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ABSTRACT: BackgroundBackground: Huntington’s disease (HD) is characterized by chorea, balance and gait impairments,
and cognitive deficits, which increase fall risk. Dual task (DT) and environmentally challenging paradigms reflect
balance related to everyday life. Furthermore, the impact of cognitive deficits on balance dysfunction and falls
in HD is unknown.
ObjectiveObjective: To determine the impact of DT interference, sensory feedback, and cognitive performance on
balance and falls in HD.
MethodsMethods: Seventeen participants with HD (55 � 9.7 years) and 17 age-matched controls (56.5 � 9.3 years)
underwent quantitative balance testing with APDM inertial sensors. Postural sway was assessed during
conditions of manipulated stance, vision, proprioception, and cognitive demand. The DT was a concurrent
verbal fluency task. Neuropsychological assessments testing multiple cognitive domains were also
administered.
ResultsResults: HD participants exhibited significantly greater total sway area, jerk, and variability under single-task
(ST) and DT conditions compared to controls (P = 0.0002 – <0.0001). They also demonstrated greater DT
interference with vision removed for total sway area (P = 0.01) and variability (P = 0.02). Significantly worse
postural control was observed in HD with vision removed and reduced proprioception (P = 0.001 – 0.01).
Decreased visuospatial performance correlated with greater total sway and jerk (P = 0.01; 0.009). No balance
parameters correlated with retrospective falls in HD.
ConclusionsConclusions: HD participants have worse postural control under DT, limited proprioception/vision, and greater
DT interference with a narrowed base and no visual input. These findings may have implications for designing
motor and cognitive strategies to improve balance in HD.

Introduction
Huntington’s disease (HD) is a progressive, autosomal dominant,
neurodegenerative disease caused by an expanded CAG repeat
(>40) in the gene for the huntingtin protein (HTT). Motor sys-
tem involvement in HD typically begins with incoordination
and progresses to chorea, rigidity, and akinesia. Neuronal death
in the striatal division of the basal ganglia1 causes chorea, the
hallmark motor deficit in HD,2 resulting in gait and balance
dysfunction, falls, and morbidity.3,4 The basal ganglia also helps

integrate proprioceptive, visual, and vestibular signals critical for
maintaining balance.5 Balance impairments in HD are thus
highlighted by difficulty utilizing sensory cues to maintain pos-
tural control.6 The striatum also plays a role in cognition via net-
works with the prefrontal cortex.7 Cognitively, HD patients
have difficulty holding, shifting, and dividing their attention and
struggle when responding to multiple stimuli simultaneously,8,9

which may further exacerbate motor deficits.
Dual-task (DT) cognitive-motor paradigms are used to

evaluate difficulty-dividing attention between multiple tasks,
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movement automaticity, and the effects of cognitive interference
on motor tasks.10,11 As HD progresses, automaticity changes,
such that previously automatic tasks, including walking or balan-
cing require increased cognitive resources.12–14 Ultimately, this
progressive neurodegeneration increases fall risk in HD.8,13 The
loss of automaticity in HD is also seen with fine motor skills.15

However, a prior DT study utilizing a circle-tracing task did
not find significant cognitive interference on the speed of this
task in HD.16

Patients with HD show the greatest cognitive deficits in the
domains of executive function, processing speed, attention,
visuospatial ability, and short-term memory.14,17,18 In other
movement disorders, such as Parkinson’s disease (PD) and multi-
ple sclerosis (MS), cognitive deficits negatively impact balance
and gait, leading to falls and progressive disability.19,20 Further-
more, current understanding of postural control suggests it is an
active process, requiring attentional resources.21 Previous studies
found HD participants demonstrate decreased gait speed,
cadence, and stride length while dual-tasking.13,22 However, the
extent to which dual-tasking and cognitive deficits exacerbate
balance dysfunction in HD is unknown.

Previously, difficulties in DT gait performance were associated
with increased falls in PD23 and HD.22 We hypothesize that DT
balance assessments and knowledge of how cognition impacts
balance will provide important information about fall risk in
HD. DT training programs have shown success in enhancing
gait, balance, and cognitive processing while reducing fall risk in
the elderly and in PD.24–26 Therefore, this study could lead to
treatment interventions targeted at motor and cognitive impair-
ments in HD. The goals of this study were to: (1) determine the
impact of altered sensory input, stance, and DT cognitive inter-
ference on postural control in HD; (2) identify which cognitive
deficits might be associated with balance deficits and falls in HD;
and (3) examine whether challenging balance conditions, includ-
ing the DT, are associated with a retrospective history of falls in
HD participants.

Methods
Study Participants
HD participants were recruited from the Rush University Medi-
cal Center (RUMC) Movement Disorders HD clinic; age- and
sex-matched healthy controls were recruited from the RUMC
community or friends of the HD participants. Inclusion criteria
were, (1) clinical diagnosis of HD by a movement disorders/HD
expert (JGG) for HD participants,27,28 (2) >21 years of age,
(3) ability to stand unsupported for ≥30 seconds, (4) ability to
ambulate without an assistive device, and (5) the ability to follow
protocol-specific directions as confirmed by a family member
and/or caregiver. Participants diagnosed with juvenile HD, those
who had lower limb orthopedic surgery within the past year, or
those who had any additional neurological or musculoskeletal
disorders negatively affecting balance were excluded from the
study. The exclusion criteria for controls were the same, but also

excluded individuals with cognitive impairment. Participants
were classified as having a choreatic, hypokinetic-rigid, or mixed
phenotype as previously described.29 All participants provided
informed consent in accordance with the RUMC Institutional
Regulatory Board.

Postural Sway Assessments
Quantitative balance analysis under single task (ST) and dual task
(DT) conditions was performed using the well-validated, reliable
inertial sensor instrumented SWAY (i-SWAY) system with
balance metrics generated by Mobility Lab Software.30,31 An
Opal wearable inertial sensor was placed at the lumbar spine
(L5), the approximate center of mass location.31 Participants
performed i-SWAY trials under increasingly difficult ST and DT
conditions. Participants were asked to stand still for 30 seconds,
barefoot, hands at their sides, and heel-to-heel distance set at
25 cm for those whose height was <165 cm, and 30.5 cm for
those >165 cm, in accordance with the Neurocom Smart
Balance Master system protocol, another quantitative, validated
balance measurement system.32 The main outcome variables
selected for analyses were: (1) 95% ellipse sway area (m2/s4),
(2) root mean square (RMS) sway (m/s2), and (3) jerk (m2/sec5).30

These variables were selected a priori out of 33 APDM-generated
variables because these have been found to be sensitive measures
of balance dysfunction in other movement disorders30,31,33 and
have good-to-excellent reliability.31 A detailed description of
selected sway variables are included in Supporting Table 1. Pos-
tural sway was assessed under various conditions of stance (feet
apart/together), support surface (firm/on foam; foam pad was a
Balance-pad Elite), and visual input (eyes open/closed), as well as
with or without DT. The extent of DT interference, or the dual-
task cost (DTC) in balance performance was defined as DTC
(%) = (DT-ST/ST)*100, as previously described.34 The ST condi-
tions were based on the Modified Clinical Test of Sensory
Integration in Balance (CTSIB-M), which is used clinically to
determine aberrant sensory-motor integration.35 The DT consisted
of a simultaneous verbal fluency task (the Controlled Oral Word
Association test, COWAT36), each with different letters for firm
surface conditions. In the DT conditions, no instructions were
given on which task to prioritize. The trials were conducted in a
non-random order with increasing difficulty. Participants were
carefully monitored during all trials for safety by the study investi-
gator (NLP), standing directly next to the participant during the
entire testing protocol.

Neuropsychological, Balance,
and Clinical Rating Scale
Assessments
Cognitive function was assessed with the following tests:
(1) Montreal Cognitive Assessment (MoCA; global cognition)37;
(2) Digit Span forwards, backwards, and sequencing (WAIS-IV)
(attention and working memory)38; (3) Symbol Digit Modalities
Test (SDMT; information processing speed)39; (4) Consortium
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to Establish a Registry for Alzheimer’s disease (CERAD word list
memory with delayed recall; memory)40; (5) Judgment of Line
Orientation (JLO; visuospatial perception)41; and (6) animal
naming (verbal fluency).42 This cognitive battery was chosen
because it spans multiple cognitive domains known to be defi-
cient in HD. The Unified Huntington’s disease Rating Scale
motor section was administered by a movement disorder/HD
neurologist (JGG) and provided a total motor score (UHDRS-
TMS).27 Participants were asked to self-report the number of
falls they had in the past 12 months. They were also administered
the Berg Balance Scale (BBS)43 and the Activities-Specific
Balance Confidence Scale (ABC)44 to obtain functional
performance-based balance information and determine partici-
pant’s perception of their balance impairment.

Statistical Analyses
Clinical characteristics were compared between HD participants
and healthy controls using two-tailed Student t-tests for paramet-
ric and normally distributed measures, or the Mann-Whitney U
test for variables that were not continuous or did not have nor-
mal distributions. Differences in i-SWAY variables under ST and
DT conditions and the DTC for each of the primary outcome
variables between HD participants and healthy controls were
examined with the same statistical tests. Bonferroni corrections
were applied to account for multiple conditions/outcomes on
the i-SWAY (adjusted P value ≤0.0017). A two-way mixed
ANOVA with Bonferroni corrections was performed with the

within-patients factor being the four conditions of the CTSIB-
M: (1) feet apart/eyes open/firm (AOF), (2) feet apart/eyes
closed/firm (ACF), (3) feet apart/eyes open/foam (AOFo), and
(4) feet apart/eyes closed/foam (ACFo) and a between-patients
factor of group (controls versus HD).

Correlations between i-SWAY measures and cognitive test
scores, UHDRS-TMS, ABC, BBS, and retrospective falls were
examined in the HD group using Spearman’s rho. The statistical
significance for these comparisons was set at P = 0.05 given the
exploratory nature of this work, the large number of variables
tested, and correlations performed to reduce overlooking poten-
tial significant relationships due to Type II errors.

Results
Participant Characteristics
Seventeen individuals with HD and 17 age-matched controls
participated in the study. Demographic and clinical features of
the participant groups are in Table 1. UHDRS-TMS ranged
from seven to 39 with seven participants in the seven to
20 group, and nine in the 21 to 40 group. Eight HD participants
were mixed phenotype, four choreatic and four hypokinetic-
rigid, with one participant not having a UHDRS-TMS
recorded. HD participants scored significantly worse than con-
trols on measures of global cognition (MoCA, P = 0.0009),
response inhibition (stroop, P = 0.007), processing speed

TABLE 1 Participant characteristics

Health controls Huntington’s disease
(n = 17) (n = 17)

Age (years) 56.47 � 9.30 (37-69) 55 � 9.66 (36-67)
Sex 8 Females, 9 Males 7 Females, 10 Males
BMI (kg/m) 26.29 � 5.22 (20.8-37.8) 24.68 � 3.79 (17.80-31.00)
Years of education 16.59 � 2.82 15.59 � 2.67
UHDRS-TMS ---- 21.86 � 9.86 (7-39)
Trunk chorea (subscore) ---- 0.69 � 0.79 (0-2)
Phenotype ---- 4 choreatic, 4 hypokinetic/rigid, 8 mixed
Disease duration (years) ---- 5 � 2.8 (3-13)
ABC 95.38 � 5.05 (83.7-100) 81.20 � 13.2 (50.31 – 100)***
BBS (0-56) 55.88 � .33 (55-56) 51.18 � 3.15 (44-56)****
One-year retrospective Falls (#) 0.176 � 0.529 (0-2) 2.29 � 2.69 (0-10)***
MoCA 26.47 � 2.79 (20-30) 22.70 � 3.46 (12-28)***
SDMT 99.34 � 13.42 (80.4-131.1) 70.89 � 20.74 (45.5-105.9)****
Stroop-CW 45.5 � 8.36 (35-59) 37.19 � 7.89 (25-52)**
CERAD-recall 6.35 � 1.69 (4-10) 5.59 � 2.24 (2-10)
JLO 12.35 � 1.87 (8-15) 10.06 � 2.79 (5-14)**
Digit span total 11.12 � 2.47 (5-14) 8.23 � 3.45 (1-15)**
Animal naming (#) 37.41 � 8.44 (20-51) 21.76 � 9.73 (8-53)

All values are mean � SD with range in brackets unless indicated otherwise.
Abbreviations: ABC, Activity Specific Balance Confidence scale; BBS, Berg Balance Scale; BMI, Body Mass Index; CW, Stroop, Color-Word;
CERAD, Consortium to Establish a Registry for Alzheimer’s disease; JLO, Judgment of Line Orientation; MoCA, Montreal Cognitive Assessment;
SDMT, Symbol Digit Modalities Test; UHDRS-TMS, Unified Huntington’s Disease Rating Scale-total motor score.
Standardized Digit Span values were compared between Huntington’s disease patients and controls. Note that the SDMT, Stroop-CW, CERAD-
recall, and digit span were scaled to the patient’s age and years of education. Significant differences are bolded.
#Self-reported in last year, 1 year fall history.
*P < 0.05;
**P < 0.01;
***P < 0.001;
****P < 0.0001.
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(SDMT, P < 0.0001), verbal fluency (COWAT, P < 0.0001),
visuospatial abilities (JLO, P = 0.0083), and working memory
(digit span, P = 0.0087). Unexpectedly, performance on memory-
delayed recall (CERAD word list) was not significantly different
between HD participants and controls. HD participants reported
having significantly lower balance confidence on the ABC
(P = 0.0001), performed worse on the BBS (P < 0.0001), and had
a higher number of falls within the past year (P = 0.0007) com-
pared to controls.

Postural Sway Assessments
Single and Dual-Task Results

Because of the wide range of UHDRS-TMS scores in the HD
group, we performed a sub-analysis examining potential differ-
ences in postural sway scores between participants with lower
TMS scores (7–20) versus those with higher scores (21–40).
There were no statistical differences in any balance parameters
between these two subgroups; therefore, all data were combined
for subsequent analysis. HD participants demonstrated greater
total sway, jerk, and RMS sway under all i-SWAY conditions
compared to controls, including both ST (Table 2) and DT con-
ditions (Table 3; P = 0.0002 to <0.0001). HD participants also
had significantly greater DTC for total sway area (P = 0.01) and
RMS sway (P = 0.02) with feet together on a firm surface and
eyes closed (TCF; Fig. 1).

Clinical Test of Sensory Integration and
Balance-Modified (CTSIB-M) Results

There was a significant interaction effect between group and
CTSIB-M conditions (P = 0.0009); therefore, the within-group
comparisons were done separately for each group for all three
postural sway parameters.

Between Group Comparisons
The HD group exhibited significantly worse total sway and sway
variability in all four CTSIB-M conditions and worse total jerk
on three of the four conditions compared to controls (Fig. 2;
Table 2). Individuals with HD demonstrated significantly more
sway than controls in the AOF (P = 0.002), ACF (P = 0.004),
AOFo (P = 0.0001), and ACFo conditions (P = 0.003); signifi-
cantly more jerk than controls in the AOF (P = 0.005), ACF
(P = 0.07), AOFo (P = 0.0008), and ACFo conditions
(P = 0.001); significantly more sway variability than controls in
the AOF (P < 0.0001), ACF (P = 0.0004), AOFo (P < 0.0001),
and ACFo conditions (P < 0.0001).

Within-Group Comparisons
Individuals with HD demonstrated greater total sway
(P = 0.001), jerk (P = 0.01), and sway variability (P = 0.001)
during the ACFo surface condition compared to ACF condition

(Fig. 2). Additionally, HD participants exhibited greater total
sway (P = 0.001), jerk (P = 0.01), and sway variability
(P = 0.001) with ACFo, compared to AOF.

TABLE 2 Balance comparisons between controls and HD
participants on the single task CTSIB-M i-SWAY conditions
and narrowed stance condition

CTSIB-M

Condition 1: Feet apart–eyes open–firm surface

Variable Controls HD

95% Ellipse sway area
(m2/s4)

0.01 � 0.009 0.31 � 0.28***

Total jerk (m2/s5) 0.56 � 0.36 19.78 � 20.33***
RMS sway (m/s2) 0.06 � 0.02 0.19 � 0.08***

Condition 2: Feet apart–eyes closed–firm surface

Variable Controls HD

95% Ellipse sway area
(m2/s4)

0.02 � 0.01 0.31 � 0.30***

Total jerk (m2/s5) 1.42 � 1.55 20.69 � 30.25***
RMS sway (m/s2) 0.07 � 0.02 0.19 � 0.10***

Condition 3: Feet apart–eyes open–foam surface

Variable Controls HD

95% Ellipse sway area
(m2/s4)

0.05 � 0.04 0.62 � 0.42***

Total jerk (m2/s5) 1.43 � 1.30 31.60 � 25.81***
RMS sway (m/s2) 0.08 � 0.03 0.26 � 0.09***

Condition 4: Feet apart–eyes closed–foam surface

Variable Controls HD

95% Ellipse sway area
(m2/s4)

0.12 � 0.06 1.05 � 0.93***

Total jerk (m2/s5) 4.26 � 3.16 56.15 � 45.65***
RMS sway (m/s2) 0.13 � 0.03 0.34 � 0.12***

Narrowed base of support

Feet together–eyes open–firm surface

Variable Controls HD

95% Ellipse sway area
(m2/s4)

0.06 � 0.02 0.48 � 0.42***

Total jerk (m2/s5) 1.38 � 0.77 20.55 � 13.77***
RMS sway (m/s2) 0.08 � 0.01 0.24 � 0.11***

Feet together–eyes closed–firm surface

Variable Controls HD

95% Ellipse sway area
(m2/s4)

0.10 � 0.06 0.91 � 0.78***

Total jerk (m2/s5) 3.16 � 3.16 45.10 � 40.62***
RMS sway (m/s2) 0.10 � 0.03 0.30 � 0.14***

Data reported as mean � SD. 95% Ellipse sway area refers to the
area of an ellipse covering 95% of the points in both the coronal
and sagittal planes, putting more weight on regions more frequently
visited. Root mean square (RMS) is the extent of postural sway cal-
culated as RMS of the sway angle in both the AP and ML directions.
Total jerk is method to quantify the amount of active postural cor-
rections. Significant differences are bolded.
*P < 0.05;
**P < 0.01;
***P < 0.001;
****P < 0.0001.
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Correlations Between Cognition,
i-SWAY, UHDRS, and Falls in HD
(Table 4; Fig. 2)
Visuospatial function was significantly associated with certain
i-SWAY variables under ST and DT conditions in HD participants
(Fig. 3). Lower JLO scores were correlated with (1) greater total
sway, under AOF, DT (r = -0.617; P = 0.0097), and (2) greater
total jerk ACF under both ST (r = -0.551, P = 0.0443) and DT
(r = -0.624; P = 0.0087). Additionally, impaired visuospatial pro-
cessing was associated with greater DTC under feet together, eyes
open, firm (TOF), resulting in increased total sway (r = -0.593,
P = 0.014), jerk (r = -0.552, P = 0.023) and TCF conditions,
resulting in increased total sway (r = -0.492, P = 0.047) and sway
variability (r = -0.489, P = 0.048). Lower SDMT scores correlated
with greater total sway (r = -0.574, P = 0.018) and greater RMS
sway (r = -0.554, P = 0.023) under TCF, ST. UHDRS-TMS
correlated with greater total sway under TOF (r = 0.679;
P = 0.0048) and TCF (r = 0.644; P = 0.006) ST conditions, as
well as greater RMS sway (r = 0.662; P = 0.006) with TCF, ST

condition. UHDRS-TMS did not correlate with any balance vari-
ables under DT conditions. The number of falls self-reported in
the previous year did not correlate with any cognitive test scores
or balance parameters under either ST or DT conditions.

Discussion
Postural stability was once thought to be under the control of a
few balance centers in the central nervous system.45 However,
this view evolved to characterize balance as a complex motor
skill controlled by a variety of sensorimotor and cognitive pro-
cesses and their respective neural pathways.45–47 Our study
found that individuals with HD, compared to controls, have
significant cognitive interference when visual input was elimi-
nated and base of support was narrowed, resulting in impaired
postural control. Furthermore, the increased postural instability
under DT was associated with impaired visuospatial processing.
To our knowledge, this is the first study to investigate key
characteristics of postural control in HD using inertial sensors,
and we found several postural sway domains compromised with
reduced visual and proprioceptive input and during cognitive-
motor DT. Our findings are in line with previous work dem-
onstrating that vision is important for stabilizing balance by
continually updating the nervous system on body position
within a changing environment.48 In the present study, remov-
ing vision and narrowing the base of support challenged the
neuromotor control of balance, especially under DT, perhaps
due to cognitive interference. More specifically, dual tasking
produced a “jerkier,” more variable postural sway in HD,
which could lead to increased fall risk. These findings suggest
that performing a verbal fluency task while balancing signifi-
cantly interferes with the neural resources necessary to maintain
postural control, suggesting competition for common neural
networks that are deficient in HD, a theory previously pro-
posed in PD21,49 and older adults.21,50

Our findings are related to prior gait studies in HD where
performing a cognitive-motor DT resulted in decreased stride
length, cadence,13 and gait speed,13,22 with increased gait speed
DTC.22 Our findings are also consistent with the elevated DTC
for combined cognitive and balance tasks in individuals with
other neurodegenerative diseases, including MS and PD.51,52

Under ST conditions, individuals with HD exhibited greater
total sway, jerkiness, and variability compared to controls. Our
CTSIB-M findings highlight balance difficulties in HD when
proprioception is reduced and when predominantly relying on
vestibular information to maintain balance. These results are con-
sistent with previous studies showing that HD participants dem-
onstrate increased sway when proprioceptive and visual cues
were altered.6,53,54 However, our study is unique in that we
characterized balance deficits in three specific domains that mea-
sure different aspects of postural stability.31

Our finding that impaired visuospatial perception in HD signif-
icantly correlated with a greater, jerkier sway path under DT,
suggests that HD participants may depend heavily on their visuo-
spatial system, especially during DT to maintain balance.

TABLE 3 Balance comparisons between controls and HD
participants on the dual task (DT) i-SWAY conditions

Condition 1: Feet apart–eyes open–firm surface–DT “C”

Variable Controls HD

95% Ellipse sway area
(m2/s4)

0.05 � 0.07 1.38 � 1.96***

Total jerk (m2/s5) 4.97 � 7.09 100.59 � 133.61***
RMS sway (m/s2) 0.09 � 0.04 0.37 � 0.24***

Condition 2: Feet apart–eyes closed–firm surface–DT “L”

Variable Controls HD

95% Ellipse sway area
(m2/s4)

0.04 � 0.03 1.11 � 1.75***

Total jerk (m2/s5) 2.39 � 2.05 79.96 � 98.22***
RMS sway (m/s2) 0.08 � 0.03 0.34 � 0.23***

Condition 3: Feet together–eyes open–firm surface–DT “A”

Variable Controls HD

95% Ellipse sway area
(m2/s4)

0.11 � 0.09 1.60 � 2.06***

Total jerk (m2/s5) 4.57 � 4.36 112.25 � 148.97***
RMS sway (m/s2) 0.12 � 0.05 0.40 � 0.25***

Feet together–eyes closed–firm surface–DT “S”

Variable Controls HD

95% Ellipse sway area
(m2/s4)

0.09 � 0.04 1.67 � 1.83***

Total jerk (m2/s5) 3.41 � 1.86 95.68 � 99.82***
RMS sway (m/s2) 0.11 � 0.02 0.41 � 0.22***

Mean differences between controls and HD patients’ sway charac-
teristics under dual task (DT) (controlled oral word association task
[COWAT] letters C, L, A, S) reported as mean � SD. Significant dif-
ferences are bolded.
*P < 0.05;
**P < 0.01;
***P < 0.001;
****P < 0.0001.
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Visuospatial skills are important for gait and postural control55,56

and are modulated by the posterior parietal and occipital cortices,
areas of volume loss in HD.57,58 The ability to identify and

manipulate where an object is in space involves activation of the
parietal lobes, primary motor and premotor cortices, and the basal
ganglia.57 Prefrontal cortical degeneration in HD59 would likely

FIG. 1. Dual-task costs (DTC) on the instrumented sway (i-SWAY) for (A) total sway area and (B) root mean square (RMS) sway between
controls and HD patients. DTC defined as (DT-ST)/ST scores x 100. Data expressed as mean � SD. *P < 0.05, **P � 0.01.

FIG. 2. Within and between group comparisons of (A) total sway area, (B) total jerk, and (C) RMS sway values of the HD and control groups
under the four conditions of the (CTSIB-M) modified clinical test of sensory integration and balance; (AOF) feet apart, eyes open, firm
surface feet apart; (ACF) eyes closed, firm surface; (AOFo) feet apart, eyes open, foam surface; and (ACFo) feet apart, eyes closed, foam
surface. All values are expressed as mean + SD. **P � 0.01, ***P � 0.001, ****P � 0.0001.
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contribute to these deficits, given that this area mediates the ability
to perform a cognitive motor DT involving executive function.60

While our observations make sense for the eyes open condition,
the correlations obtained with the eyes closed condition are not as
clear. It is possible that even when HD participants have reduced
visuospatial skills, they are likely to use whatever visuospatial
capacity they have during balance control, such that eliminating
any visual cues caused greater balance impairments. This scenario
was made even more challenging by the verbal fluency
DT. Future neurophysiological studies employing techniques such
as functional near-infrared spectroscopy (fNIRS)61 while perform-
ing balance tasks might help elucidate neural mechanisms for pos-
tural control deficits in HD. fNIRS was able to detect changes in
prefrontal cortical activation during DT gait paradigms in PD.62

Therefore, a DT fNIRS study could provide a better understand-
ing of prefrontal cortical activation patterns when cognitive loads
are imposed on postural control in HD.

We found a reduction in information processing speed was
correlated with impaired postural control under the ST condi-
tions of reduced base of support and removed vision, suggesting
inadequate cortical processing did not allow HD participants to
quickly adapt to these conditions. Lower processing speed has
been found to be associated with worse postural stability and
increased falls in MS,63 worse turning in PD,64 and slower gait
speed in the elderly,65 further highlighting the importance of this
cognitive domain in the neural control of balance.66 We did not
find significant correlations between the domains of attention,
executive function, memory, or global cognition and postural

TABLE 4 Correlations of cognitive/UHDRS-TMS and iSway parameters

MoCA SDMT Stroop Digit span CERAD-recall
Animal
naming JLO UHDRS-TMS

Condition 1: Feet apart, eyes open, firm surface
95% Ellipse sway area (m2/s4) -0.258 -0.382 -0.366 -0.073 -0.018 -0.31 -0.32 0.528*
Total jerk (m2/s5) -0.174 -0.132 -0.293 0.105 0.089 -0.15 -0.328 0.251
RMS sway (m/s2) -0.248 -0.208 -0.464 0.032 -0.001 -0.275 -0.298 0.321

Feet apart, eyes closed, firm surface
95% Ellipse sway area (m2/s4) -0.136 -0.064 -0.135 0.099 0.089 -0.08 -0.343 0.189
Total jerk (m2/s5) -0.14 0.128 -0.133 0.262 0.166 -0.086 -0.497* 0.049
RMS sway (m/s2) -0.113 0.044 -0.281 0.162 0.089 -0.086 -0.344 0.027

Feet together, eyes open, firm surface
95% Ellipse sway area (m2/s4) -0.262 -0.439 -0.349 -0.266 -0.075 -0.364 -0.134 0.679**
Total jerk (m2/s5) -0.224 -0.196 -0.037 -0.006 0.063 -0.22 -0.209 0.478
RMS sway (m/s2) -0.248 -0.392 -0.319 -0.326 -0.131 -0.456 -0.094 0.557*

Feet together, eyes closed, firm surface
95% Ellipse sway area (m2/s4) -0.41 -0.574* -0.343 -0.309 -0.142 -0.448 -.033 0.644**
Total jerk (m2/s5) -0.348 -0.468 -0.133 -0.187 0.033 -0.255 -0.43 0.525*
RMS sway (m/s2) -0.340 -0.554* -0.355 -0.318 -0.122 -0.43 -0.308 0.662**

Feet apart, eyes open, foam surface
95% Ellipse sway area (m2/s4) 0.032 -0.314 -0.419 -0.046 0.121 -0.084 -0.216 0.479
Total jerk (m2/s5) 0.113 0.039 -0.174 0.306 0.280 0.073 -0.264 0.062
RMS sway (m/s2) 0.11 -0.203 -0.468 0.025 0.219 -0.066 -0.245 0.36

Feet apart, eyes closed, foam surface
95% Ellipse sway area (m2/s4) -0.230 -0.059 -0.038 -0.069 -0.058 0.081 -0.06 0.264
Total jerk (m2/s5) -0.108 0.181 -0.034 0.248 0.023 0.213 0.009 -0.134
RMS sway (m/s2) -0.183 -0.042 -0.116 -0.108 0.001 0.07 -0.134 0.214

Feet apart, eyes open, dual-task “C”
95% Ellipse sway area (m2/s4) -0.176 -0.262 -0.302 -0.058 0.065 -0.304 -0.617** 0.296
Total jerk (m2/s5) -0.14 -0.066 -0.155 0.062 0.089 -0.23 -0.549* 0.133
RMS sway (m/s2) -0.126 -0.228 -0.387 -0.064 0.102 -0.269 -0.581* 0.23

Feet apart, eyes closed, dual-task “L”
95% Ellipse sway area (m2/s4) -0.143 -0.150 -0.234 0.111 0.152 -0.166 -0.569* 0.186
Total jerk (m2/s5) -0.216 -0.064 -0.138 0.159 0.131 -0.118 -0.624** 0.035
RMS sway (m/s2) -0.049 -0.076 -0.205 0.178 0.253 -0.015 -0.544* 0.102

Feet together, eyes open, dual-task “A”
95% Ellipse sway area (m2/s4) -0.142 -0.164 -0.059 -0.028 0.157 -0.122 -0.527* 0.292
Total jerk (m2/s5) -0.044 -0.047 -0.202 0.188 0.253 -0.15 -0.507* 0.075
RMS sway (m/s2) -0.132 -0.137 -0.038 -0.042 0.116 -0.139 -0.528* 0.165

Feet together, eyes closed, dual-task “S”
95% Ellipse sway area (m2/s4) -0.245 -0.267 -0.127 -0.112 -0.084 -0.175 -0.557* 0.395
Total jerk (m2/s5) -0.248 -0.216 -0.149 0.037 0.615 -0.114 -0.634** 0.254
RMS sway (m/s2) -0.163 -0.275 -0.140 -0.109 -0.045 -0.196 -0.551* 0.399

Abbreviations: CERAD, Consortium to Establish a Registry for Alzheimer’s disease; CW, Stroop, Color-Word; JLO, Judgment of Line Orientation;
MoCA, Montreal Cognitive Assessment; SDMT, Symbol Digit Modalities Test; TMS, Total Motor Score; UHDRS, Unified Huntington’s disease Rat-
ing Scale.
Digit span values were correlated with HD patients’ iSWAY performance under varying sensory conditions. Significant differences are bolded.
All values are Spearman’s rho (r).
*P < 0.05;
**P < 0.01;
***P < 0.001;
****P < 0.0001.
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instability. In the past, deficits in executive function were
found to compromise a person’s dual-tasking ability, negatively
affecting gait and balance in both HD and PD.67,68 We attribute
our lack of significant correlations in the present study to our
relatively small sample size.

Contrary to our expectations, the number of self-reported falls
in the past year did not correlate with balance variables under any
of the conditions. Retrospective self-report questionnaires,
however, rely on the participants’ self-awareness and long-term
memory and are vulnerable to under-reporting. Future studies
with prospective fall assessments, caregiver corroboration, or an
activity-monitoring device might provide a more accurate fall
report.

The strengths of this study are (1) the use of a sensitive, reli-
able inertial sensor system to measure balance control in HD
under conditions reflecting everyday situations, including cogni-
tive DT; (2) the use of an extensive neuropsychological testing

battery that captures multiple cognitive domains and their poten-
tial correlations with postural sway and fall risk; and (3) examina-
tion of falls in HD, which to date has been understudied.
Although this study highlights important negative consequences
of DT cognitive interference and altered sensory input on pos-
tural control, there are limitations to address in future research.
Subsequent studies would benefit from a larger sample size to
strengthen potential associations between cognitive domains and
balance impairments and stratify HD groups into various levels of
motor and cognitive function. A more thorough investigation
into visual-cognitive deficits by utilizing an extensive visual cog-
nition test battery would be beneficial in providing insight into
the relationship between visual and balance deficits in
HD. Furthermore, incorporating eye-tracking technology into
future balance and gait studies would address the impact of sac-
cadic dysfunction, an early symptom of HD,69 on postural con-
trol and fall risk.

FIG. 3. Spearman’s correlations (rho) between judgement of line orientation (JLO) scores and (A) total sway area and (B) total jerk under
dual task (DT) conditions in HD patients.
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In conclusion, HD participants exhibit the most detrimental
effects of cognitive interference on postural control with a
reduced base of support and vision eliminated. In addition,
impaired visuospatial perception and processing speed was associ-
ated with worse postural control under DT and ST, respectively.
These findings also identified potential future therapeutic strate-
gies to improve balance and reduce fall risk in HD. For example,
DT cognitive motor training paradigms,70 virtual reality based
rehabilitation,71 and cognitive remediation therapies72 have been
shown to improve balance and turning and reduce falls in neuro-
degenerative disorders.73 Future investigations on the impact of
these therapeutic approaches in HD are warranted.
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