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Abstract

Single molecule trajectories of lipids and proteins can yield valuable information about the 

nanoscopic organization of the plasma membrane itself. The interpretation of such trajectories, 

however, is complicated, as the mobility of molecules can be affected by the presence of immobile 

obstacles, and the transient binding of the tracers to these obstacles. We have previously developed 

a micropatterning approach that allows for immobilizing a plasma membrane protein and probing 

the diffusional behavior of a putative interaction partner in living cells. Here, we provide 

guidelines on how this micropatterning approach can be extended to quantify interaction 

parameters between plasma membrane constituents in their natural environment. We simulated a 

patterned membrane system and evaluated the effect of different surface densities of patterned 

immobile obstacles on the relative mobility as well as the surface density of diffusing tracers. In 

the case of inert obstacles, the size of the obstacle can be assessed from its surface density at the 

percolation threshold, which in turn can be extracted from the diffusion behavior of the tracer. For 

sticky obstacles, two-dimensional dissociation constants can be determined from the tracer 

diffusion or surface density.

Introduction

Since the advent of single particle tracking in the late nineteen-eighties, researchers have 

tried to use information from the recorded single molecule trajectories to draw conclusions 

about the underlying structure of the matrix [1]. Applications include synthetic membranes 

[2–4], the cellular plasma membrane [5–11], the cytosol [12], the nucleus [13–15], but also 

inorganic films [16]. Most studies took advantage of the high precision for determination of 

single particle localizations, which is far below the optical diffraction limit [17, 18]. 

Nanoscopic regions with peculiarities in the diffusion behavior could hence be directly 

imaged [5, 10], or features were characterized from pooled analysis of multiple trajectories 

[2].

To conduct such experiments, it is necessary to faithfully track the molecule of interest (e.g. 

a protein) over several frames with a sufficiently good time resolution. This, in turn, 

necessitates specific labeling of this molecule; common labels include fluorescent proteins, 
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antibodies or antibody fragments, and scattering particles [19]. In living cells, the plasma 

membrane has become a favorite target for single particle tracking studies, partly because 

the recording of 2D compared to 3D diffusion data is much less experimentally challenging. 

For experiments, cells are typically interfaced with glass coverslips, allowing the use of total 

internal reflection fluorescence microscopy, which significantly improves signal quality due 

to background minimization.

In addition to morphological features, single molecule tracking allows for identifying co-

diffusion of different membrane proteins [20], or transient immobilizations of proteins due 

to binding to immobile interaction partners [21]. In fact, immobilizations have also 

frequently been detected using alternative techniques such as spot-variation fluorescence 

correlation spectroscopy [22, 23] or fluorescence recovery after photobleaching [24]. It 

appears as if both lipids and proteins experience multiple mobility changes during their 

excursions at the membrane surface.

The complicated nature of the plasma membrane, however, hampers straightforward 

interpretation of protein and lipid diffusion. Deviations from free Brownian motion could be 

caused by multiple reasons, which need not be related to the hypothesized mechanism. For 

example, free diffusion on curved surfaces gives rise to apparent confined diffusion; the 

artifact arises from the projection of the actual three-dimensional trajectory onto the two-

dimensional focal plane of the microscope [25]. Furthermore, partitioning into presumed 

lipid domains [20] is difficult to disentangle from other mechanisms of co-diffusion, as the 

domains are too small and too transient to be directly imaged.

In the last years, we and others have developed a method for deliberate rearrangement of 

plasma membrane proteins using a micropatterning approach [26–29]. Briefly, the surface of 

a glass coverslip is decorated with defined patterns of an antibody specific to an exoplasmic 

epitope of a membrane protein [30]. When cells are grown on such surfaces, the target 

protein in the plasma membrane (termed “obstacle”) is captured and immobilized within the 

antibody pattern. The adjustable enrichment of the obstacle then allows for quantitative 

assessment of the influence of the obstacle on the diffusional behavior of any other 

fluorescently labeled membrane protein (termed “tracer”) [27].

In this paper, we elucidate the effects of immobilized membrane proteins on the behavior of 

mobile membrane constituents with respect to their mobility and surface density in a 

micropatterning experiment. To this end, we employed Monte Carlo simulations to emulate 

two aspects, inert obstacles and sticky obstacles. Ratios between diffusion constants and 

surface densities of the probe molecules in obstacle-enriched versus -depleted regions were 

quantitatively analyzed. This study is based on investigations by Michael Saxton, who 

studied particularly the consequences of obstacles [31, 32] and binding sites [33] on 

anomalous subdiffusion. We focused here on the effects observed under ideal conditions and 

did neither consider sample heterogeneities nor localization errors [34], which may affect 

real-life experiments.
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Methods

Obstacles masks were generated by random distribution of circular discs with radius R on 

quadratic binary arrays using MATLAB (R2013b, The MathWorks Inc., Natick, MA). 

Overlapping of individual circular discs was permitted, yielding arbitrarily shaped patterns 

of excluded area. The density of obstacles was measured either as the number density ρ or 

relative covered area C. Off-lattice random walks of tracers were simulated in MATLAB on 

a standard personal computer. The random walk was simulated by successive displacement 

of a point tracer for a defined length l at a random angle ϕ [35]. Tracers were placed on 

random positions within the accessible area, from where they started their random walk. For 

all scenarios, diffusional paths were simulated in parallel for N tracer molecules and 

interaction between different tracers was not allowed.

After each simulated step, tracer-obstacle overlap was interrogated by approximating the 

tracer positions to discrete pixel indices, which were then tested against the pixelated 

obstacle mask. In case of inert obstacles, a tracer that had moved into a pixel with value 1 

(obstacle) at the time point t + Δt was set back to its initial position at time point t and 

allowed to continue its diffusional motion with the next step. In case of binding, an 

additional query was introduced: with a binding probability pbind the tracer molecule was 

transferred into a bound state and immobilized at its position at time point t. In each 

consecutive step, bound tracers were allowed to continue their random walk with the 

unbinding probability punbind. The relation between punbind and the average bond lifetime τ 
is given by punbind = Δ t

τ .

Masks for evaluating the effects of obstacles on tracer diffusion were 6,000 × 6000 pixel and 

contained obstacles with a radius R = 20 pixel. This pixelation was chosen to approximate 

circular obstacles reasonably well. The diffusion constant in areas without obstacles (“OFF”-

regions) DOFF was unaffected by the presence of obstacles in areas containing obstacles 

(“ON”-regions) and therefore equivalent to free diffusion (Fig. 1A). The tracer step length 

was set to l = 1
40 ⋅ R = 0.5 pixel, which is reasonably small compared to the obstacle size and 

the free space between obstacles; the number of simulated tracers was set to N=10,000. In 

case of sticky obstacles, the system was allowed to equilibrate before recording the 

trajectories. Plotting the fraction of bound molecules versus the number of simulated steps 

allowed to choose an appropriate equilibration time of 106 steps (Fig. 1B).

Trajectories were analyzed by interrogating the tracer position r t  every n steps; n thus 

defines the delay time between two consecutive observations via tdelay = n · Δt. Square 

displacements and mean square displacements (msd) were calculated via 

r2 tlag = r t + tlag − r t 2
 and msd tlag = r2 tlag , respectively, for a large range of 

delays and time lags tlag. We typically varied tlag in a range of tdelay < tlag < 50 · tdelay (Fig. 

1F). Different delay times were tested by varying the number of steps from nmin = 102 to 

nmax = 106. To reduce computation time, the number of simulated tracers was reduced to N 
= 5,000 for larger delays corresponding to high numbers of steps (n = 105 and n = 106). To 
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analyze the effects of continuous sample illumination, tracer positions were recorded by 

averaging over all n steps.

In contrast to the diffusion DOFF, the surface density of tracers in OFF-regions ρOFF is 

expected to be affected by the presence of obstacles in ON-regions because the overall 

number of tracers N = NON + NOFF is kept constant. Thus, we used masks consisting of a 

square field with a given obstacle surface density and a surrounding area without obstacles 

(Fig. 1C). Both, for simulations with inert and sticky obstacles, binary masks of the size 

2,000 × 2,000 pixel containing obstacles with radius R = 20 pixel were used and the number 

of simulated tracers was set to N = 10,000. The tracer step length was set to 

l = 1
40 ⋅ R = 0.5 pixel . Before interrogating the surface densities of tracers, equilibration of 

the system was assessed (Fig. 1D and E).

According to Saxton [32] the situation of circular obstacles and tracers with radii Robs and 

Rtrac, respectively, can be simplified by assuming point tracers diffusing through a course of 

obstacles with modified radius R = Robs + Rtrac. In our previous micropatterning 

experiments [27] on CD59 diffusing in an obstacle course of immobilized mGFP-GPI we 

found a tracer radius of Rtrac = 2.5 nm and an obstacle radius of Robs = 1.25 nm. To make 

the simulations comparable with our previous experimental findings, we used here point 

tracers and obstacles with a radius R = 4 nm. The tracer diffusion constant in the absence of 

obstacles was set to DOFF = 0.25 μm2/s which agrees with free CD59 mobility in T24 cells 

at room temperature [27]. The average delay time corresponding to a single simulated step, 

Δt, can thus be related to the single step length via Δ t = l2
4DOFF

= 10−8s . Periodic boundary 

conditions were used for all simulated scenarios.

Results

We were interested in the behavior of molecules moving on matrices that consist of two 

distinct regions: a square containing the micropattern (“ON”-region), and a ring around the 

square containing the undisturbed membrane (“OFF”-region; see Fig. 1). To study the 

random walk, we employed off-lattice Monte Carlo simulations: in all simulations, tracers 

were distributed uniformly over the accessible space, where they started their random walk. 

With time, the surface densities of tracers equilibrated, as assessed by plateaus in ON- and 

OFF-surface densities; the recording of trajectories was started after the equilibration phase. 

We characterized the different simulation scenarios by two experimentally accessible figures 

of merit:

i) The mobility ratio reports on changes in tracer diffusion behavior due to the 

presence of obstacles. Unless noted, we determined the diffusion constants in the 

ON-regions, DON, by analysis of the mean square displacement (msd) as a 

function of the time lag (tlag) according to D = msd
4tlag

. The diffusion constant in 

the OFF-region, DOFF, is undisturbed and hence assumed to be known.

ii) The surface density ratio measures whether tracers get enriched or depleted in 

response to increasing surface densities of obstacles. For this, we determined the 
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number of ON-localizations (NON) and OFF-localizations (NOFF) divided by the 

total ON- and OFF-area (AON and AOFF, respectively), yielding the tracer 

surface densities ρON = NON/AON and ρOFF = NOFF/AOFF. Throughout this 

paper, we specify obstacle concentrations by number density, ρ, or by area 

coverage, C. Area coverage can be converted to number density by C = ρπR2 

(non-overlapping obstacles) or C = 1 − exp(−ρπR2) (overlapping obstacles), 

with R being the radius of the obstacle [36]; the two expressions get identical for 

C ≪ 1. We also calculated the tracer surface density in accessible parts of the 

ON-regions by ρON,acc = NON/AON,acc. Note that this parameter usually cannot 

be determined experimentally.

Inert obstacles

First, we addressed the question how inert immobile obstacles in ON-regions affected tracer 

mobility. Therefore, we randomly added increasing numbers of impenetrable circular 

obstacles, which were allowed to overlap, to the ON-region. At a low obstacle concentration, 

continuous paths exist for the tracers to move over long distances. With increasing density, 

however, such movements are impeded, until – above the percolation threshold – long range 

paths are completely blocked. Since the percolation threshold is controlled by the excluded 

area experienced by the tracers, the obstruction of a tracer of radius R by point obstacles is 

equivalent to the obstruction of a point tracer by obstacles of radius R; even more so, we can 

reduce the general scenario of obstacles with radius Robst and tracers with radius Rtrac to the 

scenario of point tracers moving through a course of obstacles with radius R = Robs + Rtrac 

[32]. For overlapping discs and moving point tracers, the percolation threshold is known and 

given by an area coverage CP ≈ 0.676 [37], which translates to an obstacle radius 

R = 1
πρP

−ln 1 − CP ≈ 0.6/ ρP, with ρP the number density of obstacles at the percolation 

threshold [32].

We confirmed simulations by Michael Saxton [31], which revealed anomalous subdiffusion 

according to msd ∝ tlag
α , with α < 1, over three orders of magnitude in tlag. In Fig. 2A we 

plotted the tlag-dependence of DON /DOFF = msd
4 ⋅ tlag ⋅ DOFF

∝ tlag
α − 1 for various obstacle 

densities C. Free diffusion hence corresponds to constant DON/DOFF, anomalous 

subdiffusion to negative slopes. For tlag → 0, our simulations yield convergence to 

unhindered diffusion with mobility DOFF. Also for tlag → ∞ diffusion becomes Brownian, 

yet with reduced mobility. In between, diffusion is anomalous, particularly for high obstacle 

densities. The limit tlag → ∞ reflects the situation typically accessible in experiments. 

Plotting DON/DOFF at tlag → ∞ yields a rather linear behavior with DON/DOFF(tlag → ∞) 

= 1 − C/CP (Fig. 2B), as also observed in our previous experimental study [27]. Note a slight 

but notably increased mobility ratio compared to the linear model, particularly at 

intermediate surface coverage, which was also observed by Saxton [31].

Some researchers use step size distributions for an in-depth analysis of single molecule 

trajectories [2, 38–40]. The rationale is simple: if there are two independent fractions of 

tracers with different mobility, the two fractions can be disentangled by analyzing the full 
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distribution functions instead of their means. In 2D, the cumulative density function (cdf) of 

the squared displacements for free diffusion is given by cd f r2 = 1 − exp r2
4Dtlag

 [2]. If there 

are imax subfractions, the cdf becomes cd f r2 = 1 − ∑i
imaxαi ⋅ exp r2

4Ditlag
, where αi and Di 

denote the statistical weight and diffusion coefficient of subfraction i, respectively. We have 

previously pointed out, however, that the problem cannot be simply inverted: deviations 

from a mono-exponential function do not necessarily imply the presence of multiple 

fractions of particles with different mobility [35]. Hence, we were interested whether the 

presence of inert obstacles would change the shape of the cdf. Interestingly, there was no 

observable deviation from a mono-exponential function over the whole range of time lags 

studied (Fig. 3A); even in cases of strong anomalous diffusion (tlag = 10−1ms) we found no 

effect.

It is known that movement during illumination affects the observed step sizes of single 

molecule trajectories, with the following consequences: i) free diffusion yields an offset in 

the dependence of msd on tlag according to msd = 4D tlag − 1
3 till , with till denoting the 

illumination time [41]; ii) confinement sizes appear reduced, as the observed trajectories 

collapse around the center of each corral [9, 42]. We were thus interested, whether and how 

the observed diffusion parameters were affected by movement during illumination. We 

simulated five groups of data with a given illumination time till = tdelay, i.e. the illumination 

light source is assumed to be constantly on; tdelay was set to 1μs, 10μs, 100μs, 1ms, and 

10ms (Fig. 4). As expected, all diffusion coefficients were underestimated when calculating 

D according to D = msd
4tlag

, in consequence of the described offset (Fig. 4A. In a real life 

experiment, researchers commonly determine diffusion coefficients from the slope of msd 
versus tlag, so that offsets should not have consequences on the obtained results [43]. Hence, 

we modified our calculation of the diffusion constant D by calculating the slope D = Δmsd
4Δtlag

,

where Δmsd = msd(tlag) − msd1 is the difference between msd at time point tlag and msd at 

the first data point; Δtlag is the corresponding difference in time lags. Comparison of the data 

with results obtained for till = 0 yielded a much better approximation of the free mobility 

(Fig. 4B). The described effects, however, affect tracers both in ON- and OFF-regions. 

Indeed, mobility ratios 
DON

DOFF
 are hardly influenced by illumination effects, both when 

calculating diffusion constants by D = msd
4tlag

 (Fig. 4C) or via slopes (Fig. 4D). Also here, the 

cdfs did not yield substantial deviations from a mono-exponential behavior (Fig. 3B).

We next tested the effect of inert obstacles on the tracer surface density ratio 
ρON

ρOFF
. Due to 

size exclusion effects, the tracer density in the obstacle field was reduced according to 
ρON

ρOFF
= 1 − C (Fig. 5). In other words, the tracer density within the accessible region of the 

obstacle field was identical to the tracer density outside the obstacle field. The reduced 
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surface density can also be interpreted as consequence of reduced particle flux into the 

obstacle field, which scales with obstacle surface coverage.

The cellular plasma membrane usually contains a substantial fraction of immobilized 

proteins, which act as natural constitutive obstacles to the motion of the tracers [24]; their 

surface coverage shall be given here by Cconst. Consequently, the experimentally adjusted 

density of immobile obstacles C′ may be smaller than the total obstacle density C = Cconst + 

C′. The presence of constitutive obstacles in both the ON- and the OFF-region leads to 

further reduction of the measured mobility ratio DON/DOFF = 1 − C′/CP′ by a virtual 

reduction of the percolation threshold CP′ = CP − Cconst (Fig. 6). This is due to the fact that 

the constitutive obstacles and those introduced in the experiment add linearly to the total 

area covered by obstacles. Contrary to this, there is no effect on the number density ratio 
ρON

ρOFF
= 1 − C′ .

Inert obstacles plus binding

In a cell, interactions between the membrane constituents may further complicate the 

diffusion behavior. We consider here a scenario, in which obstacles bind and hence retard the 

tracers. In our model, each collision of a tracer with an obstacle leads to a binding event with 

the probability pbind. In case of binding, a lifetime is drawn from an exponential distribution 

(tbound), and the tracer is halted for the according time period before it is released again. In 

between two consecutive binding events, tracers diffuse for a time tfree; note that this 

parameter cannot be freely adjusted and depends on obstacle concentration and shape, on the 

binding probability pbind, and – in principle – on the degree of saturation of the binding. In 

our model, we assumed non-saturating binding conditions. It is known that initial conditions 

have a strong influence on the average tracer mobility in case of binding [33]; we hence 

ensured equilibration of the tracers before recording the trajectories.

As expected, tracer mobility was reduced with increasing binding probability pbind and 

obstacle concentration C (Fig. 7). The shapes of the curves appear fairly similar, only the 

transition between fast and slow diffusion shifts to longer time lags with increasing binding 

probability. We also checked the effects of obstacle concentration on the mobility ratio. 

Essentially, the presence of obstacles influences the diffusional motion in two ways: by 

obstruction and by binding. The two effects factorize, yielding 
DON

DOFF
= 1 − C

CP
1 − K ,

where K =
tbound

tbound + t f ree
 denotes the bound fraction of tracers. Solving the full binding 

model is straightforward and allows for calculating K as function of the surface densities C, 

ρ, and the two-dimensional dissociation constant KD =
kOFF
kON

, where kON and kOFF denote 

the forward and reverse reaction rate constants (see e.g. Eq. 1 in the supplements to [21]). 

The model simplifies under the assumption of low tracer surface densities (ρ ≪ KD); in 

other words, binding competition between individual tracers is neglected. In this case, we 
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obtain K ≈ c
KD + c

 and thus 
DON

DOFF
≈ 1 − C

CP
1 − C

KD + C
; here, we introduced the 

dimensionless variable KD = KD/πR2 . In contrast to the case of inert obstacles, the mobility 

ratio approaches zero at the percolation threshold in a highly nonlinear way (Fig. 8A). Also 

in the density ratio, the contributions of obstruction and binding factorize. Retardation leads 

to an increase in the surface density by a factor 
tbound + t f ree

t f ree
= 1 − K −1 and thus 

ρON
ρOFF

= 1 − C 1 − K −1 ≈ 1 − C 1 − c
KD + c

−1
 (Fig. 8B). The fitted KDs, determined via 

the mobility and the surface density ratios, in good agreement for all tested pairs of binding 

and unbinding probability.

Finally, we also checked the cdfs for KD = 0.05 for deviation from mono-exponential 

behavior in the case of binding (Fig. 9). Indeed, we observed strong effects for time lags 

shorter or equal to the bond lifetime. For tlag ≪ τ, a clear bimodal distribution is observable, 

with the immobile fraction corresponding to K ≈ 0.89, consistent with the obtained 

KD ≈ 0.05 for the chosen settings (Fig. 9A). This reflects a situation where molecules are 

either bound or free during the recorded step. With increasing time lag, the distributions blur 

(Fig. 9B), until hardly any separation can be observed at tlag ≫ τ, yielding a mono-

exponential function with decreased average mobility (Fig. 9C).

Discussion

We have described here the effects of immobilized obstacles on the two-dimensional 

diffusion and surface density of mobile tracers. The underlying idea is to use such surfaces 

for quantifying interaction parameters between plasma membrane constituents in their 

natural environment. In the following, we briefly describe how to design the according 

experiment. Here, we put the focus on the experimental design in view of subsequent 

analysis for binding and obstacle size. The reader is referred to other review articles for a 

detailed explanation of the micropatterning assay itself [30, 44].

For quantitative data analysis, the surface density of the immobilized obstacles must be 

determined. If the obstacle is labeled at a known degree of labeling (dol), fluorescence 

microscopy allows for calculating the obstacle signals from the ON- and OFF-regions, 

FON
obstacle and FOFF

obstacle, respectively. The fluorescence intensity originating from immobilized 

obstacle obstacles in the ON-region is given by FON, im
obstacle = FON

obstacle − FOFF
obstacle . From the 

brightness of a single dye molecule, F0
bait, the surface density can be calculated according to 

ρON, im
obstacle = FON, im

obstacle
dol ⋅ F0

obstacle . Captured obstacle proteins on the cell surface can be 

considered as non-overlapping obstacles. Hence, the surface coverage by obstacles is 

linearly proportional to the obstacle density and given by CON, im
obstacle = ρON, im

obstacle ⋅ πR2, with a 

priori unknown obstacle radius R.
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Next, single molecule microscopy is used for tracking fluorescently labeled tracers both in 

ON- and OFF-regions of the micropatterned area. Diffusion coefficients DON and DOFF can 

be obtained e.g. by determining the slope of the respective msd as function of tlag from 

msd = 4D tlag − 1
3 till + 4σ2 (σ denoting the localization errors) [43]. To reduce deviations, it 

is recommended to use only the first two data points of the msd plots [43]. Delay and 

illumination times have to be optimized to balance conflicting demands. Illumination times 

should be short enough to reduce photobleaching effects, but long enough to yield good 

visibility of the signals. Delays should be short enough to allow for good trackability, but 

long enough to ensure that the transition to free diffusion has been reached. The latter point 

gets clear from Fig. 2: if tlag was chosen too short, the system would show anomalous 

subdiffusion, which would yield – when fitted with a model for diffusion – diffusion 

coefficients biased towards higher values. Hence, the effects of obstacles would be 

underestimated.

In the case of inert obstacles, plotting DON/DOFF versus ρON, im
obstacle thus allows for determining 

the obstacle density at the percolation threshold ρP, and the obstacle size from 

Robst + Rtrac ≈ CP/ πρP . We have used this approach previously to estimate the apparent 

size of a GPI-anchored protein as experienced by protein and lipid tracers [27].

For the determination of the tracer surface densities ρON
tracer and ρOFF

tracer one can essentially 

count all recorded single molecule localizations, split them according to masks obtained 

from the obstacle protein images, and divide the obtained numbers by the respective areas. 

To ensure that the obstacle-tracer interaction is not saturated in case of binding, it is 

recommended to select for cells with low tracer expression levels.

In the case of binding, KD can be determined from either relative tracer surface density or 

diffusion. In the latter case, CP needs to be determined in a separate experiment with a non-

binding tracer of the same size.
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Table of used variables

AON, AOFF

Total area of the obstacle course and remaining area, respectively

AON,acc

Sub-area of the obstacle course that is accessible for tracer molecules

α
Anomalous diffusion exponent

cdf
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Cumulative density function

C
Relative area coverage by obstacles

CP

Percolation threshold in measures of relative area coverage

Cconst

Relative area covered by constitutive immobile obstacles

C′
Relative area coverage of obstacles adjusted by the user

CP′

Virtual percolation threshold in measures of relative area coverage

CON, imm
obstacle

Relative area coverage by immobile obstacle molecules inside of obstacle course

dol
Degree of labeling

DON, DOFF

Diffusion constant inside and outside of obstacle course

FON
obstacle, FOFF

obstacle

Fluorescence signal of obstacle molecules inside and outside of obstacle course, respectively

FON, imm
obstacle

Fluorescence signal of immobilized obstacle molecules inside of obstacle course

F0
obstacle

Fluorescence signal of a single dye-labeled obstacle molecule

ϕ
Direction of tracer step

kON, kOFF

Forward and backward rate constants for binding between tracers and obstacles, respectively

K
Bound fraction of tracer molecules

KD

2D dissociation constant
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KD

Dimensionless 2D dissociation constant; related to obstacle radius via KD = KD/πR2

l
Tracer steplength

msd(tlag)
Mean square displacement during time interval tlag

msd1

Mean square displacement at tlag = 1 · tdelay

Δmsd
Difference between mean square displacements

N
Number of tracer molecules

NON, NOFF

Number of tracer molecules inside and outside of obstacle course, respectively

n
Number of simulated steps between two consecutive observations

pbind

Probability of binding upon tracer-obstacle contact

punbind

Probability of unbinding for bound tracer molecules

R
Radius of obstacles in pixels

Robs

Radius of obstacles in nm

Rtrac

Radius of tracers in nm

r (t)
Tracer position at time point t

r2

Tracer square displacement

ρ
Number density

ρON, ρOFF
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Number density of tracer molecules inside and outside obstacle course, respectively

ρON,acc

Number density of tracer molecules in accessible subarea inside obstacle course

ρP

Number density of obstacles at percolation threshold

ρON, imm
obstacle

Number density of immobile obstacle molecules inside of obstacle course

ρON
tracer, ρOFF

tracer

Number density of tracer molecules inside and outside of obstacle course, respectively

σ
Localization error

Δt
Time interval corresponding to one simulated trace step

tbound

Binding lifetime of an individual tracer molecule

tfree

Time of free diffusion for a tracer molecule in a course of sticky obstacles

tdelay

Time interval between two consecutive observations

tlag

Multiples of tdelay; varied in the range tdelay < tlag < 50 · tdelay

Δtlag

Difference between different time lags

till
Illumination time

τ
Average binding time
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Figure 1. Obstacle masks and equilibration criteria.
(A) A 2000 × 2000 pixel detail of an obstacle mask used for simulations to determine DON 

at C = 0.22. (B) Fraction of tracers bound to obstacles as a function of equilibration time t. 
(C) Obstacle mask used for simulations to determine the ratio of tracer density ρON/ρOFF. (D 
and E) Surface densities of tracers outside the obstacle field ρOFF (dark gray), inside the 

obstacle field ρON (black) and in the accessible area of the obstacle field ρON,acc (light gray) 

plotted as a function of equilibration time t for inert (D) or sticky (E) obstacles at C = 0.22. 

(F) Schematic representation of the relationship between simulated steps, tdelay and tlag.
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Figure 2. Tracer diffusion at different concentrations of inert obstacles.
(A) Ratio of diffusion constants in the presence (DON) and absence (DOFF) of inert obstacles 

as a function of time lag for various obstacle densities C (grayscale color code). (B) Mobility 

ratios DON/DOFF (tlag → ∞) are plotted as a function of the obstacle concentration C. DON 

was measured at tlag = 200ms, tlag = 300ms, tlag = 500ms for obstacle concentrations of C ≤ 

0.14, C = 0.18 and C ≥ 0.22, respectively. In grey we show the linear relation DON/DOFF = 1 

– C/CP.
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Figure 3. Step size distribution analysis of tracer diffusion in the presence of inert obstacles.
(A) Cumulative density functions of square displacements cdf(r2, tlag) are shown as semi-log 

plots of 1 – cdf versus square displacement at C = 0.39 for various time lags. (B) Same as in 

(A) but under conditions of continuous illumination with till = tdelay. Curves for till = 0 are 

plotted in gray for comparison.
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Figure 4. Effect of continuous illumination on relative tracer diffusion.
All simulations were performed at an obstacle density of C=0.39 (inert obstacles). Either no 

illumination (till = 0; open circles) or continuous illumination (till = tdelay; cross) was 

simulated. (A, B) show the ratios of diffusion constants DON/Dfree, (C, D) the ratios DON/

DOFF. In (A) and (C), mobility was calculated according to D = msd/(4tlag), in (B) and (D) 

according to D = Δmsd/(4Δtlag), where Δmsd = msd(tlag) – msd1.
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Figure 5. Tracer surface density in the presence of inert obstacles.
The decrease in tracer surface density in ON-regions ρON is fully explained by size 

exclusion due to the presence of obstacles. The grey line shows the linear decrease ρON/ρOFF 

= 1 – C.
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Figure 6. Effect of constitutive obstacles.
The sketch shows the experimentally accessible determination of CP′ , where black circles 

indicate exemplary data points. The linear extrapolation used to determine the percolation 

threshold is shown as a gray line. Cconst corresponds to the concentration of additional 

constitutive obstacles present in a live cell experiment. C and C' denote the real obstacle 

concentration (as used in simulations) and the experimentally determined obstacle 

concentration, respectively.
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Figure 7. Tracer diffusion in the presence of sticky obstacles.
Ratio of diffusion constants in the presence (DON) and absence (DOFF) of sticky obstacles as 

a function of time lag. (A) Binding was simulated for various obstacle concentrations C 
(grayscale color code) with a binding probability pbind = 0.1 and an average binding time of 

τ = 0.1ms. (B) Curves for different binding probabilities pbind for C = 0.31 are plotted.
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Figure 8. Determination of dissociation constants from tracer diffusion and surface density.
Binding was simulated with a binding probability pbind = 0.1 and three different average 

binding times of τ1 = 0.025ms (Δ), τ2 = 0.1ms (○), τ3 = 0.2ms (□), which correspond to 

dissociation constants KD, 1 ≈ 0.2, KD, 2 ≈ 0.05 and KD, 3 ≈ 0.03, for τ1, τ2 and τ3, 

respectively. Mobility ratios DON/DOFF at tlag = 200ms (A) or ρON/ρOFF (B) are plotted as a 

function of area fraction covered by obstacles. The fits (gray lines; models described in the 

main text) are in good agreement with simulated data; fit results are provided in the figures.
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Figure 9. Step size distribution analysis of tracer diffusion in the presence of sticky obstacles.
Binding was simulated with a probability pbind = 0.1 and an average binding time of τ = 

0.1ms. Cumulative density functions of square displacements cdf(r2, tlag) are shown as semi-

log plots of 1 – cdf versus square displacement at C = 0.39. Curves obtained from 

simulations with inert obstacles are plotted in gray for comparison.
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