vision impairment was used 

to ensure a relatively homogeneous degree of impairment, which can be difficult to achieve 

with a heterogeneous sample of people with real vision loss. This approach has been 

implemented in prior studies investigating the effects of vision loss on closed-road driving 

performance (Higgins & Wood, 2005), hazard detection in driving videos (Lee, Black, 

Lacherez, & Wood, 2016) and pedestrian detection in a driving simulator (Swan, Shahin, 

Albert, Herrmann, & Bowers, 2018).

Our primary hypothesis was that the mild vision loss would delay the initial stage of an 

interaction (i.e., the first glance toward the pedestrian), which might in turn delay subsequent 

interactions and behavior modifications such as braking. In addition we evaluated how 

behaviors differed in interactions with the human-controlled pedestrians (Lehsing et al., 

2015; Lehsing & Feldstein, 2017) compared to preprogrammed computer-controlled 

pedestrians (bots), similar to those used in prior studies of drivers with real vision loss 

(Alberti, Horowitz et al., 2014; Bronstad et al., 2013). We hypothesized that mutual 

adaptation would take longer for the human-human than the human-bot interactions and that 
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the mild vision loss might exacerbate differences in mutual adaptation between human-

human and human-bot situations.

2. METHOD

The study followed protocols approved by the institutional review board (IRB) at the 

Schepens Eye Research Institute. The study was conducted in accordance with the tenets of 

the Declaration of Helsinki.

2.1 Participants

Twenty-four subjects participated (mean age = 31 years, SD = 7 years, 13 female), mainly 

recruited from a database of people who had previously participated in studies at the 

Schepens Eye Research Institute. (This was the minimum number of subjects needed to 

counterbalance all factors across participants.) All had normal or corrected-to-normal vision 

and were current drivers. They drove on median 5 days per week (IQR = 3 days) and 22.5 

miles per week (IQR = 96.8 miles).

2.2 Materials and Apparatus

2.2.1 Simulated vision impairment—Vision loss was simulated by diffusing filters 

(0.1 opacity Bangerter filters, Fresnel Prism & Lens Co., Eden Prairie, MN) mounted on the 

back surface of plano carrier lenses in a pair of safety goggles (Guardian Pro Over-The 

Glass, Safety Glasses USA Inc., Three Rivers, MI). The goggles were worn over the 

participants’ own glasses if they needed to wear glasses in the simulator. On average visual 

acuity (Freiburg Acuity Test; Bach, 2007) was reduced from 20/12 (−0.22 ± 0.13 logMAR) 

without to 20/50 (0.40 ± 0.06 logMAR) with the filter goggles and letter contrast sensitivity 

(Mars Letter Contrast Sensitivity Test, The Mars Perceptrix Corporation, Chappaqua, NY) 

was reduced from 1.71 ± 0.07 to 1.49 ± 0.06 log units.

2.2.2 The Driving Simulator—The technical setup consisted of a driving simulator and 

a control station. The participant sat in a car seat built into a frame construction. The virtual 

world was displayed on three Samsung CF791 curved monitors mounted next to each other. 

Each monitor had a screen size of 34” with a 21:9 widescreen ratio, a 3440×1440 resolution 

and a 4 ms response time. Having a curvature of 1500R, the monitors enabled an immersive 

experience giving the participant a realistic 180° field-of-view. Participants’ eye movements 

were tracked by means of a remote Tobii 4C eye tracker1 which allowed subjects to move 

their head freely. The tracker was installed underneath the center screen (see Figure 1) and 

tracked at 90 Hz over the full width of that screen, covering the view through the front 

windshield and the instrument panel. Gazes through the side windows and on the wing 

mirrors, which were displayed on the outer monitors, were not captured as they were not 

relevant to the research questions.

In the simulation, participants drove a mid-range vehicle with automatic transmission. The 

steering wheel was mounted on a Fanatec ClubSport Wheel Base V2 (Landshut, Germany), 

1Tobii Eye Tracker 4C leveraged for the purpose of this study via special Tobii Pro End User License Agreement and permission for 
analytical use. For more information, visit: http://www.tobiipro.com
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consisting of a brushless servomotor with hall sensors on the motor and on the axis. A belt 

drive mechanism provided a force feedback when driving, creating overall a realistic driving 

experience. The setup allowed up to 900° steering wheel rotation, which corresponded to the 

rotation freedom in real cars. For the pedals, a Fanatec ClubSport Pedals V3 was used, 

though the clutch pedal was dismounted. The accelerator pedal was equipped with 

contactless and magnetic sensors as well as a vibration motor indicating over steer and rear 

wheel spin. The scenery was created using the driving simulator software SILAB 5.1 

(WIVW GmbH, Würzburg, Germany) which allowed the projection of an immersive driving 

environment and implementation of realistic vehicle dynamics.

2.2.3 The Pedestrian Simulator—A pedestrian simulator, also running SILAB 5.1 

software, was linked to the driving simulator, making it possible to control the behavior of a 

pedestrian within the virtual world in real time (Lehsing et al., 2016). This human-controlled 

pedestrian was operated by a trained research assistant who sat at a control station with three 

screens (two Samsung Model LS34E79CNS/KR and one LG 34UM88C-P) in front of him 

allowing a 180° view into the virtual world from the perspective of the pedestrian (Figure 2). 

This set up enabled an evaluation of natural interactions between a pedestrian and driver as 

they might occur during real-world driving i.e., between the assistant operating the human-

controlled pedestrian and the participant driving the virtual vehicle.

Importantly, the assistant could see neither the participant nor the participant’s view of the 

road and could only use information from the pedestrian’s perspective. The assistant 

controlled the movements of this pedestrian by predefined motion patterns launched using 

buttons on the keyboard, including “head turning” and “walking”, such that the pedestrian 

behaved and interacted with the participant in the virtual car as a cognisant human being 

would.

2.2.4 Driving Scenarios, Pedestrian Types and Crossing Situations—The test 

track consisted of four city (C1-C4) and short rural highway (H1-H4) sections, which were 

included to relieve participants from possible simulator sickness caused by the city portions 

of the drive. The city sections included other road users: trucks, cars, motorcycles, 

pedestrians on the sidewalk and pedestrians that crossed the road. The driver was guided 

through the cities by an auditory navigation system. Traffic signs at the beginning of the city 

indicated a speed limit of 25 mph which participants were instructed to maintain. On the 

highway, participants were allowed to drive at 75mph.

In the four city sections, participants encountered a variety of pedestrian crossing situations 

which were modelled on the findings of prior studies of driver-pedestrian interactions (Katz 

et al., 1975; Papadimitriou et al., 2017; Rasouli et al., 2017; Schmidt & Färber, 2009; Sucha 

et al., 2017). There were two types of crossings: zebra crossings, where it might be expected 

that a pedestrian would cross, and free lane crossings simulating a situation in which a 

pedestrian unexpectedly crosses the road at a location not specifically marked as a crossing. 

The driver had to respond to pedestrians according to the normal rules of the road, which 

included yielding to pedestrians at the zebra crossings.
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There were two types of pedestrians: preprogrammed, computer controlled pedestrians (bot), 

similar to those used in prior driving simulator studies to evaluate the effects of vision 

impairment on pedestrian hazard detection (Alberti, Horowitz et al., 2014; Alberti, Peli et 

al., 2014; Bronstad et al., 2013; Bronstad et al., 2015) and intelligent, human-controlled 

pedestrians (ped) (Lehsing et al., 2015; Lehsing et al., 2016), as described above. The bot 

was controlled by a preprogrammed script which triggered it to start moving when the 

participant’s vehicle was 46 meters from the predefined crossing point (see Appendix A). 

After being triggered, the bot ran across the street ahead of the driver without changing 

speed at 1.6 m/s, slightly faster than the average crossing speed of 1.5 m/s reported for 

marked and unmarked pedestrian crossings in a real world study (Kotte & Pütz, 2017). Thus 

the bot simulated a pedestrian totally unaware of the approaching car, similar to the group-

one, high-risk-taker pedestrians identified in the questionnaire study by Papadimitriou et al. 

(2017). The behaviors of the intelligent pedestrians (peds) were controlled by a trained 

research assistant through the pedestrian simulator. It was always the same assistant who 

controlled the pedestrian. The assistant activated the ped to start moving always at the same 

distance (60 m) to the participant’s vehicle (see Appendix B). A standardized crossing 

behavior was used: the ped first took a step toward the road to signal its intention to cross 

and then turned its head from side to side as if checking for approaching traffic (according to 

Rasouli et al., 2017). The ped only started to walk across the road if the assistant believed 

that it was safe to do so (similar to group 2 of Papadimitriou et al., 2017 or the majority of 

the pedestrians in the study of Sucha et al., 2017), based on the behavior of the approaching 

car. Thus, the ped (unlike the bot) was able to interact with the driver and adapt its behavior 

as necessary with respect to the driving behavior of the participant.

Within each of the four city sections, there were 4 bots and 4 peds that each crossed the road 

from right to left, with equal numbers of zebra and free-lane crossings. Responses to these 

pedestrians (32 total across the 4 city sections) were analyzed. To provide variety and reduce 

the predictability of crossing situations, there were a total of 16 pedestrians crossing from 

left to right (some free lane and some zebra crossings) that were not analyzed, and other 

non-crossing pedestrians that either stood at the side of the road or walked along the 

sidewalk alone or in groups.

2.3 Driving Simulator Procedures

Before driving on the experimental track, subjects completed an acclimatization drive (about 

10 minutes). This practice drive included similar traffic situations to those encountered in the 

main drive. Participants also wore the simulated vision impairment goggles during the 

acclimatization to become used to the effects of the blurring filter on their vision and 

driving. After the practice drive, the eye tracker was calibrated in a two-step process. In the 

first step, the original software of the manufacturer was used to calibrate the system. In step 

two, the accuracy of the system was measured using a custom-built stimulus array with 9 

fixation targets covering the height and width of the center monitor of the driving simulator. 

Accuracy of the eye tracking at each fixation location was then computed and reviewed 

before experimental data collection commenced. Over all participants the average accuracy 

of the eye tracker was 1.8° (SD= 0.3°).
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After the eye tracker calibration the participant started the experimental run, which lasted 

approximately 50 minutes. Two of the city sections were completed while wearing the 

goggles (vision loss condition) and two without the goggles (normal vision condition). The 

order of the two conditions was counterbalanced across participants. All drivers took a short 

break (Figure 3 – location B - solid) at the rest stop after the second city section so that the 

goggles could be taken off or put on (depending on the order of the conditions). If needed, 

drivers could also take a break at a highway rest stop between the other city sections (Figure 

3 – location B - dashed). The experimental track ended after the last pedestrian crossing at a 

stop sign.

2.4 Data analyses and performance measures

Data were analyzed for each pedestrian crossing event starting from the time when the 

participant’s vehicle was 100 m away from the predefined crossing point to the time when 

the participant’s car passed by the pedestrian. Performance was categorized using three main 

groups of metrics: gaze measures, driving safety measures and time series measures (social 

interaction).

2.4.1 Gaze Measures—The first group of measures was derived from the recorded gaze 

data to quantify how simulated vision impairment affected gaze behaviors that might in turn 

affect interactions with the pedestrians. To better understand gaze behaviors with respect to 

the pedestrian, lateral gaze position and lateral pedestrian position were plotted as a function 

of time for each event (see Figure 4). The velocity profiles of the car and pedestrian, the 

head turn signal of the pedestrian, the geo-distance between the two entities, and accelerator 

and brake pedal use were also plotted alongside to fully capture the interactions (see Figure 

4). Three measures were used to quantify gaze behaviors: 1) The time from the start of the 

event to the first fixation on the pedestrian (Time-to-First-Fixation); 2) The time between the 

first fixation and the braking response, if braking occurred (Fixation-to-Braking-Time, 

FBT); and 3) The proportion of time for which gaze was on the pedestrian (computed as the 

proportion of the total time for the event). Eye-movement data points were classified as 

fixations when the driver's gaze was within a 17 pixel distance on the simulator's monitor to 

the previous data point and was below this threshold for a duration of over 100 ms (Salvucci 

& Goldberg, 2000). A digital bounding box, 1° larger than the pedestrian’s dimensions in 

the simulation, was placed around the pedestrian. Gaze was considered to be on the 

pedestrian if it fell within this bounding box (Figure 4 light grey area).

2.4.2 Classical Driving Safety Measures—Driving safety measures included Time-

To-Collision (TTC), Post-Encroachment-Time (PET) and Deceleration-to-Safety-Time 

(DST), three of the most well-known metrics to assess the criticality of traffic conflicts 

(Hupfer, 1997; Kraay, J.H. Horst, A.R.A. van der & Oppe, S., 1986; Laureshyn, Svensson, 

& Hydén, 2010; van der Horst, A. R. A. & Hogema, 1993). See Appendices C - E for 

formulas and graphical visualization.

In the current study, the minimum TTC (TTC_min) was calculated, providing a measure of 

the severity (criticality) of a potential traffic conflict (Laureshyn et al., 2010; van der Horst, 

1990). TTC less than 1.5 s was considered critical (van der Horst, 1984). For situations 

Lehsing et al. Page 8

Accid Anal Prev. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where the TTC cannot be computed, the PET can help to assess traffic conflict by 

determining the time span between the first road user leaving the conflict zone and the 

second conflict partner entering this area. PETs smaller than 1 s were considered as serious 

conflicts (Hupfer, 1997; Kraay, van der Horst, & Oppe, 2013). Finally, the DST measure 

quantified the effort (i.e. the deceleration) the driver had to apply to ensure a specific safety 

margin (safety time) between the point in time when the first road user (pedestrian) left the 

conflict area and the second road user (driver) entered this area (see Appendix E for 

formulas); the higher the DST, the more critical the situation.

2.4.3 Time Series Analysis—As the interaction between road users is fundamentally a 

time-related process to avoid or at least decrease the impact of critical situations, time series 

analysis methods have to be used in addition to classical safety measures to adequately 

reveal potentially underlying factors that contribute to the criticality of a situation. Thus the 

third group of measures was based on a time-series analysis involving cross correlations to 

quantify the interactions between driver and pedestrians (see Figure 5). The speed signals of 

the interaction partners (car and pedestrian) were shifted against each other (time shift = lag, 

for half of the signal length in both positive and negative directions) in order to obtain the 

highest correlation (Pearson’s r - Field, Miles, & Field, 2014).

The formula used to compute the Pearson correlation between the two signals is the 

following, where X and Y are the velocity signals of the two road users (car and pedestrian, 

respectively):

Corr(X, Y) = Cov(X, Y)
Var(X) ∗ Var(Y) = r = CCC (1)

The cross correlation coefficient (CCC) describes the relationship between the two road 

users as values between −1 (perfect negative correlation; i.e. the behavior of both road users 

is contrary: e.g. one brakes while the other accelerates) and +1 (perfect positive correlation; 

i.e. both road users are doing exactly the same: e.g. both accelerate). If the correlation is 

zero, there is no relationship between the speed signals (i.e. the behavior) of the conflict 

partners (e.g. one stops and the other one keeps on driving). Both measures, CCC and Lag, 

contribute to the understanding of traffic conflict and were already successfully used in a 

prior study (Lehsing et al., 2015). The CCC shows the extent of the mutual adaption 

between driver and pedestrian. The lag can be interpreted as the necessary amount of time 

that is needed to reach the peak in the behavior adaption (CCC) and is the time the less 

dominant road user needs to adapt his behavior to that of the more dominant road user 

during the crossings (Lehsing et al., 2015).

3. RESULTS

The results section is divided into gaze, driving and time series measures. Where appropriate 

a pirate plot (Phillips, 2017) is used to visualize the data that went into the analysis and 

descriptive statistics (mean, standard deviation and distribution of the data). To evaluate the 

effects of the three fixed factors eyewear (goggles vs. no goggles), type of crossing (zebra 
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crossing vs. free lane) and type of pedestrian (bot vs. ped) on the gaze, driving and time 

series measures, we constructed a series of Linear Mixed Models (LMM) in R Studio 

v1.0.143 (R Core Team, 2017). To account for individual differences, we entered subject as 

a random effect structure. P-values for any interactions between the three fixed factors were 

calculated by means of model comparisons. For each interaction, we compared a baseline 

model (with all interactions between the fixed factors removed) with the same model plus 

the interaction of interest by means of analyses of variance (ANOVAs). The resulting X2 

values represented the significance of the interaction of interest.

3.1 Gaze Measures

3.1.1 Time-to-First-Fixation—The time to the first fixation was the time from the start 

of the crossing situation to the first fixation on the pedestrian. Overall (see Figure 6), drivers 

were significantly faster in making their first fixation on the pedestrian at zebra than freelane 

crossings (β = − 0.218; SE = 0.087; t = −2.504; p = 0.013) but significantly slower in 

making their first fixation on the pedestrian with than without the goggles (β = −0.338; SE = 

0.087; t = − 3.876; p < 0.001). Although the type of pedestrian had no effect on the time to 

first fixation, the interaction between crossing and pedestrian was significant (χ2 (6, 7) = 

12.766; p < 0.001). Specifically, the difference between zebra and freelane was greater for 

the bot than the ped situations.

3.1.2 Fixation-to-Braking-Time—Fixation to braking time (FBT) was computed as the 

time between the first fixation on the pedestrian and the time when the brake was first 

applied (when used). Fixation-to-Braking-Times were significantly longer for bots than peds 

(β = 0.436; SE = 0.064; t = 6.767; p < 0.001) (Figure 7). However, there were no significant 

effects of either crossing type or wearing goggles on braking times.

3.1.3 Gaze in Bounding Box—The amount of time for which the driver looked at the 

pedestrian was computed for each of the crossing situations. As the pedestrian was a moving 

object in the simulation, a bounding box which included the pedestrian avatar was digitally 

placed around the pedestrian and the time for which gaze was on the pedestrian was 

computed. The duration of each event varied across participants dependent on the velocity at 

which they were driving. In order to account for this, the time for which gaze was in the 

pedestrian bounding box was expressed as a proportion of the total time for each event. The 

type of pedestrian had no effect on this gaze metric. The factor eyewear on the other hand 

showed a highly significant effect (β = 0.053; SE = 0.008; t = 6.449; p < 0.001). The factor 

crossing had a significant effect, too (β = 0.028; SE = 0.008; t = 3.384; p < 0.001). Overall, 

participants spent a greater proportion of time looking at the pedestrian without than with 

the goggles and spent a larger proportion of time looking at the pedestrian in the zebra as 

compared to the freelane crossing situations (Figure 8). However, there was a significant 

interaction between the factors eyewear and crossing that prevents a single interpretation of 

the effects (χ2 (6, 7) = 17.544; p < 0.001). Specifically, when not wearing the goggles, there 

was a clear difference in the proportion of time looking at the pedestrian between freelane 

and zebra crossings; however, this difference was either much reduced or even slightly in the 

opposite direction when wearing the goggles.

Lehsing et al. Page 10

Accid Anal Prev. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.2 Driving Safety Measures

3.2.1 Time-To-Collision—There were significant main effects of all three factors. The 

TTC_min was significantly smaller (less safe) in bot situations (β = −0.363; SE = 0.024; t = 

−15.281; p < 0.001). The goggles also significantly reduced the TTC_min (β = 0.062; SE = 

0.024; t = 2.618; p = 0.009) as well as the type of crossing (β = 0.205; SE = 0.024; t = 8.645; 

p < 0.001), where zebra crossings had higher TTC_mins and were less critical. The lowest 

TTC_min was observed in bot, freelane situations with goggles (see Figure 9, TTC_min = 

2.26 s) but compared to literature (van der Horst, 1984) the vast majority of those crossings 

were not critical (TTCcrit < 1.5 s). Of the bot freelane events, only 10% with goggles and 

10% without goggles resulted in TTC_mins below the critical threshold.

3.2.2 Post-Encroachment-Time—There were significant main effects of crossing and 

pedestrian but not goggles on PET. The PETs for the freelane situations were always smaller 

(less safe) than those for the zebra crossings (Figure 10) (β = 0.330; SE = 0.039; t = 8.388; p 

< 0.001). The differences between bot and ped were significant (β = 0.089; SE = 0.039; t = 

2.263; p = 0.0239) with smaller (less safe) PETs for bots. The interaction between pedestrian 

and crossing was also significant (χ2 (6, 7) = 15.235; p < 0.001) indicating that the 

difference in PET between the crossing types was greater for peds than bots. An interesting 

finding was the lowest average PET (4.1s) in the condition with a human-controlled 

pedestrian (ped) in a freelane crossing while wearing the goggles (Figure 10). However, in 

comparison to the literature (Kraay et al., 2013) the average PETs for each condition in this 

study were not critical (PETcrit < 1s). Only 1.5% of the events (1 in bot freelane without the 

goggles and 2 events in bot freelane with the goggles) showed PETs below that threshold.

3.2.3 Deceleration-to-Safety-Time—The DST was computed for each event based on 

a safety margin of 3 s (representing the PET (Kotte & Pütz, 2017)) where the DST was the 

deceleration that the driver needed to apply to ensure that safety time. There were highly 

significant main effects of both pedestrian (β = 0.450; SE = 0.041; t= 11.171; p < 0.001) and 

crossing (β = − 0.223; SE = 0.041; t = −5.427; p < 0.001) on the DST. Deceleration rates 

were higher (less safe) for bots than peds and slightly higher for freelane than zebra 

crossings (Figure 11). Wearing the blurring goggles also significantly increased deceleration 

rates (β = −0.086; SE = 0.041; t = −2.079; p = 0.038). Additionally, the average DST for 

peds, especially at zebra crossings (with and without the goggles), was in comparison to 

literature (Schroeder, 2008) comfortable, for freelane crossing slightly above. In contrast, 

bot crossings show on average more uncomfortable deceleration rates.

3.3 Time Series Analyses

3.3.1 Cross Correlation Coefficient—For bot situations, the range of the CCC was 

between −.84 and −.90 and for ped situations between −.75 and −.80 (Figure 12). Both the 

type of pedestrian (β = −0.049; SE = 0.004; t = −13.540; p < 0.001) and type of crossing (β 
= −0.013; SE = 0.004; t = − 3.706; p < 0.001) had significant effects on the CCCs. 

Specifically, the velocities of the driver and pedestrian were more highly correlated for bots 

than peds and for zebra than freelane crossings. There was a significant interaction between 

crossing and pedestrian suggesting that the differences between zebra and freelane crossings 

were greater for bot than ped situations (χ2 (6, 7) = 11.609; p < 0.001). Finally, the goggles 
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had a significant effect (β = −0.007; SE = 0.004; t = −1.988; p = 0.047) with correlation 

coefficients that were slightly lower when wearing the blurring goggles (Figure 12).

3.3.2 Corresponding Lags—The corresponding lag is the necessary time shift of the 

two velocity signals of the two road users to get the maximum CCC. One time series is fixed 

(car) and the other time series (pedestrian) is shifted against the other for half of its length in 

the positive and negative direction (see Figure 5). It can be interpreted as the time one road 

user needs to adapt to the behavior of the dominant user in a bilateral traffic situation. In the 

current study, the strongest factor was the type of pedestrian that crossed the road (β = 

−1.235; SE = 0.048; t = −25.614; p < 0.001). There was also a significant effect of crossing 

type (β = 0.145; SE = 0.048; t = 3.015; p = 0.003); however, no effects of the goggles were 

observed (Figure 13). The most obvious finding for the lag was the fact that all bot situations 

resulted in a negative lag whereas the ped situations produced a positive lag (see example in 

Figure 14). Thus, in bot situations, the bot was the dominant road user leading the time 

series and the driver reacted to its behavior. In contrast, in the human-human traffic situation 

(driver vs. human controlled pedestrian) the car was the dominant road user and led the 

series (visualized in two example conditions in Figure 14). The other noteworthy difference 

is that the lags were longer for the human-human interaction than the human-bot interaction.

4. DISCUSSION

In this study the effect of simulated mild vision impairment on interactions between drivers 

and pedestrians was investigated within the safe environment of a driving simulator. The 

level of vision impairment (20/50) was just slightly worse than the 20/40 visual acuity 

required for an unrestricted license in many states and countries. The goal was to simulate a 

level of vision impairment at which a person with mild vision impairment (mildly reduced 

visual acuity and contrast sensitivity e.g., from developing cataracts) might still be driving. 

A novel aspect of the study was the use of a human-controlled pedestrian which enabled 

naturalistic human-to-human interaction behaviors between the participant driving the 

virtual vehicle and the trained assistant operating the pedestrian to be investigated and 

compared to interactions with computer-controlled bot pedestrians.

4.1 Gaze Data

The simulated vision loss significantly increased the time it took for participants to make 

their first fixation on the pedestrian. This delay in first noticing the pedestrian was likely 

related to the fact that the diffusing filters reduced contrast sensitivity as well as visual 

acuity (Swan et al., 2018) and the simulation affected peripheral as well as central vision 

(the diffusing filters were placed across the full extent of the goggle lenses). Peripheral 

vision can act as an early warning system which helps guide eye movements (Yamamoto & 

Philbeck, 2013). Thus one possible explanation for our results is that the simulated vision 

impairment reduced the visibility of the pedestrian in peripheral vision thereby delaying 

peripheral detection and the first eye movement toward the pedestrian. As a consequence of 

the delay in making the first fixation, the proportion of time spent looking at the pedestrian 

(bounding box) was also significantly reduced when driving with the vision impairment.
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By comparison, the Fixation-to-Braking-Time was not affected by the simulated vision 

impairment. Once the driver fixated the pedestrian using their central vision, the mild level 

of vision impairment did not delay recognition of the pedestrian as a potential hazard and 

initiation of the braking response (fixate→if hazard: brake) was not affected. Thus our 

results suggest that the processing of features in peripheral vision to find the pedestrian were 

more affected by the simulated vision impairment than the processing of features in central 

vision required to determine the intention of the pedestrian to cross the road.

In a recent study, Lee et al. (2016) tracked eye movements while normally-sighted 

participants performed a video-based hazard detection task. Consistent with our results, they 

also found an increase in the time to the first fixation on a hazard for young participants 

(mean 27 years) when their vision was blurred (+2.00 D lenses) to 20/70 on average. To our 

knowledge, no studies have quantified whether real vision loss impairs the time to the first 

fixation on a hazard and/or the time from first fixation to the initiation of a response. In prior 

simulator studies (Bronstad et al., 2013; Bronstad et al., 2015), drivers with real vision loss 

(reduced acuity and contrast sensitivity) had longer reaction times than normally-sighted 

drivers, but a detailed analysis of gaze movements was not conducted.

It is interesting to note that the gaze metrics were sensitive to the different crossing types as 

well as the simulated vision impairment. Participants were quicker to make their first 

fixation on pedestrians at zebra than free lane crossings and spent a greater proportion of 

time looking at them, suggesting that prior expectations about pedestrian behaviors (that 

they might cross at a zebra crossing) influenced gaze behaviors. However, the effects of 

crossing type on the proportion of time spent looking at the pedestrian was reduced when 

wearing the blurring goggles, suggesting that the simulated vision impairment may have 

made it more difficult to notice the zebra crossing (markings on the road and sign) as well as 

more difficult to detect the pedestrian.

In the current study, the human-controlled pedestrian always looked toward the approaching 

driver, and the driver always fixated upon the pedestrian. By comparison, in their 

observational study of pedestrian-driver interactions in real-world situations, Sucha et al. 

(2017) reported that 84% of pedestrians sought to make eye-contact with the approaching 

driver but only 34% of drivers tried to make eye-contact with the pedestrian. Thus the 

behavior of our human-controlled pedestrian was highly consistent with real-world 

pedestrians, but the behavior of our drivers seems to differ from those in the real world. One 

important methodological difference between the two studies should be considered. In the 

study by Sucha et al., observers stood near pedestrian crossings and looked for “evident and 

intended eye contact”; however, the eye position of the driver was not recorded and the 

driver might have been more likely to look at other parts of the body to infer the intention to 

cross. It would have been difficult for the observers to see the eye positions of the 

approaching driver when they were some distance away from the car so they most likely 

relied on head position rather than eye position to infer intention to make eye contact. 

Hence, it is quite possible that a higher percentage of drivers looked toward the pedestrian 

than was observed, especially if gaze toward the pedestrian involved only an eye movement 

by the driver and not a head movement. A recent driving simulator study reported that eye 

movements (without accompanying head movements) occur much more frequently when 
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driving than eye movements with head movements (Savage, Zhang, Swan, & Bowers, 2019). 

By comparison to the observational study of Sucha et al, in the current study eye position 

was tracked so we captured every fixation on every pedestrian.

4.2 Driving Safety Data

The driving safety measures (TTC, PET, DST) are typically indicators of how critical a 

situation is in which two road users are on a collision course and no avoiding action (slow 

down, brake, swerve) is performed. In this study the crossing situations were on average 

safe. As might be expected, situations with the human-controlled pedestrians were generally 

safer than with the bot pedestrians and zebra crossings were safer (Katz et al., 1975) than 

free lane crossings (for both types of pedestrians). However, although most interactions were 

safe, the raw data in the respective plots (TTC_min Figure 9 and PET Figure 10) shows that 

a few situations were critical. In particular, the situations with the preprogrammed bot 

pedestrians resulted in TTC less than 1.5 s. These situations also resulted in higher DSTs, 

above 3 m/s2 (Figure 11), which are experienced as uncomfortable by drivers (Schroeder, 

2008). The simulated vision impairment intensified the criticality in the crossings but 

compared to Kotte and Pütz (2017) who reported an average PET of 3 s, the crossings in this 

study were safer (average PET 4.76 s with simulated vision impairment). We found only 1 

out of 95 situations where the driver did not yield to a pedestrian at a zebra crossing (a 

situation with the human-controlled ped and a driver without the goggles). In contrast, in the 

real-world observational study of pedestrian-driver interactions by Sucha et al. (2017), 36% 

of the drivers did not yield to pedestrians at a zebra crossing. This difference is likely 

because drivers in the Sucha et al. study did not know that their driving behaviors were being 

observed whereas in the current study participants were obviously aware that their behaviors 

were being recorded and there were signs at the start of every city reminding them to yield 

to pedestrians at crossings.

4.3 Linear Time Series Measures

A time series approach, usually applied to economic (Tsay, 2005), climate (Mudelsee, 

2014), medical (Pincus & Goldberger, 1994) or macro traffic data (Ghosh, Basu, & 

O'Mahony, 2009), was used to examine the behavior adaption processes between the two 

road users involved in the crossings. The cross correlation coefficient (CCC) quantifies the 

extent of the mutual adaption and showed a less perfect adaption for the human-human than 

the human-bot interactions in the simulated crossings. One reason to account for this may be 

that the behavior does not need to be perfectly adapted but only enough to solve the 

respective traffic situation in a safe way.

The mutual adaptation in the human-human interaction took longer than in the one-sided 

human-bot interaction where the bot crossed the road without paying attention to other road 

users and it was the participant who was forced to modify his driving accordingly. This was 

quantified by the lag (time shift) between the two signals to gain the maximum CCC. Here 

the absolute amount among the bot situations was on average between .56 s and .96 s 

whereas the adaption between the human road users took between 1.52 s and 1.88 s. As 

expected, the bot was the dominant road user in the human-bot interactions, but the car 

driver was the dominant road user in the human-human interactions. This was clearly 
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demonstrated by the different directions of the lags (negative in human-bot interactions and 

positive in human-human interactions; Figure 13). Consistent with the on road study of Katz 

et al. (1975) where the driver behavior was found to be the dominant one in the interaction, 

we also found that the driver was the dominant road user in the situations with the human-

controlled pedestrian.

The simulated vision impairment had no noteworthy effects on the time-series measures. 

The dominance of the preprogrammed pedestrian, once detected, resulted in the same 

behavior adaptation by participants as when vision was unimpaired. The same was true for 

the passive and safety-oriented behavior of the human-controlled pedestrian. One of the 

fundamental prerequisites of interhuman (social) interaction is that it depends on externally 

visible cues to be triggered. Our results suggest that although vision was impaired in the 

current study, it was not severe enough to modify interactions with the pedestrians once they 

were detected. We anticipate that a more severe level of vision impairment would have a 

greater effect on the time series measures. In the extreme case, where a visually impaired 

driver might not even see a pedestrian, we would expect the CCC between the bot and the 

driver to approximate zero (r ~ 0) such that a corresponding lag could not be calculated (no 

perception→no interaction→no correlation).

Compared to a prior study with normally sighted young drivers (mean age 24.2 years), the 

results for the CCCs and the lags of the current study show similar trends with negative lags 

for preprogrammed bots, positive lags for human-controlled pedestrians, as well as higher 

correlations and shorter lags for human-bot encounters (Lehsing et al., 2015)

4.4 Methodological considerations

Although all independent variables were counterbalanced over the experimental track, the 

relatively large number of pedestrian crossings might have influenced driving behavior. 

Participants could have become more alert to pedestrian crossings than might be the case in 

real traffic. To avoid this, distracting pedestrians that looked alike but did not cross were 

placed along the sidewalk.

While simulating vision impairment has the advantage of creating a relatively homogenous 

level of vision loss, it does not capture all aspects of real vision impairment. For example, 

people with real vision impairment will have had time to adapt to their impairment whereas 

the participants in this study had only about 10 minutes experience with the vision loss 

before completing the experimental drives. Thus we might overestimate the effects of the 

vision impairment.

In the current study, only young participants were included. However, older drivers are more 

likely to have mild vision impairment than younger drivers e.g., from age-related eye 

diseases such as early cataracts or age-related macular degeneration. It might be expected 

that vision loss would have a greater effect on gaze behaviors and driving performance of 

older than younger drivers (e.g. due to slower motor responses and/or a smaller cognitive 

resource pool).
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Driving simulators provide a safe, controlled environment for evaluation of the effects of 

vision impairment on driving; however, they have been criticized for lack of external validity 

(Fisher, Rizzo, Caird, & Lee, 2011; Godley, Triggs, & Fildes, 2002; Kaptein, Theeuwes, & 

van der Horst, 1996; Owsley, Wood, & McGwin, 2015; Yan, Abdel-Aty, Radwan, Wang, & 

Chilakapati, 2008). We partly addressed this concern by using a linked-simulator setting that 

enabled human-human interaction between the driver and the assistant that controlled the 

intelligent pedestrian via the pedestrian simulator (see Figure 2). Both could see their 

representation (i.e. the pedestrian avatar and the vehicle the subject was controlling) in the 

crossing situations. And in contrast to a single simulator setting where the surrounding 

traffic is preprogrammed, both road users in our setting were able to mutually adapt their 

behavior. They were able to observe the actions and corresponding reactions (i.e. slowing 

down, accelerating, making a step, turning one’s head) of the other and adapt their own. This 

can be considered a much more natural, externally more valid, paradigm than used in prior 

simulator studies investigating the effects of real vision loss on pedestrian detection, where 

subjects were only required to press the horn upon detection of pre-programmed bot 

pedestrians (Alberti, Horowitz et al., 2014; Bronstad et al., 2013; Bronstad et al., 2015).

5. CONCLUSION

Simulated vision impairment of about 20/50 Snellen visual acuity was found to significantly 

affect gaze behaviors in pedestrian crossing situations. When vision was impaired, 

participants were slower to make their first fixation on the pedestrian and spent a smaller 

proportion of time looking at it. However, the time from the first fixation to the application 

of the brake was not affected by the simulated vision impairment. Similarly, there was only a 

slight adverse effect of the vision impairment on the interaction measures and the criticality 

of the situations. In the vast majority of cases, the responses of the drivers would have been 

classified as safe even with the vision impairment. These results suggest that vision loss, just 

below the legal requirement for driving, might have only mild adverse consequences for 

driving safety in pedestrian crossing situations. However, a follow up study with more severe 

levels of simulated vision impairment is needed.

The handling of the linked simulator setting was more complex than with a single simulator 

and technically challenging in ensuring smooth operation of the simulation on six screens. 

Furthermore implementation of the behavior of the human-controlled pedestrian was not 

straightforward. Care had to be taken to ensure that there was standardization of the first 

stage of the behavior (i.e., the timing of the first step and head turn) while allowing natural 

interactions in the second stage (deciding when it was safe to cross the road based on the 

driving behavior of the participant). Finally, the goal of characterizing interaction behaviors 

required a data analysis that was sensitive enough to detect differences between our 

conditions (bot vs. ped, zebra vs. freelane, goggles vs. no goggles) and to operationalize 

human traffic behavior. Our results suggest that our methodology is robust and provides a 

promising approach for future studies investigating interactions between drivers with real 

vision impairment and other road users.
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APPENDICES

A): Walking scheme example of programmed pedestrian (Bot)

Figure A-1: 
Velocity-Time graph for human bot encounter. In this example the subject brakes after the 

bot starts to cross the road at a distance of 46m to the subject.

B): Walking scheme example of intelligent pedestrian (Ped)
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Figure B-1: 
Velocity-Time graph for human-human encounter. In this example the subject starts to brake 

as soon as the ped takes a step toward the road. The ped does not start to cross the road until 

after looking at the subject’s car to make sure that it is safe to cross the road.

C): Time-To-Collision: scheme and relevant variables

Figure C-1: 
Pedestrian crossing situation with TTC variables and conflict zone (textured rectangle)

The formula used to compute the TTC (if both conflict partners are on a collision course) for 

road user 1 is as follows:

TTC1 =
d1
v1

, 𝗂𝖿
d2
v2

<
d1
v1

<
d2 + l2 + w1

v2
(2)

For the second user it is:

TTC2 =
d2
v2

, 𝗂𝖿
d1
v1

<
d2
v2

<
d1 + l1 + w2

v1
(3)
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D): Post-Encroachment-Time: Scheme and relevant variable

Figure D-1: 
Pedestrian crossing situation with PET variables and conflict zone (textured rectangle)

The formula to compute the PET is:

PET = tn + 1 − tn (4)

E): Deceleration to Safety Time DST

This measure quantifies the effort (i.e. the deceleration) one road user has to apply to ensure 

a safety time between the point in time the first road user (index f) leaves the conflict area 

and the second road user (index s) enters this area after the safety time tDSTx. X in this case 

indicates the time in seconds that needs to be added after the first road users just left the 

conflict zone and is similar to the post encroachment time PET. SDST, VTf is the distance of 

the first road user to the conflict zone, vVTf, 0 its velocity the current velocity. Solving the 

equations for the questioned deceleration DSTx produces formula 5-7. The formula used to 

compute the DST:

tDSTx =
SDST , VT f

vVT f , 0
+ x =

SDST , VTs
vVTs, 0

(5)

sDST , VTs = vVT f , 0 ∗ tDSTx +
a ∗ tDSTx

2

2 (6)
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DSTx = − a =
2 ∗ (vVTs, 0 ∗ tDSTx − sDST , VTs)

tDSTx
2 (7)
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HIGHLIGHTS

• Visual impairment increased the time to the first fixation on a pedestrian

• Visual impairment did not affect the time from first fixation to pressing the 

brake

• Classical driving safety measures showed on average safe crossing situations

• Interaction measures revealed significant effects of pedestrian type

• Time series analysis quantified behavior adaption between two road users
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Figure 1: 
Scene from the driver's point of view through the virtual windshield, with rear view mirror, 

side view mirrors and a simple dashboard including speedometer and rpm as well as a 

pedestrian target on the far right of the center screen.
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Figure 2: 
Assistant's point of view at a zebra crossing from the perspective of the intelligent pedestrian 

waiting to cross the road with the approaching vehicle of the participant on the left (same 

situation as in Figure 1)
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Figure 3: 
Scheme of the test track (S - Start, H1 -Highway 1, C1 - City 1, B (dashed) possible break, B 

(solid) − planned break on Highway 3, E -End), the order of C1-C4 was counterbalanced 

across participants.
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Figure 4: 
Gaze behavior for one subject for a human-controlled pedestrian event where the pedestrian 

appeared on the right at a zebra crossing in the normal vision (without goggles) condition; 

Left: gaze (red filled circles = fixations) in regard to the bounding box around the pedestrian 

(grey zone); Right: corresponding vehicle and pedestrian dynamics in the crossing situation 

to link driving with gaze behavior - velocity of car and pedestrian, accelerator/brake pedal 

use and geodistance between them. The first fixation on the pedestrian occurred soon after 

the start of the event (at 1.7 s) after which the subject fixated the pedestrian (red circles 

within the pedestrian bounding box) almost continuously (with just a few glances away) 

until the pedestrian had crossed to the far side of the road (at about 12s). The pedestrian 

made his first step toward the road at 4.0 s and turned its head towards the driver at 6.5 s. 

The brake pedal was first applied at 5.5 s, suggesting that the driver interpreted the step 

toward the road as signaling the intention to cross. The time from the first fixation to the 

brake pedal use (FBT) was 3.8 s. Around 10 s the driver started to accelerate again once the 

pedestrian had safely crossed the driver’s lane.
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Figure 5: 
Time-series analysis. The speed signals of the road users (Car and PED or BOT) are the 

basis of the cross correlation in the respective crossing situations. The figure shows the data 

for one subject in one crossing situation. Upper chart①: The two speed signals of the 

subject's car and the pedestrian (BOT), not shifted against each other (Lag = 0 s). Middle left 

charts ② and ③: plots with positive Lag = 2.25 s and 4.25 s and corresponding correlation 

(r = −0.36 and r = 0.617). Middle right charts ④ and ⑤: the same two speed signals shifted 

negatively against each other for 2.25 s and 4.25 s with r= −0.849 and r = −0.326. Lower 

chart: Complete cross correlation graph for selected Lags and correlations with the highest 

(negative) value for r (−0.938) at around −1 s.
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Figure 6: 
Pirate plot for Time-to-First-Fixation (thick black lines represents the mean, vertical boxes 

represent ± 1 SD, pirate patch shows distribution of data)
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Figure 7: 
Pirate plot for Fixation-to-Braking-Time
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Figure 8: 
Pirate plot for proportion of time gaze was in the pedestrian bounding box
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Figure 9: 
Pirate plot for minimum Time-To-Collision (line indicates safety threshold)
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Figure 10: 
Pirate plot for Post-Encroachment-Time
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Figure 11: 
Pirate plot for Deceleration-to-Safety-Time
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Figure 12: 
Pirate plot for Cross Correlation Coefficient (CCC)
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Figure 13: 
Pirate plot for Corresponding Lag
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Figure 14: 
Functional relation between Cross Correlation Coefficient CCC and Lag for freelane 

crossing situations while driving with the blurring goggles. Upper plot: all freelane 

encounters between computer-controlled pedestrians (bots) and participants. Lower plot: all 

encounters between human-controlled pedestrians (peds) and participants. Each line 

represents data for one encounter for one participant. Red lines in the lower graph represent 

situations where the driver did not yield to the pedestrian
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