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Abstract

Protein domain boundary prediction is usually an early step to understand protein function and 

structure. Most of the current computational domain boundary prediction methods suffer from low 

accuracy and limitation in handling multi-domain types, or even cannot be applied on certain 

targets such as proteins with discontinuous domain. We developed an ab-initio protein domain 

predictor using a stacked bidirectional LSTM model in deep learning. Our model is trained by a 

large amount of protein sequences without using feature engineering such as sequence profiles. 

Hence, the predictions using our method is much faster than others, and the trained model can be 

applied to any type of target proteins without constraint. We evaluated DeepDom by a 10-fold 

cross validation and also by applying it on targets in different categories from CASP 8 and CASP 

9. The comparison with other methods has shown that DeepDom outperforms most of the current 

ab-initio methods and even achieves better results than the top-level template-based method in 

certain cases. The code of DeepDom and the test data we used in CASP 8, 9 can be accessed 

through GitHub at https://github.com/yuexujiang/DeepDom.
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1. Introduction

Protein domains are conserved parts on protein sequences and structures that can evolve, 

function, and exist independently of the rest of the protein chain. While some proteins have 

only one domain, many proteins contain more than one domain. Molecular evolution uses 

domains as building blocks and these may be recombined in different arrangements to create 

proteins with different functions[1]. Thus, accurate identification of protein domains is 

crucial to understanding protein function and evolutionary mechanisms. Currently, the most 

reliable characterization of protein domain is through experimental methods. However, due 

to the large amount of data being generated by high-throughput technologies nowadays, it is 

impossible to manually identify domains for these proteins, not to mention that the 

experimental methods are time consuming and costly. Thus, computational domain 

prediction methods are in highly demand.
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A variety of computational methods for protein domain prediction have been developed, and 

they can be roughly categorized as either template-based methods or ab-initio methods. The 

principle of most template-based methods is to find homologous sequences that have known 

domain information by sequence alignments and then map the domain information from 

these sequences to the query protein sequence. The methods belonging to this category are 

Pfam[2], CHOP[3], FIEFDOM[4], and ThreaDom[5]. A variation of template-based 

methods is to use 3D structural models to assist protein domain prediction, e.g. 

SnapDRAGON[6] and RosettaDom[7]. These methods first construct a tertiary structure 

model of the target using structural templates. Domains are then assigned by domain parser 

tools from the constructed 3D model. The template-based methods can have a high 

prediction accuracy when close templates are found; however, their prediction performance 

may drop dramatically if there is no highly similar sequence in domain databases.

Ab-initio methods are more widely used than template-based methods, since these template-

free methods can be applied to any protein. They are mainly statistical and machine learning 

algorithms that train models using the known protein domain boundary information stored in 

databases such as CATH[8] and SCOP[9]. Some of the representative methods in this 

category are PPRODO[10], DOMPro[11], PRODOM[12], DomCut[13], ADDA[14], 

DomNet[15], DROP[16], DOBO[17], and EVEREST[18]. Compared with the template-

based approaches, the prediction accuracy of the ab-initio methods is low. This is mainly 

because these methods suffer from the weak domain boundary information in sequence, 

even after a deliberate but tedious process of feature extraction.

Deep learning is currently the most attractive area in machine learning. Among the various 

architectures of deep learning, Long Short Term Memory (LSTM)[19] has been successfully 

applied to problems such as speech recognition, language modeling, translation, image 

captioning[20–22]. Essential to these successes is its chain-like structure that can capture the 

sequential information, and its repeating module designed to avoid the vanishing gradient 

problem that the original Recurrent Neural Network (RNN) suffers[23]. Here, we consider 

protein sequences as strings of information just like language. Thus, in this paper we 

propose a new ab-initio protein domain boundary prediction method using LSTM. We 

assume that the signal pattern from a domain boundary region is different from the signals 

generated from other regions. So, we made each LSTM layer in our deep learning 

architecture bidirectional to capture the sequential information not just from the N-terminal 

side of the domain boundary region but also from the C-terminal side. Then we stack 

multiple such layers together to fit a high-order non-linear function in order to predict the 

complex domain boundary signal pattern. Instead of paying much effort in feature 

engineering on a small dataset, which is what traditional machine learning methods do, we 

train our LSTM model on a big dataset to learn data representations automatically. To the 

best of our knowledge, this is the first deep learning method applied on the protein domain 

boundary prediction problem.
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2. METHODS

2.1 Data Set Preparation

We collected 456,128 proteins with domain boundary annotations in the CATH database 

(version 4.2). All the sequences of corresponding proteins were downloaded from the 

Uniprot database[24]. Then we used CD-HIT[25] to cluster similar proteins into clusters that 

meet our pre-defined similarity threshold (40%). The representative sequence in each cluster 

was extracted to form a non-redundant dataset in which every pair of proteins has sequence 

identity less than 40%[26]. This threshold instead of a lower number makes sure enough 

data were remained for deep learning. We further excluded proteins with sequence length 

less than 40 residues, since it needs at least 40 residues for a domain boundary signal to be 

significant according to Ref. [17]. The final dataset contains 57,887 proteins. We used 10-

fold cross validation to evaluate our model. In each fold, 90% proteins were used to train a 

model, the remaining 10% proteins were used for testing.

2.2 Input Encoding

Before using our data to train the model, we need to understand the distribution of the data. 

Figure 1 shows some statistics of our data, which let us believe that encoding the entire 

sequence for each protein was probably not a good idea. The first reason is that it introduces 

bias. When there is only one domain on a protein, the boundaries of the only domain are 

always near the protein’s two termini. As shown in Figure 1(A), proteins with one domain 

represent the majority of the data, and this would make our model over-memorize this 

pattern and favor the prediction as one domain, which results in poor performance for multi-

domain cases. The second reason is as illustrated in Figure 1(B), that proteins with different 

number of domains have different length distributions. When encoding the entire protein 

sequence using a dynamic length, we cannot train the model in batch, which is much faster 

to handle big data set. So, we decided to use a sliding window strategy independent of the 

protein length to encode an input sequence into equal-length fragments. And we use symbol 

“-” for padding when the last fragment is shorter than window size. After experiments, we 

determined the best combination of window size and stride is 200 residues and 80 residues.

Next, we need to encode each residue in every fragment. According to the work of 

Venkatarajan and Braun[27], a comprehensive list of 237 physical-chemical properties for 

each amino acid was compiled from the public databases. Their study showed that the 

number of properties could be reduced while retaining approximately the same distribution 

of amino acids in the feature space. Particularly, the correlation coefficient between the 

original and regenerated distances is more than 99% when using the first five eigenvectors. 

Thus, we used five numerical descriptors to represent each amino acid for computational 

efficiency while maintaining almost all the information at the same time. We also added the 

sixth encoding dimension as the padding indicator. For all the 20 types of amino acids, their 

sixth code is zero. The symbol “-”, as the sixth code with value 1, indicates a padding 

residue, and its first five codes are all zeros. Thus, for each input fragment, its coding 

dimension is 200 by 6.
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For model training, we also need to encode the label for each residue. We derive the protein 

domain boundary annotation from the CATH database, and follow the convention that 

considers a residue as positive if it is within ±20 residues of the true boundary. Thus, the 

coding dimension for output labels is 200 by 3. The three values represent the probability of 

a residue being a positive (within the true boundary), negative (outside the true boundary), 

and padding residue, respectively.

2.3 Model Architecture

Our deep learning architecture is shown in Figure 2. The bidirectional design in each middle 

layer captures the information from residues before and after a protein domain boundary. We 

stacked four such layers to capture the high order non-linear features that can detect complex 

boundary patterns or weak signals. Each neuron in the hidden layers is an LSTM unit.

The key to LSTM is the cell state C that runs through the entire chain. An LSTM unit has 

the ability to remove or add information to the cell state by a regulation structure called gate. 

Firstly, an LSTM unit uses its “forget gate” to decide what information to discard from the 

cell state. It takes the output ℎt −1 from the previous unit and the current input xt as the input 

of a sigmoid function to produce a number between 0 and 1 for each number in the cell state. 

A 1 means completely keeping the value while a 0 means completely removing it. The 

formulas for the forget gate is shown as Eq. (1).

f t = σ W f · ht − 1,xt + b f (1)

where Wf and bf are the weight matrix and bias for the forget gate layer. Next, a tanh layer 

creates a new candidate input vector. It will be performed a pointwise product with a 

sigmoid layer called the “input gate” to decide which values to add to the cell state. The 

formula for candidate input creation and the input gate are shown as Eq. (2) and Eq. (3), 

respectively.

Ct = tanh Wc · ht − 1,xt + bc (2)

it = σ W i · ht − 1,xt + bi (3)

where Wc and Wi are weight matrix for the tanh layer and the input gate layer, respectively. 

and are bias for the tanh layer and the input gate layer, respectively. Then the LSTM unit can 

update the old cell state Ct−1 into the new cell state Ct by Eq. (4).

Ct = f t ∗ Ct − 1 + it ∗ Ct (4)
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Finally, the cell state goes through a tanh layer to scale the values between −1 and 1. The 

scaled cell state will be filtered by a sigmoid layer called “output gate” to decide which 

values to output. The formulas for output gate definition and the current output are shown as 

Eq. (5) and Eq. (6), respectively.

ot = σ Wo ht − 1,xt + bo (5)

ht = ot ∗ tanh Ct (6)

The ability of avoiding vanishing gradient is mainly owing to the design of forget gate in 

LSTM. Thus, if a protein domain boundary prediction depends on some signals from remote 

residues, our model can be trained to set those forget gates’ values as 1 on informative 

positions and let the far, weak but informative signal propagate far without significant loss.

2.4 Evaluation criteria

We used prediction precision, recall and Matthew’s correlation coefficient (MCC) to 

evaluate our method and compare with others’. The definitions of precision, recall, MCC are 

listed in Eq. (7), Eq. (8) and Eq. (9), respectively:

Precision = TP
TP + FP (7)

Recall = TP
TP + FN (8)

MCC = TP × TN − FP × FN
TP + FP TP + FN FP + TN TN + FN

(9)

where TP, FP, TN, FN are true positive, false positive, true negative and false negative 

prediction, respectively. When a residue has a predicted probability of being within a domain 

boundary region higher than a cutoff, we checked its surrounding ±20 residues to see if there 

is a recorded domain boundary in the CATH database for the protein. If yes, then we have a 

true positive, otherwise it is a false positive. On the contrary, when there is a residue our 

model predicted it being outside of domain boundary regions, we checked its surrounding 
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±20 residues to see if there is a recorded domain boundary in the CATH database for the 

protein. If yes, then we have a false negative; otherwise it is a true negative.

3. RESULTS AND DISCUSSION

3.1 Parameter configuration experiments on test data

We have done a series of experiments with different window sizes and stride values to 

determine the best combination of these two parameters. The prediction performance of each 

experiment design is listed in Table 1. And we presented the results separately based on the 

number of domains that a protein has. Each value is the result after the 10-fold cross 

validation. Note that in Experiment 3, we considered the situation that there is no overlap 

between windows. Under each experiment design (one column) in Table 1, we only 

presented the result that had the highest MCC-ALL at a certain threshold. We also 

conducted experiments using sliding window of 300 residues. However, the improvement for 

MCC-ALL is not significant (around 0.01) compared with cases when window size is 200 

residues. So, we believe 200 is enough. As shown in Table 1, the highest MCC-ALL, also 

the overall best prediction performance is achieved when the sliding window size equals to 

200 residues and the stride value equals to 80 residues. Figure 3 illustrates a plot of the 

precision, recall and MCC as functions of the decision threshold when using the optimum 

window size and stride value. The threshold at which the highest MCC-ALL reached is 0.42, 

and hence we used this value as the default threshold.

3.2 Comparison with Other Domain Boundary Predictors

To perform a fair comparison with other methods on a benchmark dataset, we tested our 

method on the proteins in the Critical Assessment of Techniques for Protein Structure 

Prediction (CASP). The definitions of domain boundaries on target proteins are provided by 

the CASP protein domain prediction contest sessions. Based on the categories those target 

proteins belong to, we conducted several experiments accordingly. In each experiment, the 

proteins that have a 40% or higher identity with any target protein were excluded from our 

training dataset.

3.2.1 Free modeling targets from CASP 9—Free modeling (FM) targets are proteins 

without any homologous templates. These targets are often regarded as “hard cases”, since 

their predictions usually had poor performance. We selected all the 22 FM targets in CASP 9 

and applied different methods to predict their domain boundaries. By comparing the results 

in the two categories in Table 2, we found most template-based methods suffered a 

significant decrease in both precision and recall for FM targets. ThreaDom is currently the 

top 1 templated-based method using multiple threading alignments to extract protein domain 

boundary information. For FM targets, ThreaDom identifies multiple alignments or super-

secondary structure segments from weakly homologous templates, then a domain 

conservation score profile extracts consensus information between the domain structure and 

alignment gaps. This way, ThreaDom maintained a good precision for FM targets. Our ab-
initio method DeepDom achieved the overall best prediction results for FM targets, with the 

same precision as ThreaDom but higher recall. All the results by different methods are listed 

Jiang et al. Page 6

Pac Symp Biocomput. Author manuscript; available in PMC 2019 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in Table 2, where some of them were generated from the tools provided and others were 

collected from Ref. [5] and Ref. [17], since they used the same data.

3.2.2 Multi-domain targets from CASP 9—We also selected all the 14 multi-domain 

targets from CASP 9 with the constraint that every domain on one protein must be 

continuous, since most other methods can only handle multi-domain targets of this kind. For 

this category, template-based methods generally have better results. ThreaDom achieved the 

overall best prediction performance. But DeepDom is still the best among ab-initio methods 

and also competitive with the template-based methods, as shown in Table 2.

3.2.3 Discontinuous domain target from CASP 8—Some protein domains consist 

of several separated segments. The prediction of such discontinuous domain is still an 

unsolved problem. Most mentioned methods above have been explicitly designed to handle 

domains without discontinuous segments, despite the fact that discontinuous domain is 

important in protein structural determination and function annotations.

To evaluate the ability of DeepDom in predicting discontinuous domain, we selected all the 

18 targets that contain at least one discontinuous domain from CASP 8. The overall 

discontinuous domain boundary prediction precision is 81.2%, the recall is 34.8%, and with 

MCC of 0.38. However, currently we have not found a method to predict whether multiple 

segments belong to the same domain. Figure 4 gives an illustration of one discontinuous 

domain protein prediction.

4. CONCLUSION

In this paper, we designed a novel computational method called “DeepDom” for protein 

domain boundary prediction using deep learning. Our model does not need elaborated 

feature engineering. Instead, it extracts information from a large amount of raw sequence 

data. The comparison showed that DeepDom achieved better results than other ab-initio 
methods and is competitive with template-based methods. As an ab-initio method, 

DeepDom has the advantage to outperform the most successful template-based method 

when dealing with free modeling targets. Importantly, it can run much faster than other 

methods, all of which use sequence profiles that are time consuming to generate.

There is room for improvement of DeepDom. Ideally, a protein sequence should be encoded 

“globally”, since breaking into fragments excludes the potential long distance dependency. 

By doing several experiments with varying window sizes and strides, an interesting 

discovery is that protein domain boundary prediction seems to depend on the signals from 

remote residues. However, this still requires further experiments to prove and develop a new 

method to use the information. The other limitation is that the prediction performance for 

template-available targets is lower than the best template-based method. We will develop a 

hybrid method that can take advantages of existing methods from both approaches (ab-initio 

and template-based). We also plan to make the hybrid method available as a web server. 

Most of the existing domain prediction web servers only allow users to submit one protein 

sequence a time. Since DeepDom avoids the time-consuming sequence profile generation 

process, the users can predict for a list of proteins in a short time.
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Figure 1. 
(A) The distribution of proteins with different numbers of domains. (B) The distribution of 

protein sequence lengths in different categories.
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Figure 2. 
The stacked bidirectional LSTM model. Green boxes represents the input layer. Red boxes 

represents the output layer. Each box represents a residue. Blue dots form the bi-directional 

hidden layers. Signals from left to right are represented by solid arcs, while dashed arcs 

represent signals from the reverse direction. Each dot represents an LSTM unit. A magnified 

LSTM unit is shown. Its different gates are highlighted with different colors. At the end of 

the model, a Softmax layer is added to scale the output value with a sum of 1 so that they 

can be interpreted as probabilities.
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Figure 3. 
Illustration of the prediction precision, recall and MCC as a function of the decision 

threshold when the window size=200 and stride=80. The results are based on a 10-fold cross 

validation.
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Figure 4. 
An illustration of discontinuous domain boundary prediction using target T0418 from CASP 

8. The domain assignment is (1–16|83–216) (17–82), where the first domain has two 

segments. The defined domain boundaries are presented by vertical dash lines. The threshold 

of our model is 0.42.
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Table 1.

Prediction performance in different experiment designs

Window size 80 100 200

Stride 20 40 80 20 40 80 20 40 80

Experiment ID 1 2 3 4 5 6 7 8 9

Precision_d1 0.572 0.625 0.626 0.609 0.622 0.588 0.465 0.547 0.618

Recall_d1 0.493 0.498 0.447 0.486 0.513 0.529 0.602 0.582 0.584

MCC_d1 0.442 0.478 0.450 0.462 0.485 0.472 0.415 0.471 0.520

Precision_d2 0.608 0.655 0.650 0.652 0.653 0.623 0.496 0.576 0.654

Recall_d2 0.361 0.338 0.291 0.346 0.366 0.365 0.473 0.443 0.426

MCC_d2 0.361 0.374 0.341 0.377 0.391 0.372 0.341 0.386 0.426

Precision_d3+ 0.639 0.670 0.661 0.675 0.668 0.629 0.543 0.598 0.669

Recall_d3+ 0.357 0.297 0.245 0.315 0.330 0.310 0.453 0.418 0.381

MCC_d3+ 0.360 0.340 0.301 0.354 0.360 0.326 0.343 0.367 0.391

Precision_ALL 0.601 0.644 0.641 0.637 0.643 0.607 0.496 0.570 0.641

Recall_ALL 0.409 0.382 0.332 0.386 0.407 0.406 0.513 0.486 0.468

MCC_ALL 0.392 0.402 0.369 0.401 0.416 0.394 0.370 0.412 0.450
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Table 2.

Comparison results from different methods on two category targets in CASP 9 contest

Category Predictor CASP9 protein boundary prediction

Precision Recall

FM

DeepDom 0.882 0.468

ThreaDom 0.882 0.455

Pfam 0.323 0.485

FIEFDom 0.231 0.182

DomPro 0.500 0.182

PPRODO 0.333 0.485

DROP 0.429 0.182

Multi-Domain

DeepDom 0.689 0.441

ThreaDom 0.764 0.534

Pfam 0.500 0.548

FIEFDom 0.340 0.233

DomPro 0.500 0.140

PPRODO 0.500 0.520

DROP 0.679 0.260
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