Table 2.
Best and worst parameter values for two- and three- layer Tybalt models for real datasets. l: learning rate, b: batch size, e: epoch, c: dimensionality of the first hidden layer.
| 2-layer model | ||||||||||||
| Best combination | Worst combination | |||||||||||
| Datasets | l | b | e | c | NMI | ARI | l | b | e | c | NMI | ARI |
| Baron et al. | 0.0005 | 100 | 25 | 100 | 0.64 | 0.38 | 0.002 | 50 | 200 | 500 | 0.36 | 0.17 |
| Wang et al. | 0.001 | 200 | 200 | 500 | 0.46 | 0.3 | 0.0005 | 200 | 25 | 100 | 0.2 | 0.11 |
| Camp et al. | 0.002 | 50 | 25 | 500 | 0.81 | 0.71 | 0.0005 | 100 | 25 | 100 | 0.64 | 0.47 |
| 3-layer model | ||||||||||||
| Best combination | Worst combination | |||||||||||
| Datasets | l | b | e | c | NMI | ARI | l | b | e | c | NMI | ARI |
| Baron et al. | 0.0005 | 100 | 25 | 500 | 0.63 | 0.36 | 0.001 | 100 | 200 | 500 | 0.33 | 0.17 |
| Wang et al. | 0.0005 | 50 | 200 | 500 | 0.45 | 0.3 | 0.0005 | 200 | 25 | 100 | 0.24 | 0.13 |
| Camp et al. | 0.0005 | 200 | 50 | 500 | 0.76 | 0.62 | 0.0005 | 200 | 25 | 250 | 0.61 | 0.42 |