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A simple model to solve a complex drug toxicity
problem†

Vaibhav A. Dixit

Linear drug toxicity models like therapeutic index (TI), physicochemical rules (rule of five, 3/75), ligand

efficiency indices (LEI), ideal pharmacokinetic (PK) and pharmacodynamic (PD) profiles are widely used in

drug discovery and development. In spite of this, predicting drug toxicity at various stages remains chal-

lenging and the overall productivity (<20%) and ultimate benefit to the patients remain low. A simple drug

toxicity model, “Drug Toxicity Index” (DTI), is developed here using 711 oral drugs. DTI redefines drug tox-

icity as scaled biphasic and exponential functions of PD, PK and physicochemical parameters. PD, PK and

physicochemical toxicity contributions were estimated from the on and off target IC50, maximum

unbound plasma drug concentration (free Cmax), and logD values, respectively. These contributions are

then scaled by molar dose and oral bioavailability and the logarithm of the sum of scaled contributions is

DTI. Drugs with DTI above the WHO ATC drug category specific average values consistently have toxic

profiles, while drugs with DTI below this average are relatively safe. DTI performs better than standard

rules for lead optimization, LEI and exposure based TIs in identifying safe and toxic drugs. DTI classifies

392 drugs reported in the US-FDA’s Liver Toxicity Knowledge Base (LTKB) with an AUC for ROC curves of

0.91–0.64 for different WHO ATC categories. DTI has been used to predict network meta-analysis results

on relative toxicity within/across eight different therapeutic areas. It is useful in understanding PD, PK and

physicochemical toxicity contributions and identifying potentially toxic drugs and the toxicity of recently

approved drugs. Decision trees are proposed for applying the DTI concept in preclinical drug discovery

and clinical trial settings. DTI can potentially reduce failure in drug discovery and might be useful in thera-

peutic drug monitoring and in xenobiotic and environmental toxicity studies.

1. Introduction

Drug safety is estimated in drug discovery by the measurement
of the therapeutic index (TI) and its variants e.g. exposure
based therapeutic indices (IC50/Cmax).

1,2 But investigational
drugs continue to fail in clinical trials due to low safety and
efficacy.3,4 TI assumes simplified linear relationships between
receptor affinity, maximum unbound plasma drug concen-
tration (Cmax) and toxicity. But high TI does not guarantee
safety. For drugs metabolized by cytochrome P450 (CYP450),
estimating TI based on target potencies alone is insufficient.

Toxicity may be due to the accumulation in a specific organ/
tissue (e.g. bosentan), the co-administration of other drugs
affecting ADMET (absorption, distribution, metabolism, elim-
ination and toxicity),5 Cmax reaching off target IC50, or the high
Cmax required for therapeutic effects, see ref. 1.

A 2D “TI heatmap grid” was developed earlier to compare
efficacy and safety data.1 The limitations of this approach are:
a lack of a universal TI value, large variations and difficulty of
direct comparison across chemical or therapeutic classes. TI is
used for risk–benefit assessment of known toxicities and is
not applicable to rare and idiosyncratic toxicities. For example,
the Valdecoxib TI values for COX-1 are 7 times those for
CYP2C19 inhibition, but its toxicity is due to on target activity
in cardiomyocytes, seldom considered in TI calculations.1,6

Using the same Cmax value for calculating TI at different doses
seems erroneous.2 The major off target effects involve proteins
closely related to the therapeutic target, CYP450s, hERG and
BSEP activities.1 The use of 44 proteins (from GPCR, ion
channel, neurotransmitter transporter, nuclear hormone
receptors, AChE, COX, MAO, phosphodiesterase and kinase
families) for off target profiling has been recommended.7

Pharmaceutical companies have been screening this protein
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set for decades, but data for most drugs are not available in
the public domain. When such data are available the interpret-
ation of complex TI heatmap grids could still present practical
difficulties.

Physicochemical property and toxicity relationships have
been extensively reviewed.8,9 Trends between oral bio-
availability, drug-like properties and hepatotoxicities, e.g. the
RO5,10 3/75, RO3,11 RO2,12 RO2-RM,13 and 4/400 rule,8 have
been useful in lead optimization. Typically, compound
libraries are filtered using predicted physicochemical pro-
perties, and drug-likeness rules, and subjected to biological
activity (IC50, Ki, Kd or Km) predictions. Alternatively, high
throughput, fragment, focused, physiological or even NMR
screening, ligand and/or structure based design approaches
can be used to find lead compounds.9,14 Predictions are then
tested and structure–activity and/or structure–metabolism
relationships are built and an iterative process may lead to
candidates suitable for clinical testing. Major challenges are
the simultaneous optimization of lead properties for on/off
target, metabolic, toxicological, and pharmaceutical (e.g.
solubility) issues.15 Current state-of-the-art for lead optimiz-
ation includes multi-parameter optimization with different
forms of predictive modelling, utility functions, weighed
desirability and spread design.16 Typically compounds with
the highest binding affinity or potency are selected for the
further optimization of ADME (absorption, distribution,
metabolism and elimination), solubility, stability and other
pharmaceutical properties with the hope that necessary struc-
tural changes will modify potency within acceptable limits.
Although these methods avoid rigid rules and have improved
success rates in lead optimization cycles, they assume a linear
relationship between parameter values and desirability. Thus
quantitative predictions and differentiating drug toxicity
potential within/across therapeutic classes are challenging at
this stage.

The effect of Cmax on the observed safety and toxicity of 245
drugs was reported earlier.9 Fig. 3 of that reference suggests a
non-linear relationship of total Cmax with toxicity, but the
relationship was not discussed. Drugs with an average affinity
of 10 nM for the target and 30 nM to 1 µM Cmax were con-
sidered safe. Wenlock has studied the estimation of Cmax and
Cmin for 215 oral drugs.17 Ninety percent of the safe drugs had
Cmax below 10.4 µM. Cmax at the non-observable adverse effect
level (NOAEL) correlated with Cmax at the maximum dose. A
maximum Cmax of 50 µM for oral drugs was suggested, but no
lower bound was given. This suggests that for a drug-like mole-
cule, Cmax, Cmin and pharmacologically effective concentration
(Ceff ) should be minimum. A Cmax/Cmin ≤ 30 is desirable for
oral drugs.

IC50, log P, bioavailability, % plasma protein binding (PPB),
molecular weight, dose and Cmax have important roles in drug
toxicity. Since oral drugs have molecular weight (∼150–750
Da), daily dose (∼0.1 mg to 1 g), log P (∼−5 to 6), IC50 (on and
off target: ∼0.001 to 10 µM), oral bioavailability (0–1), and free
Cmax (0.001 to 10 µM), predicting toxicity is a complex
problem. Thus a novel method for estimating the clinical tox-

icity of drugs and combinations based on physicochemical, PD
and PK properties is urgently required.

In this paper, drug toxicity is redefined as the logarithmic
sum of scaled biphasic and exponential toxicity contributions
from the basic in vitro, in vivo and physicochemical para-
meters, thus giving Drug Toxicity Index (DTI). DTI is a signifi-
cant advancement as a simple model combining toxicity con-
tribution from different parameters is presented for the first
time. DTI values are compared between drugs and categories
to estimate relative toxicity potentials. PD, PK and physico-
chemical contributions to DTI offer scope to gain mechanistic
insights into drug toxicity. The DTI concept is applied for
understanding drug (liver) toxicity, differentiating drug cat-
egories, toxic and safe drugs, and identifying potentially toxic
drugs. Decision trees like thinking with potential applications
of the DTI concept in various drug discovery phases are pre-
sented followed by the limitations of the current approach.

2. Methodology

Data on IC50 (on/off target), Cmax at a specified dose, % plasma
protein binding, oral bioavailability, molecular weight, ACD
log D, log P for 711 oral drugs were collected and analyzed
using a methodology detailed in the ESI PDF file.†

3. Results and discussion
3.1 Pharmacodynamic (PD) toxicity and on target affinity
(potency)

Maximizing LE may increase the drug-likeness, reduces dose
and Cmax required for efficacy.18 Compounds with high affinity
(IC50 < 0.01 µM) are less likely to cause off target toxicities. But
they have the potential to cause on target toxicity e.g. bupiva-
caine19 or toxicity due to activation/inhibition of related
targets.1 Such toxicities are hereby referred to as pharmacody-
namic (PD) toxicity. Highly potent drugs (e.g. opioids) may
cause PD toxicity when administered either alone or in combi-
nation with other drugs. This PD toxicity may precipitate due
to small changes in the ADME of the highly potent drug
induced by factors like the fluctuating patient’s physiological
parameters or due to the influence of co-administered drugs.
For such drugs low doses are usually prescribed, but this
doesn’t eliminate toxicity risks. For some other highly potent
drugs, large doses are required (mostly due to poor bio-
availability e.g. bosentan), further increasing the PD toxicity
risk due to ADME changes. Compounds with low affinity for
the primary target generally require the administration of
larger doses, achieve high Cmax, and have higher risk for off
target activation and PD toxicity and are generally eliminated
early in the drug discovery process. Thus compounds with IC50

> 10 or <0.01 µM at target are not drug-like. Therefore, PD on
target (xt) toxicity contribution is modelled as a biphasic func-
tion of IC50 (Fig. 1 and eqn (1)). For molecules with very high
binding affinity the toxicity potential is modelled as 1/(10 × xt),
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while for molecules with low binding affinity the
toxicity potential is modelled as xt/10. The combined term
(xt./10 + 1/10xt) then models the toxicity potential for both
high and low affinity molecules.

3.2 Pharmacokinetic (PK) toxicity and maximum plasma
concentration (Cmax)

DRUGeff proposed earlier accounts for ADME, but ignores
target potency.20 Drug Efficiency Index (DEI), proposed later,
doesn’t include PK and off target toxicity contributions.21 The
lack of an upper bound on the unbound concentration (Cfree)
for efficacy seems erroneous. When Cfree is comparable to dose
(mg kg−1), exposure to the target organ may reach high levels,
causing target over-activation, and PD toxicity. As toxicity corre-
lates with Cmax, using steady state concentrations or Vd may
not capture such toxicities. Utilizing the time to Cmax or AUC
for toxicity prediction is complicated by factors like significant
differences in frequency, duration of sampling/treatment, and
ethical constraints in allowing drug concentrations to reach
subtherapeutic levels, among others. Thus to keep the model
simple Cmax was preferred.

In developing the DTI concept the relationship of free Cmax

and toxicity is assumed to be similar to IC50 and toxicity
(eqn (1), and Fig. 1). Cmax toxicity contribution is referred to
here as “PK toxicity”. Drugs with Cmax < 0.01 µM required for
efficacy are more likely to cause PK toxicity due to small vari-
ations in ADME e.g. bosentan.22 The toxicity potential for such
compounds is modelled as 1/(10 × Cmax). Compounds with
Cmax > 10 µM, required either for efficacy (due to high IC50, Vd
or protein binding, or low clearance), may cause off target acti-
vation and PK toxicity and are modelled as Cmax./10. Thus, tox-
icity risk increases with very high or low IC50 and Cmax for
drugs. Eqn (1) models the PD (on target) and PK toxicity con-
tributions assuming that on target IC50 (xt) and Cmax between
0.01 and 10 μM represent safe drugs.

Pharmacodynamic PD (xt, on-target) and pharmacokinetic
(PK) contributions to toxicity:

PD xtð Þ toxicity contribution ¼ Xt
2 þ 1

10� Xt

� �

PK toxicity contribution ¼ Cmax
2 þ 1

10� Cmax
:

ð1Þ

3.3 Pharmacodynamic (PD) toxicity and off target potency

Compounds with high binding affinity at off targets (IC50 <
10 µM) are likely to have PD (off target) toxicity,1,7,20 while
drugs with off target IC50 > 10 µM are usually considered
further in the drug discovery process. One can model this fact
using a negative exponential function, but a purely negative
exponential function would always give a PD off target contri-
bution of less than one (e−x < 1, for positive x and >1 for nega-
tive x values). Thus to keep the off target contributions
aligned with the on target contributions an inverse square-root
function 10/x0.5 was added. This gives the off target PD toxicity
contribution of [(e−xot × (xot)

0.5 + 10)/(xot)
0.5] where xot is the off

target IC50 (eqn (2)). Fig. 2 shows the PD (off target) toxicity
contribution as a function of off target IC50. For a candidate
with off target IC50 = 1, 10 and 100 µM, the off target PD
contributions are 10.37, 3.16, and ∼1 respectively. Although
negative exponential functions are commonly used in
modeling PKPD properties (e.g. plasma concentrations, see
chapter 2 in ref. 2), inverse square-root functions have been
applied rarely. Inverse square-root relationships have been
found useful in other fields like permeability (see the
section on passive diffusion in chapter 5 of ref. 2), overall
connectivity (Randić’s inverse-square-root function),23

and radiotherapy.24 This paper represents the first ever
application of an inverse square-root relationship to toxicity
prediction.

Fig. 1 PD and PK toxicity of drug-like molecules is shown as a function of in vitro on target IC50 (xt) or Cmax (in vivo or extrapolated from in vitro
permeability and metabolism assays) respectively. The inset shows that for a drug with an IC50 or Cmax value of 100 µM, the toxicity reaches a value
of 10 units.
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Pharmacodynamic PD (xot, off-target) contributions to tox-
icity: An off target IC50 of 10 µM gives a PD toxicity contri-
bution of 3.16.

PD xotð Þ toxicity contributions ¼ e�xot � ffiffiffiffiffiffi
xot

p þ 10ffiffiffiffiffiffi
xot

p ð2Þ

3.4 Physicochemical contribution to toxicity and logD

A small increase in logD value causes significantly larger
amounts of the drug to easily cross membranes, and accumu-
late in the liver, brain, and adipose tissues. Thus lipophilic
compounds generally have off target activity, extensive metab-
olism, and hepatotoxicity, and are linked with adverse out-
comes.9 A Clog P cut-off of 3 was found useful in categorizing
drugs as toxic or non-toxic.25 But a mathematical formulation
of the general relationship between these parameters and tox-
icity has not been proposed.

LogD is the ratio of the amount of drug present in the
polar (water/cytoplasm) to that in the non-polar (octanol/cell
membrane) compartments at physiological pH 7.4.26 Higher
values for this ratio mean that a larger fraction of the drug
would get absorbed, transported and/or metabolized. Because
toxicity in most cases is likely to be related to this fraction of
the drug entering into different organs, it is reasonable to
expect that toxicity would correlate better with this fraction
(rather than its logarithm). To recalculate this fraction of drug
while keeping the physicochemical toxicity contribution
aligned with PD contributions, the exponential of Log D was
chosen (Fig. 3 and eqn (3)). Considering the RO3,11 and RO510

concepts, this contribution was corrected with a Log D × e
term such that a molecule with LogD = 3, 5 get values close to
10 and 100 respectively. This gives eqn (3) for estimating
physicochemical (LogD) toxicity contributions. Polar drugs

(PSA > 75 Å2) inhibit anionic transporter systems with frequen-
cies slightly higher than non-polar compounds (Fig. 3 of
ref. 27) and may have similar toxicity potential. This highlights
the need for the right balance between polar and non-polar
characteristics. Log D contributions to DTI model this aspect
as moderately higher contributions for polar compounds
(3.09, 8.20, and 13.59 for −1, −3 and −5 LogD values
respectively). To keep the model simple and aligned with PD
contributions, additional overfitting and antilog functions
(e.g. 10x–10 × x) with complex behavior (negative contributions
between x = 0.1371 and 1.) were avoided.

Physicochemical (logD, pH = 7.4) contribution to toxicity:

Physicochemical contribution to toxicity ¼ elogD � logD� eð Þ� �
ð3Þ

3.5 Drug toxicity index (DTI)

Although correlations between toxicity and physicochemical,
PK and PD parameters are known, none of the toxicity predic-
tion methods combines them into a single parameter. Thus a
method using physicochemical, PD and PK data to estimate
toxicity contributions for oral drugs was developed and tested.
The individual PD, PK and physicochemical toxicity contri-
butions discussed above estimate the intrinsic toxicity poten-
tials of the drug/xenobiotics. Additionally, these intrinsic tox-
icity potentials are modulated by the exposure to the candidate
toxicant, which in turn is determined by the dose and bio-
availability28 (https://toxtutor.nlm.nih.gov/03-002.html). For
instance, very high or very low potency or Cmax values need not
necessarily translate into high PD or PK toxicities respectively.
These should rather be considered as one of the risk factors
for toxicity and a realistic estimation of toxicity contributions
requires scaling by oral bioavailability and molar dose. For

Fig. 2 PD toxicity of drug-like molecules is shown as a function of in vitro off-target IC50 (xot) values. For a compound with an off-target IC50 value
of 1 µM, the toxicity contribution has a value of 10.37.
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example, Calcitriol has the lowest Cmax value (0.22 nM) in the
dataset considered here and thus has the largest PK toxicity
contribution (462 963). Scaling with molar dose
(0.0000024 mmol) and oral bioavailability (0.61) gives a realis-
tic PK toxicity contribution of 0.68 (and DTI = −0.17), which is
in agreement with the generally safe clinical profile for this
drug at recommended doses. Phentolamine with a high Cmax

(45.8 µM) gives an unscaled PK toxicity contribution of 4.5,
suggesting moderate potential for toxicity. Scaling with molar
dose and bioavailability reduces this PK toxicity contribution
to 0.17, in agreement with the well-known clinically safe
profile of this drug.29

Although it is customary to avoid candidates with high off
target affinity in drug discovery projects, a low IC50 value at the
off target alone need not necessarily translate into a clinically
relevant drug interaction and toxicity.30 For example, Pergolide
Mesylate is a potent CYP2D6 inhibitor and has an unscaled PD
(off target) toxicity contribution of 163 but has been found safe
in patients with comorbidities (Parkinson’s and heart diseases),
and co-administered drugs (causes only mild liver enzyme
elevations).30,31 Scaling with molar dose and oral bioavailability
reduces the PD (off target) toxicity contribution to 0.31 (DTI to
−0.20), thus correctly predicting a save clinical profile.

Categorizing drugs based on simple log P/D cut-off values is
an oversimplification of the drug toxicity and lipophilicity
relationship. For example, Cefdinir has the lowest logD value
(−5.48) in this dataset and thus should be safe according to
simplified rules and cut-off criteria. But Cefdinir has been
reported to cause liver toxicity.32 Unscaled logD toxicity contri-
bution (14.9) predicts high potential for toxicity, whereas
scaled contribution reduces to 3.4 (DTI = 0.63), suggesting a
moderate toxicity potential in agreement with rare literature

reports on hepatotoxicity. Similarly, Nabilone is very lipophilic
(logD = 7.25) and, according to RO3, is expected to have high
potential for hepatotoxicity. The physicochemical log D toxicity
contribution for this drugs is 1388. But scaling with molar
dose and oral bioavailability significantly reduces the toxicity
contribution to 0.75 (DTI = −0.06). This is in agreement with
the absence of liver injury and safe clinical profile of this
drug.31,32

The individual PD, PK and physicochemical (logD) contri-
butions are thus scaled by molar dose and oral bioavailability,
summed and the logarithmic sum is defined as the Drug
Toxicity Index (DTI, eqn (4)). In contrast to classical TI, DTI
does not consider drug toxicity to simply decrease (or increase)
with a decrease (or increase) in on target IC50, plasma free
Cmax, or logD. The proposal of higher response (toxicity) at
very low or high doses has been tested, and debated under the
Hormetic model of dose–response curves.33 The DTI concept
is different and novel as it expresses the toxicity as a function
of different physicochemical, PD and PK parameters of a mole-
cule instead of just dose.

The utility of the DTI concept and values for understanding
(i) differences in WHO ATC drug classes, (ii) classification of
drugs for drug-induced liver injury (DILI) concern, (iii) relative
toxicity potential within a therapeutic area, (iv) physico-
chemical, PK and PD toxicity contributions, (v) identifying
potentially toxic drugs, and (vi) recently approved drugs is dis-
cussed below. A decision tree approach is presented describing
the potential use of the DTI concept in a typical drug discovery
project followed by limitations and scope for improvements.

The Drug Toxicity Index (DTI) is defined as the logarithmic
sum of physicochemical (LogD), pharmacokinetic (PK) and
pharmacodynamic (PD) contributions to toxicity scaled by

Fig. 3 Physicochemical toxicity of drugs is modelled as an exponential function of logD (at pH = 7.4) values. A compound with a logD value of
zero will have a toxicity contribution of 1, while compounds with logD = 1 will have zero physicochemical contribution to toxicity, and candidates
with logD > 3 are expected to have a high toxicity contribution (>12 units).
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absolute oral bioavailability (OBA), and molar dose (MD).
Here, Xt is potency (IC50 or MIC) at the target protein, Cmax is
the maximum unbound plasma drug concentration, Xot is the
binding affinity at the off-target (CYP450 isoforms, hERG
channel and BSEP transporter), and logD is the ACD logD at
pH = 7.4. PD and PK contributions to DTI are defined only
when Xt, Cmax and Xot are greater than zero.

3.6 DTI and WHO ATC drug classes

The DTI for WHO ATC drug classes (711 drugs) was analyzed.
DTI values (for full data see Excel files in the ESI†) for anti-
viral, antibiotic, antineoplastic (anticancer), and withdrawn
drugs are higher than those for other drug classes (Fig. 4). As
small datasets are used, the average DTI for antiparasitic, sys-
temic and hormonal, and blood categories should be inter-
preted cautiously.

Fig. 5 shows scatter plot for DTI and LEI. Molecules with
LEI > 0.3 and LLE > 5 are generally considered good candidates
for drug development.18 Withdrawn drugs are expected to have
LEI < 0.3, LLE < 5. Of 88 withdrawn drugs, 53% (Table 1)
satisfy LEI criteria.18 DTI performs similarly (50%, at 0.67 cut-
off ). Only 43, 24 and 43% withdrawn drugs have dose >100 mg
and log D > 3. On average 36 and 27% approved drugs satisfy
RO2 criteria (73% for systemic and hormonal drugs) and 13
and 20% satisfy log D criteria (see Table S11†). Although DTI
and LEI (LLE, 67%) have similar performances for withdrawn
drugs, DTI offers scope for interpreting toxicity contributions.

DTI performs better than LEI, LLE, and the doses for
Musculoskeletal, Antiparasitic, Metabolic and GIT, CNS,

Systemic and Hormonal, Gentio-Urinary and Sex, Respiratory,
Blood, and Cardiovascular categories (Table 1). DTI one cut-off
performs better than other parameters for Cardiovascular,
Respiratory, Blood, Gentio-Urinary and Sex, Systemic and
Hormonal categories. For Antiparasitic, Antibiotic, Antiviral,
and withdrawn drug categories the average DTI cut-off value
performs better than other parameters. The use of the average

cut-off value is justified considering the known higher toxicity
for these drug classes. Across all categories the average percen-
tage of drugs satisfying parameter cut-off values shows that
DTI is the best parameter (69%) considering its interpretabil-
ity. Log D gives minor improvement but has limited scope for
understanding toxicity contributions. PK, physicochemical, PD
on and off target, contributions to DTI also show excellent per-
formance at identifying safe drugs (see ESI Tables S12 and S13†
for the averages). Contributions to DTI have moderate perform-
ance for withdrawn drugs but DTI itself performs better. DTI
is better than exposure based TI at estimating safety. Only 26,
20 and 23% drugs across different WHO ATC drug categories
satisfied exposure based TI of ≥30 for CYP450, hERG and
BSEP inhibition (Table S11†). At efficacious doses the free Cmax

is generally within 0.5–2 times that of IC50.
34 Against this cri-

terion DTI is 6.6 times better at estimating drug safety. Within
the dataset considered here, ∼27% of drugs have negative DTI
values (see Table S12†). These should not be interpreted as
having zero or no potential for toxicity. Rather negative DTI
values indicate a total contribution to the toxicity of less than
1 (eqn (4), DTI = log(MD × OBA∑toxicity contributions)).

Fig. 4 Average DTI values for different WHO ATC classes of drugs and withdrawn drugs considered in this work. Error bars represent standard
errors.

DTI ¼ log MD� OBA
X

contributions to toxicity
� �

DTI ¼ log MD� OBA PD onandoff targetð Þð½ þ PKþ Log D contributions to toxicityÞ�

DTI ¼ log ðOBA �MD
xt2 þ 1
10� xt

� �
þ Cmax

2 þ 1
10� Cmax

� �
þ e�xot � ffiffiffiffiffiffiffiffi

xot
p þ 10ffiffiffiffiffiffi
xot

p
� �	 


þ OBA �MD� elogD � ðlogD� eÞ� �� �Þ:
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These can be interpreted (cautiously) as having lower toxicity
potential (see sections 3.8.1 and 3.13), arising from different
physicochemical (LogD), PD (on and off target) and PK toxicity
contributions (discussed in sections 3.1–3.4) considered for
calculating the DTI. It is worth noting that, although DTI
values can be negative, the individual and total toxicity contri-
butions (as defined in eqn (1)–(3)) can be either positive or
zero, but not negative.

DTI differentiates WHO ATC drug categories (ANOVA,
Table S1†). Antibiotic and antiparasitic drugs are similar in

their toxicity potential (similar DTI values avg; 1.12, 1.24, max;
3.2, 2.74, min; −1.12, −0.08 respectively, Fig. 4). The with-
drawn drugs (avg; 0.67) are differentiated from nine drug
classes (antibiotic, metabolic and GIT, nervous system (CNS),
systemic and hormonal, gentio-urinary and sex, antiviral, res-
piratory, cardiovascular and antineoplastic). LEI, molar dose,
dose, OBA, IC50, free Cmax, PPB, ACD logD, and log P differen-
tiate only 4, 6, 6, 4, 5, 6, 4, 5 and 3 drug category pairs respect-
ively (Tables S11–28†). Antiviral drugs have the highest average
DTI, suggesting high toxicity. Although ∼64% correct differen-

Fig. 5 Scatter plots of LEI and DTI values for different WHO ATC drug classes show that LEI and DTI values have no correlation.

Table 1 Percentage of drugs satisfying the different efficiency (LEI, LLE), dose and physicochemical parameter criteria recently recommended.
Comparison of average DTI values against these widely used parameters for lead optimization suggests that a DTI criterion of <1 is better in many
cases and equal in others (except for antineoplastic and antiviral drugs). For PD on target/off target, PK and physicochemical contributions to DTI,
the respective average values have been used as cut-off criteria (see ESI)

WHO ATC drug category LEI > 0.3 LLE > 5
PD on
target PK

Physico-
chemical
LogD

PD off target

DTI < 1

Exposure based
TI, % of
IC50/Cmax
values between
0.5–2

Dose <
100 mg

ACD
logD < 3 log P < 3CYP450 hERG BSEP

Musculoskeletal 58 24 71 89 84 84 95 89 84 13 34 97 55
Antiparasitic 45 18 73 82 91 100 91 82 a55 0 27 82 73
Antibiotic 36 54 94 86 80 84 86 76 b54 0 0 90 80
Metabolic and GIT 46 63 83 96 83 83 83 90 77 17 69 90 79
CNS 69 44 94 86 84 90 85 90 73 21 68 84 62
Systemic and hormonal 45 55 82 91 91 82 100 82 91 9 82 82 64
Withdrawn 53 67 18 14 01 11 18 9 c50 0 43 24 43
Gentio-Urinary and Sex 40 38 98 98 90 90 88 90 85 20 80 48 38
Antiviral 24 61 80 73 93 76 85 76 d51 7 17 56 39
Respiratory 61 31 89 78 83 89 83 92 83 17 75 75 47
Blood 33 27 93 87 87 87 80 87 73 13 53 73 40
Cardiovascular 37 31 86 98 89 86 89 88 74 11 63 70 48
Antineoplastic 35 56 82 85 90 85 81 87 43 10 35 62 50
Average across
therapeutic area

45 44 80 82 80 81 82 80 69 11 50 72 55

The following average DTI values for the respective therapeutic areas were used as the cut-off: a1.12, b1.4, d1.72. cFor withdrawn category criteria
of LEI < 0.3, LLE < 5, and DTI > 0.67 (avg for withdrawn), ACD logD and log P > 3 were used. For exposure based TI, the criteria were IC50/Cmax
values between 0.5 and 2. For classical TI (CYP450, hERG, BSEP) the criterion was ≥30. None of the antibiotic classes of drugs considered here
had a dose < 100 mg. The average values used as the cut-off for PD on/off target, PK and physicochemical parameters are given in Tables S12–13.
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tiation among WHO ATC drugs may sound ordinary, it is better
than random prediction and has been attempted for the first
time. Thus differentiating the toxicity potential between the
different WHO ATC drug classes is not possible with simple PD,
PK and physicochemical parameters. This is possible with the
DTI concept as it is able to differentiate withdrawn drugs from
9 (out of 12; 75%) other approved drug classes.

3.7 US-FDA’s liver toxicity knowledge base (LTKB) and DTI

The utility of DTI to correctly classify drugs with drug induced
liver injury (DILI) concern was tested with the US-FDA’s LTKB
containing 1039 drugs.13 DTI could be calculated for 392
drugs. Eighty-five, 233 and 74 had most-DILI-concern, less-
DILI-concern and no-DILI-concern. This proportion of drugs
with different types of concern annotations is similar to that
present in the larger database with 1039 drugs. The area under
the receiver operating characteristic curve (AUC, Table 2) was
generated by considering different DTI cut-off values. The AUC
was calculated using two types of categorization (see Table 2
and ESI Excel file†).

DTI gave a good AUC of 0.72 for all 392 drugs (categoriz-
ation A), while for CNS and cardiovascular drugs excellent
classification was achieved (AUC, 0.84). Respiratory and anti-
biotic drugs were classified with good AUC, 0.72 and 0.69.
Categorization B gave an excellent AUC of 0.89 and 0.91 for
antiviral and musculoskeletal drugs respectively. These drug
categories are more likely to cause liver injury and even a low
hepatotoxicity risk should be considered seriously. These
results agree with the toxicity trends found earlier.13

The AUC for the ROC curves estimated with categorization
A correlates well (r = 0.77) with the number of drugs within
each therapeutic area. This suggests that predictions can be
improved with the inclusion of additional drugs within each
therapeutic area if the missing data (in vitro/in vivo) become
available. Lack of correlation for categorization B (r = −0.09)
suggests that this calcification is specific to antiviral and
musculoskeletal drugs. But due to a small number of drugs
considered here, data for additional drugs would be required

to confirm this suggestion. DTI’s ability to predict the poten-
tial for hepatotoxicity and other forms of toxicity is discussed
in the following sections.

3.8 Relative toxicity potential within a therapeutic area

Assessing the relative drug efficacy and toxicity is important
for medicinal chemists, pharmacologists, pharmacists, phys-
icians, and regulators.35 As multiple treatment options are
available for many diseases, relative toxicity assessment is
necessary. Difficulty in direct clinical trial comparisons forces
network meta-analyses for estimating the relative toxicity.36

The application of DTI for estimating network meta-analysis
outcomes is discussed (Table 3).

3.8.1 NSAIDs and DTI. DTI for a set of NSAIDs were com-
pared with the clinical risk of gastrointestinal complications and
gave a good correlation.37 Table S2† shows that the relative risk
of gastrointestinal toxicity correlates well with DTI (r; 0.85,
Diclofenac and Piroxicam excluded). The Diclofenac DTI is nega-
tive because all off-target effects are not considered. Addition of
COX-1 IC50 (0.003 µM) and PD toxicity contribution (5.06) makes
DTI 0.84, explaining Diclofenac’s toxicity. Piroxicam’s toxicity
has been linked to reactive metabolite formation (see “section
3.13 Limitations of the current DTI methodology”). Thus, DTI
gives reliable estimates of relative NSAID toxicity.

3.8.2 Antibiotics and DTI. The relative efficacy and adverse
effects of 5 antibiotics (Ciprofloxacin, Norfloxacin, Amoxicillin-
Clavulanate, Gatifloxacin, and Trimethoprim/Sulfamethoxazole)
give a moderate correlation of 0.64 with DTI (Table S3†).38 DTI
correlates with the relative adverse effects (except for
Gatifloxacin). For the trimethoprim/sulfamethoxazole combi-
nation, a modification of the Hill function to predict the
response to the combination has been used.39 A larger clinical
dataset may confirm this utility of DTI.

3.8.3 CNS drugs and DTI. Leucht et al. performed a
network meta-analysis to estimate the odds ratio (OR) for all-
cause discontinuation, sedation, weight gain, QTc pro-
longation and extrapyramidal effects for fifteen antipsycho-
tics.40 DTI correlates well with all-cause discontinuation OR

Table 2 AUC values for the ROC curves calculated using different DTI cut-off values for the classification of toxic and safe drugs reported in the
US-FDA LTKB database

WHO ATC drug category Number of drugs

AUC value for ROC curve

(A) Toxic = Most-DILI
concern safe = No-DILI +
Less-DILI concern

(B) Toxic = Most-DILI +
Less-DILI concern safe =
No-DILI concern

Drugs used from LTKB 392 0.72 0.62
Gentio-urinary & sex 20 0.61 0.64
Antiviral 19 0.53 0.89
Respiratory 16 0.73 0.46
Metabolic and GIT 26 0.52 0.39
Musculoskeletal 24 0.48 0.91
CNS 100 0.84 0.64
Cardiovascular 76 0.84 0.58
Antibiotics 34 0.69 NAa

aNone of the drugs in the antibiotics class for which DTI could be calculated had a No-DILI-concern annotation. For other drug categories, the
no. of drugs with LTKB annotations and DTI values was below 10 and thus these were not analysed.
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(13 drugs, r; 0.75, Table S4†). Clozapine has been associated
with many liver injuries. Clozapine’s DTI captures liver toxicity
via the contribution of log D, 22.5. A re-evaluation of Clozapine
cardiotoxicity has been suggested (scaled hERG DTI contri-
bution, 21.8).41

Relative tolerability was reported for ten antidepressants
using OR for the response, remission rates, and withdrawal
rates due to adverse effects.42 The OR for response rates corre-
lated well (negatively, r; −0.72) with DTI (Table S5†).
Agomelatine showed the highest OR for the response rate (low
DTI). Thus DTI can predict the relative safety of CNS drugs.

3.8.4 Antidiabetic drugs and DTI. The relative hypoglyce-
mia risk and body weight change estimated for 15 antidiabetic
drugs correlated (negatively, r; −0.68, −0.60, Table S6†) with
DTI.43 Relative risk for UTI and genital tract infections showed
weak and decent correlations respectively with DTI. The sig-
nificance of the negative correlations with adverse effects
requires further investigation.

3.8.5 Gentio-urinary and sex drugs and DTI. The relative
efficacy and adverse event frequencies reported for seven PDE5
inhibitors show good correlation (r; 0.84, Table S7†) with
DTI.44 An earlier study comparing Tadalafil, Vardenafil, and
Avanafil did not find a significant difference in their safety pro-
files45 and thus these results should be interpreted cautiously.

3.8.6 Antiviral drugs and DTI. Patel et al. estimated OR and
percentage values for the efficacy, safety and discontinuation
due to adverse effects (Table S8†) for Dolutegravir and seven
other drugs.46 OR for efficacy parameters and triglyceride
levels have good correlation with DTI. The correlation of OR
for discontinuation due to AE with DTI is 0.63. Poor corre-
lations for combined-DTI values can be due to different and
undisclosed doses used in different combinations. This can
significantly alter the individual (PD, physicochemical and PK)
contributions and the DTI.

3.8.7 Blood and blood forming (anticoagulant) drugs and
DTI. OR for myocardial infraction and all-cause-strokes for
acetylsalicyclic acid plus Clopidogrel (ASA + C), Apixaban,
Rivaroxaban, Dabigatran, and Edoxaban against Warfarin as a
reference have excellent correlations with DTI (Table S10†).47

These suggest that DTI might be useful in estimating the rela-
tive toxicity of antithrombotics.

Although the relative toxicity/efficacy for cardiovascular,48

antiemetic,49 and antiulcer drugs is available, such studies
often compare drug sub-classes (e.g. beta-blocker, ACE, proton-
pump inhibitors, H2-receptor antagonists, and 5HT-agonits).
Molecule specific clinical risks associated with these and anti-
parasitic drugs were not found in the literature. Thus the use
of the DTI concept in estimating relative drug safety/efficacy
for these categories remains to be tested.

3.9 Physicochemical, PK and PD toxicity contributions

Efficacy (52%) and safety (24%) are top reasons for Phase II
drug discovery failures.50 Thus estimating toxicity potential in
Phase I studies is a high priority. The following examples
demonstrate the utility of DTI in estimating toxicity potential
from Phase I PK, PD, and physicochemical data.

Reactive metabolite formation has been proposed for
Troglitazone toxicity.51 DTI estimates a PD on target contri-
bution of 0.08 (IC50 at PPARγ, 0.98 µM), and PD (off target)
contributions of 2.36, 0, and 2.51 (CYP450, hERG, BSEP, see
Table 4). For a dose of 400 mg (MD, 0.91) and an oral bio-
availability of 45%, the free Cmax value is 0.036 µM (PPB, 99%)
and the PK toxicity contribution is 1.12.52 The largest contri-
bution is from the physicochemical parameter (logD, 3.65) of
11.64, making DTI 1.25. Calculations for Pioglitazone (non-
hepatotoxic) give DTI 0.45 (Table 4). Reducing the Troglitazone
dose to 200 mg decreases these contributions to 0.04, 1.18,
0.0, 1.25, 1.00 and 5.82, marginally decreasing DTI (0.97) and
suggesting a similar toxicity risk. Thus reducing the dose
doesn’t reduce the toxicity potential proportionally.
Rosiglitazone cardiotoxicity is most likely the result of KATP or
kinase inhibition.53 Thus, Rosiglitazone toxicity cannot be pre-
dicted using the current DTI formulation (−0.17), as it
excludes other off target effects.

Terfenadine has PD on target (4.24), off target (1.49, hERG;
4.05, CYP450; 0.0, BSEP), PK (0.08) and physicochemical (6.91)
toxicity contributions giving DTI 1.22 (Table 4). The physico-
chemical contribution is the largest; hERG and CYP450 inhi-
bition contributes significantly to correct toxicity prediction.
Fexofenadine (non-toxic)54 has PD on target (0.56), PD off
target (0.10, 0.0, 0.0), PK (0.05) and physicochemical (0.01) tox-
icity contributions with DTI −0.15 (Table 4).

Table 3 Summary of the correlations of DTI values with clinical outcome measures reported in various network meta-analyses of clinical trials per-
formed to analyse the relative safety and efficacy of different treatment options in following therapeutic areas

Therapeutic area Number of drugs
Clinical toxicity/efficacy outcome
(odds ratio)

Correlation of DTI values with
clinical toxicity/efficacy outcomes

Musculo-skeletal (NSAIDs) 9 GIT side effects 0.85
Antibiotics 5 Overall adverse effects 0.64
CNS-antipsychotics 13 All cause discontinuation 0.75
CNS-antidepressants 9 Response rate odds ratio −0.72
Metabolic and GIT-antidiabetics 15 Hypoglycemia −0.68
Gentio-urinary and sex 5 Frequency of adverse effects 0.84
Antiviral 10 Discontinuation due to AE 0.63

Viral suppression −0.86
Blood and blood forming agents 5 All types of strokes 0.69

Myocardial infraction 0.86
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3.10 Identifying potentially toxic and relatively safe drugs

The LiverTox website categorizes drugs based on reports of
clinically apparent liver injuries.31 This categorization along
with the literature reports was used to assess predictions made
with DTI. Since the categorizations in LiverTox are still in
active development and all drugs do not have a likelihood
score assignment or equal experience in the clinic, the assess-
ment of toxicity potentials presented here is of qualitative and
suggestive nature and is meant for retrospective analysis
(https://livertox.nih.gov/DrugCategory.html accessed on 11/11/
2018). DTI values and different PD, PK and LogD contri-
butions are with liver and other forms of toxicities.
Representative examples with high, low and average DTI values
are discussed below for musculoskeletal drugs.

Musculoskeletal category (DTI max, 1.85; min, −0.66; avg,
0.41), niflumic acid has the highest DTI value, but toxicity
information is limited. Mesalazine (DTI, 1.73) has been associ-
ated with many cases of hepatotoxicity and has a likelihood
score of C. Probenecid and Eperisone (DTI, 1.62) have been
associated with hypersensitivity reactions and Eperisone’s
safety is questionable.55 Indomethacin (DTI, 0.46) has been
associated with rare idiosyncratic hepatotoxicity and has a like-
lihood score of C. Meloxicam (DTI, −0.32) is generally found
to be non-hepatotoxic and shows only rare serum enzyme
elevations. Teriflunomide has a low DTI (−0.61), does not
show liver injuries and show only mild serum enzyme
elevations. With a likelihood score of D, it nevertheless has a
black-boxed warning due to less clinical experience. Addition
of off target (COX-1, IC50, 140 µM)1 PD contribution for
Valdecoxib increases the DTI value to 0.53. With a toxicity cut-
off >1, the musculoskeletal drugs were predicted with high
accuracy, sensitivity, and specificity (0.84). A comparison with
withdrawn drugs (DTI avg, 0.68, n = 9) shows that approved
drugs tend to have lower DTI. A similar discussion on other
drug categories is given in the ESI PDF file.†

3.11 Recently approved drugs

Telotristat ethyl has PD (on and off target) and physico-
chemical contributions to toxicity of 0.01, 0.96 (CYP450), 0.99
(hERG), 0.0 (BSEP) and 3.54 (logD), a PK contribution of

28.99, and DTI 1.54 (Table 4). This agrees with the safety data
(US-FDA approval package) where 8.4% of the patients experi-
ence serum enzyme elevations, and 66.9% showed GIT side
effects. Enasidenib, approved August 2017, has PD (on and off
target), PK and physicochemical toxicity contributions of 0.02,
0.0 (CYP450), 0.40 (hERG), 0.0 (BSEP), 0.03 and 2.84 respect-
ively and DTI 0.52 (Table 4). The US-FDA label warns of differ-
entiation syndrome and embryo-fetal toxicity. Off target inhi-
bition (UGT1A1, not considered here) has been suspected for
this toxicity.56

Brivaracetam, approved February 2018, has PD (on and off
target), PK and physicochemical toxicity contributions of 7.56,
0.0 (CYP450, hERG, BSEP), 12.79 and 0.50 respectively and DTI
1.32 (Table 4). The US-FDA label mentions hypersensitivity,
hepatic injury and adverse neurological effects, but the mecha-
nisms are unclear. PD (off target) and physicochemical contri-
butions to DTI correctly predict a lack of hepatotoxicity.
Cariprazine, approved September 2015, has PD (on and off
target), PK and physicochemical toxicity contributions 1.25,
0.0 (CYP450, hERG, BSEP), 15.23 and 0.74 respectively and DTI
1.24 (Table 4). Increased death risk, weight gain, orthostatic
hypotension, hypersensitivity, cerebrovascular, tardive dyskine-
sia, and bipolar mania were observed during clinical trials
(US-FDA approval package). Thus the toxicity of Cariprazine is
mostly related to complex pharmacological interactions; CNS
disorder management and DTI capture these toxicities.

3.12 Decision trees for using DTI in a typical drug discovery
project

Since the drug discovery usually starts with a large number of
potential candidates it is important throughout this process to
filter less efficacious or toxic candidates using a set of well
understood rules or guidelines. At present none of the avail-
able rules or guidelines can be used from the start until the
end i.e. each set of rules has its applicability domain within
different drug discovery phases. For example, Lipinski’s rule of
five, ligand/structure based methods, and LEI are extensively
used along with others in virtual screening and lead to optim-
ization stages. But these have a limited role once a candidate
enters preclinical or clinical stages where PK parameters and

Table 4 Individual toxicity contributions and DTI for drugs discussed in the main text

Drug

Toxicity contributions

DTIPD on target

PD off target

PK LogD (physicochemical)CYP450 hERG BSEP

Troglitazone (400 mg) 0.08 2.36 0.00 2.51 1.12 11.64 1.25
Troglitazone (200 mg) 0.04 0.00 1.25 1.00 1.18 5.82 0.97
Pioglitazone 0.08 0.34 0.00 1.99 0.28 0.14 0.45
Terfenadine 4.24 4.05 1.49 0.00 0.08 6.91 1.22
Fexofenadine 0.56 0.00 0.10 0.00 0.05 0.01 −0.15
Telotristat ethyl 0.01 0.96 0.99 0.00 28.99 3.54 1.54
Enasidenib 0.02 0.00 0.40 0.00 0.03 2.84 0.52
Brivaracetam 7.56 0.00 0.00 0.00 12.79 0.50 1.32
Cariprazine 1.25 0.00 0.00 0.00 15.24 0.74 1.24
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efficacy/toxicity endpoints are utilized for screening (on smaller
sets). A comprehensive approach, like the DTI presented here,
that allows a parameter’s efficacy/toxicity prediction value to be
used beyond the original application domain is likely to
increase accuracy and offer scope for deeper insights as one
moves ahead in drug discovery phases. A flowchart like decision
tree summarizing the potential application of the DTI concept
in a typical lead identification/optimization to Phase I drug dis-
covery project is given in Fig. 6 and its caption.

For example, let us consider Troglitazone (discussed in
section 3.9) as a potential candidate for development. One
begins with an unscaled LogD (3.65) contribution to DTI,
which is 28.55. Thus if a highly bioavailable formulation for
Troglitazone (OBA ≈ 1) is targeted, an oral dose of <20 mg
(0.05 mmol) would be required to keep Log D’s contribution
below 1.3. Higher doses e.g. 100 mg (0.23 mmol) lead to
higher LogD contributions, effectively reducing the flexibility

and tolerance available with other parameter ranges (since DTI
should be <1). Then the IC50 (on target; 0.98 µM) gives an
unscaled PD (on target) contribution of 0.2. Thus, as per the
DTI concept, Troglitazone’s moderate potency is not a
problem in terms of its toxicity potential. But its unscaled PD
off target contributions would add a total of 11.93. This also
constrains the dose to <20 mg to keep DTI < 1. Thus the
design question to move such a candidate into the next (pre-
clinical) phase is: can we achieve good exposure (Cfree) with
these doses and OBA constraints and maintain PK contri-
bution to DTI below 10 and ideally DTI below average for the
therapeutic area? For Troglitazone the answer is no because
larger doses are required for good exposure and a therapeutic
effect, thus increasing the molar dose and PD, PK and physico-
chemical contributions to DTI and toxicity potential. Thus,
using the DTI concept, Troglitazone can be dropped from
further development at different stages if other compounds

Fig. 6 A decision tree proposed for potential application of Physicochemical, PD (on/off target) and PK toxicity contributions and the DTI concept
in a typical small molecule drug discovery project. Ideally one would start with the structure and logD/P values for potential candidates obtained
using different hit/lead identification procedures. Candidates with physicochemical toxicity contributions > 10 can be filtered out unless scaling with
molar dose and/or oral bioavailability is likely to reduce them significantly. In silico prediction of selected compounds then gives an estimate of the
PD (on/off target) toxicity contributions. Candidates with physicochemical + PD toxicity contributions > 10 can be filtered out unless scaling is likely
to reduce them. Selected candidates can be tested in vitro and PD toxicity contributions re-estimated and candidates again filtered on the same cri-
teria. In vitro–in vivo (IVIV) extrapolations for animal or human exposure of selected candidates using PBPK modelling will give estimates of Cmax

(dose and oral bioavailability) and PK toxicity contributions. At this stage the first total DTI estimates will become available and candidates with DTI >
1 should be re-evaluated for progression to the next phase. Follow-up toxicity and efficacy studies may be useful based on a mechanistic under-
standing derived from toxicity contributions, and DTI. Preclinical studies performed on selected candidates will allow first experimental measure-
ments of DTI in animals. Candidates with DTI < 0.5 can be considered for Phase I, while those with DTI ≥ 1 ± 0.5 should be carefully reassessed
using general FDA guidelines, therapeutic area specific knowledge and risk/benefit ratio for patients. DTI and its physicochemical, PD and PK contri-
butions are intended to complement existing state-of-the-art in drug discovery and any disagreement between DTI and other approaches should be
assessed carefully considering the limitations of DTI (and other methods) before making a final decision. Blue filled boxes on the right indicate
experimental studies. Light orange color filled boxes indicate decision points based on toxicity contributions (<10) or DTI values (<1). Light green
filled boxes on the left indicate the requirement of additional cycle(s) of design and optimizations. Light red boxes on the left indicate the type of
data required and toxicity contributions that can be estimated at different time points within a drug discovery project.
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(with a similar/lower molecular weight) have lower lipophili-
city, similar on target potency, lower off target potencies
(>10 µM), good (predicted) exposures coupled with lower esti-
mates for the PD, PK contributions and DTI.

Based on the correlations discussed in “section 3.8 Relative
toxicity potential within a therapeutic area”, applications of
the DTI concept beyond Phase 1 are clear and a flowchart like
decision tree is proposed in Fig. 7 and its caption.

3.13 Limitations of the current DTI methodology

Current DTI formulation has some limitations which should
be considered during interpretation. DTI considers hepato-
toxicity arising only from lipophilicity, CYP450 and BSEP inhi-
bition. Interaction with non-CYP450 metabolic enzymes might
lead to drug–drug interactions and toxicity.57 Additional off
target7 contributions may improve the predictive performance (as
demonstrated for diclofenac, section 3.8.1), especially for drugs
with negative DTI values. The PK contribution may indirectly
compensate, but this needs to be tested. Cfree at the target has
been suggested for in vivo efficacy but such information is not
available for the majority of drugs.34 Oral bioavailability data for

59 (∼8%) compounds were not from human studies. This is un-
likely to affect the major findings, but the prediction accuracy
can improve with human data for these compounds.

Active and reactive metabolites play important roles in drug
efficacy and toxicity. But accounting for this is non-trivial since
information on the extent of metabolism, identity, and
exposure to metabolites, and their on and off target effects is
unknown. Currently, DTI doesn’t include reactive metabolite
contributions to toxicity.

The DTI concept was applied to orally administered drugs
since Cmax and bioavailability of intravenously, arterially,
intrathecally, and intracranially administered drugs may
depend on the infusion rate and the site of administration.
Topical, inhalational, rectal, vaginal, intramuscular, perito-
neal, and other routes of administrations also present
difficulty and thus were not considered. Since the PK and PD
data for investigational compounds is generally not released
before approval, the DTI concept could not be tested for them.
Nevertheless, DTI and its PK, PD and physicochemical contri-
butions are able to explain the observed clinical safety/toxicity
profiles of recently approved drugs.

Fig. 7 Physicochemical and PD toxicity contributions for candidates entering Phase I can be altered only by modification of dose and/or oral bio-
availability. PK contributions can be estimated from the Phase I Cmax and estimates of oral bioavailability. DTI and different contributions can be
interpreted with confidence in therapeutic areas with good correlation of efficacy/toxicity endpoints with DTI demonstrated in this study. Generally
candidates with DTI < 0.5 can be considered for the next phase, while those with DTI ≥ 1 ± 0.5 should be reassessed carefully. Similar thinking can
be applied during Phase II and Phase III to gain insights into the mechanisms of toxicity and propose measures to monitor and reduce them.
Applications of DTI in combination therapies, personalized dosing/therapies and drug monitoring are principally possible but need to be established
with a careful study design and data analysis. Blue filled boxes on the right indicate the data analysis required while moving to the next stage of clini-
cal trials. Light orange color filled boxes indicate decision points based on toxicity contributions (<10) or DTI values (<1).
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The DTI concept is not directly applicable to drugs with
purely physical (e.g. sorbitol and deoxycholic acid), chemical
(e.g. Clofazimine, Cyclophosphamide and Methoxsalen) or
unknown mechanisms of action (e.g. Quinacrine, Omega-3
acid ethyl esters and Stiripentol). For these drugs biological
targets are seldom well defined against which IC50 or Kd values
can be evaluated. Estimation of off target PD, PK and physico-
chemical contributions might still prove useful for under-
standing toxicity profiles.

Since artificial intelligence (AI) or machine learning
methods present unique difficulties (e.g. requirement of larger
datasets, computational time, hardware, well-defined and con-
sistent bioactivity end points) in the implementation and
interpretation of complex drug discovery data, these methods
were not applied in this study. Very few cases of AI based toxicity
predictions, directly relevant here, exist.58 Nevertheless, the
application of AI and deep learning may improve predictions;
this will be taken up in our future attempts of toxicity studies.

4. Conclusions

The DTI, an improved mathematical model, has been pre-
sented to redefine drug toxicity as biphasic and exponential
functions of typical PD, PK and physicochemical parameters.
It has been found to perform better than some of the widely
used ligand efficiency indices, drug-likeness rules, and
exposure based TIs. DTI is useful in differentiating withdrawn
drugs from nine other WHO ATC drug categories and correctly
identifies higher toxicity potential for antiviral and antibiotic
drugs. DTI correctly identifies the DILI concern with excellent–
good accuracy for different WHO ATC drug categories. It does
particularly well for CNS, Cardiovascular, Musculoskeletal and
Antiviral categories. DTI was also found to be useful in esti-
mating relative drug efficacy in eight therapeutic areas
(Antibiotics, CNS: antipsychotics and antidepressants,
Metabolic and GIT, Gentio-Urinary and Sex, Antiviral, Blood
and blood forming agents, and Musculoskeletal) with good
correlations with clinical outcome parameters. Predictions for
Antiparasitic, Systemic & Hormonal, and Blood and blood
forming agents should be interpreted cautiously due to the
lower number of drugs analyzed in these categories.
Contributions of PD, PK and physicochemical parameters to
DTI give insights for understanding drug toxicity mechanisms
and are useful for identifying potentially toxic drugs and
doses. DTI is intended to complement the LEI, LLE, classical
drug-likeness rules, lead optimization strategies and TI
heatmap grids generated during drug development. Results for
the recently approved drugs generate hope for applications in
drug discovery and therapeutic drug monitoring. Flowchart
like decision trees for the application of DTI throughout the
drug discovery process has been proposed. Limitations of the
current DTI approach must be considered during such
applications. Additional studies are required to further explore
the utility of the DTI concept in other therapeutic areas and
settings.
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