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Abstract

As genetic sequencing becomes less expensive and data sets linking genetic data and medical 

records (e.g., Biobanks) become larger and more common, issues of data privacy and 

computational challenges become more necessary to address in order to realize the benefits of 

these datasets. One possibility for alleviating these issues is through the use of already-computed 

summary statistics (e.g., slopes and standard errors from a regression model of a phenotype on a 

genotype). If groups share summary statistics from their analyses of biobanks, many of the privacy 

issues and computational challenges concerning the access of these data could be bypassed. In this 
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paper we explore the possibility of using summary statistics from simple linear models of 

phenotype on genotype in order to make inferences about more complex phenotypes (those that 

are derived from two or more simple phenotypes). We provide exact formulas for the slope, 

intercept, and standard error of the slope for linear regressions when combining phenotypes. 

Derived equations are validated via simulation and tested on a real data set exploring the genetics 

of fatty acids.

Keywords

privacy; biobank; genetics; genome-wide association study; single nucleotide variant; 
computational challenges; data security; phenotypes

1. Introduction

The continued move to digitize medical records raises a plethora of opportunities and 

challenges in the search to elucidate the genetic and environmental contributions to human 

disease. The amount of genetic, environmental, and disease-related data continues to grow 

rapidly, offering new opportunities to discover relationships between genetic variants and 

expressed physical characteristics. Of particular interest are the genetic contributions to 

diseases that can have dramatic impacts on societal well-being (e.g., cardiovascular diseases, 

mental health, and cancer). The advent of large, publicly available biobanks (e.g., UK 

Biobank1) offers exciting possibilities for leveraging these datasets to have a dramatic 

impact on human health and disease.

However, this unprecedented opportunity also comes with roadblocks and challenges.2 The 

size of datasets in biobanks makes it challenging to transfer, store, and analyze them locally. 

And even though cloud computing minimizes some of these issues, they bring their own 

challenges with regard to cost (storage and computation), transfer, and access to cloud 

computing systems. Furthermore, data security and privacy issues are of paramount 

importance throughout all aspects of the data access, storage, and analysis pipeline.3–4 Thus, 

there is a great demand for simplified data transfer, exploration, visualization, and analysis 

strategies which simultaneously address privacy, security, storage, and computational 

challenges, while still allowing researchers to make the best possible use of biobank 

repositories.

An interesting recent development related to these issues are efforts to provide summary 

statistics in publicly available formats. For example, GeneAtlas provides basic summary 

statistics for simple linear regression models of each available single nucleotide variants 

with each available phenotypic variable for 452 thousand individuals in the UK Biobank.5 

Likewise, Pheweb provides access to the UK Biobank data via a series of easy-to-navigate 

visualization and summary tools based on publicly available data produced by the Neale lab.
5–6 GeneAtlas and Pheweb mitigate many of the privacy and security concerns mentioned 

above since no individual information is shared. There is no way to use summary statistics 

alone to gather information about any one individual. In addition, the size of these 

repositories are only fractions of the size of the individual level datasets, making transfer and 

storage of the data much more efficient. Finally, these services have already computed some 
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of the most common summary statistics, which alleviates much of the computational burden 

on researchers.

However, while these approaches are promising and provide valuable insight, major 

questions abound about how to best leverage this summary-level information in more 

complex downstream analyses. While basic exploratory data analysis and data visualization 

are straightforward and commonplace, using pre-computed genotype-phenotype associations 

(summary statistics) to explore ‘complex’ phenotypes, which are functions of existing 

phenotypes present in a biobank, hasn’t been previously investigated. For example, if a 

researcher is interested in phenotype Y, where Y = f(y1, y2, y3, … ym) and y1, y2, y3, …, ym 

are existing phenotypes present in the biobank (with m being the number of phenotypes), is 

there a way to utilize the precomputed summary statistics from each linear model fit for each 

y1, y2, y3, …, ym in order to make conclusions about the relationship between Y and genetic 

variation? This is the primary question of interest for this manuscript.

In particular, we begin by providing a framework for how to think about using summary 

statistics from individual phenotypes to investigate general classes of ‘complex’ phenotypes. 

We then illustrate how to utilize summary statistics for inferences about a complex 

phenotype which is a linear combination of an arbitrarily large set of individual phenotypes. 

Despite extensive literature review we have found little in the way of similar approaches thus 

most of our work has been built from the ground up. We validate our approach using both 

simulated data and real data from the Framingham Heart Study.

2. Methods

2.1 Notation

Throughout this paper we use yij to represent the phenotypes, where i ∈ {1, 2, . . ., m} with 

m being the number of phenotypes and j ∈ {1, 2, . . ., n} with n being the number of 

subjects. Similarly, xj is used to represent the genotype. We use bolded letters (such as yi and 

x) to refer to a vector of values across all subjects. The term yc is used to represent the linear 

combination of the yi’s (yc = c1y1 + c2y2+. . . +cmym) with the ci′s being constants. For each 

linear regression model fit for yi ~ x, we use the notation yi = βix + αi, where βi is the slope 

and αi is the intercept. The standard error for βi is represented by SE(βi). We use βi to 

represent all betas for phenotype i across all genotypes.

In addition, the following formulas are used frequently in this paper and should be kept in 

mind.

βi =
cov x, yi

var(x) =
∑ j = 1

n x j − x yi j − y

∑ j = 1
n x j − x 2 (1)
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SE βi =

∑ j = 1
n yi j − yi j

2

n − 2

∑ j = 1
n x j − x 2

(2)

2.2. Linear combination of two phenotypes using only summary statistics

We will first show the formulas for the slope, intercept, and standard error of the slope in the 

case of a linear combination of two phenotypes (yc = c1y1 + c2y2), where c1 and c2 are any 

constants. We will then show how these formulas generalize to an arbitrary number of 

phenotypes. In this portion of the paper we will only state the formulas – detailed derivations 

for each of the formulas can be found in the supplemental materials.

2.2.1. Slope—To determine the slope, βc, for the combined linear model of a linear 

combination of two phenotypes (yc = c1y1 + c2y2), formula 1 was manipulated. We begin by 

inserting yc = c1y1 +c2y2, into the least squares estimate of the slope:

βc =
∑ j = 1

n x j − x c1y1 j + c2y2 j − c1y1 + c2y2

∑i = 1
n xi − x 2 (3)

After algebraic simplifications, βc equals the same linear combination of the two phenotypes 

except with the slope instead of the phenotype:

βc = c1β1 + c2β2 (4)

2.2.2. Intercept—To determine the y-intercept, α, for the combined linear model of a 

linear combination of two phenotypes, the mathematical formula for the least-squares 

estimate of the intercept was manipulated. As before, we begin by inserting yc = c1y1 + c2y2, 

into the formula for the intercept in a standard least squares linear regression:

αc = c1y1 + c2y2 − βcx . (5)

Simplifying this equation shows that αc equals the same linear combination of the two 

phenotypes except with the intercepts instead of the phenotypes:

αc = c1α1 + c2α2 (6)

2.2.3. Standard error of slope—To determine the standard error of βc, SE(βc), 

formula 2 was manipulated. c1y1j + c2y2j was substituted for yi and 
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c1β1 + c2β2 x j + c1α1 + c2α2  for yi j. After some algebraic manipulation of the formula for 

SE(βc), the formula was determined to be (see supplement 3 for details):

SE βc = c1
2 SE β1

2 + c2
2 SE β2

2 +
2c1c2
n − 2

cov y1, y2
var(x) − β1β2 (7)

2.3. Linear combination of an arbitrary number of phenotypes using summary statistics

Having provided the formulas for the linear combination of two phenotypes, we now explore 

the more general case of a linear combination of m phenotypes.

2.3.1. Slope—Following from the demonstration of the resulting βc formula for the 

linear model for a linear combination of two phenotypes, it can be shown that the βc from 

the linear regression of the linear combination of an arbitrary number of phenotypes is 

simply the same linear combination of the phenotypes except with βi’s from the simple 

linear regressions instead of the phenotype (complete demonstration in supplement 1). Thus 

if there is a linear combination of m phenotypes the slope of the combined linear model is

βc = c1β1 + c2β2 + ⋯ + cmβm . (8)

2.3.2. Intercept—Following from the demonstration of the resulting αc formula for the 

linear model in which there is a linear combination of two phenotypes, it can easily be seen 

that the αc from the linear regression of the linear combination of an arbitrary number of 

phenotypes is simply the same linear combination of the phenotypes except with the αi’s 

from the simple linear regressions instead of the phenotypes (complete demonstration in the 

supplement 2). Thus if there is a linear combination of m phenotypes the intercept of the 

combined linear model is

α = c2α1 + c2α2 + ⋯ + cmαm . (9)

2.3.3. Standard error of beta—Following from the demonstration of the resulting 

SE(βc) formula for the linear model for a linear combination of two phenotypes, it can be 

demonstrated through induction that the SE(βc) from the linear regression of the linear 

combination of an arbitrary number of phenotypes is the following (complete demonstration 

in the supplement 4):
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SE βc =

∑
i = 1

m
ci

2 SE βi
2 + 2

n − 2
∑q = 1

m − 1 ∑r = q + 1
m cqcrcov yq, yr

var(x) − ∑
q = 1

m − 1
∑

r = q + 1

m
cqcrβqβr

(10)

2.3.3.1. Estimating terms in the equation for the standard error of beta: All of the 

terms in formula 10 for the standard error of the combined β are summary level statistics. 

While this eliminates the need for individual level data and thus alleviates many of the 

previously-discussed privacy issues, there are two summary statistics within that formula 

that aren’t often publicly available. In particular, the covariances between each unique pair 

of phenotypes and the variance of x are not frequently provided. As such, it would be helpful 

if there were methods for estimating these terms from the information that is readily 

available.

We first explore a method for estimating the covariance between a given pair of phenotypes. 

Since linear models have already been run on the entire data set, slopes are given for each 

genotype-phenotype combination. Thus, we hypothesized that the correlation between two 

of the response variables could be estimated by finding the correlation between the betas for 

the first phenotype and the betas for the second phenotype. However, the quantity needed for 

the standard error formula is covariance. Therefore, to find the covariance, we propose the 

following approximation:

cov y1, y2 = cor y1, y2 * var y1 var y2 ≈ cor β
1
, β2 * var y1 var y2 (11)

Note that this, in turn, requires that we have the variance of y1 and y2.

Next, we explore a method for estimating the variance of x. Because we can model x by the 

binomial distribution, the variance of x can be estimated using the minor allele frequency 

(MAF). Thus, by using the formula for the variance of a binomial distribution we can 

accurately estimate the variance of x using the known minor allele frequency.

2MAF(1 − MAF) . (12)

While this approximation is close to the true value, the accuracy of the estimate changes 

with the Hardy-Weinberg equilibrium (HWE) p-value. In the next section we explore this 

using simulations.

2.4. Simulations

2.4.1. Estimation of covariance of y’s simulations—To test the hypothesis for our 

covariance estimate, simulations were conducted in R.7 We wrote a function for performing 

these simulations, which generated two phenotypes and a large number of genotypes. The 

parameters altered from trial to trial were the number of observations, the number of 
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genotypes, the covariance between the two phenotypes, and the variance of each of the two 

phenotypes.

2.4.2. Estimation of variance of x simulations—To check the accuracy of the 

variance of x, simulations were run in R. Ten thousand genotypes from 1,000, 10,000, 

100,000, and 500,000 subjects were generated using a binomial distribution. The genotypes 

were of varying minor allele frequencies and varying Hardy-Weinberg equilibrium p-values. 

For each genotype the following statistics were calculated: MAF, HWE p-value, the 

observed variance, estimated variance, and the difference between the observed variance and 

the estimated variance. At HWE p-value thresholds of 0.05, 0.5, 0.75, 0.90, and 0.99, the 

mean difference between the observed variance and the estimated variance of genotypes, and 

the standard deviations of those differences of the genotypes that met or exceeded the 

thresholds were also calculated.

2.5. Real data analysis

Previous genome wide association studies, investigated the association between 425,380 

SNP’s and red blood cell fatty acid (RBC FA) levels indicative of cardiovascular health 

using data from the offspring cohort (n=2384) of The Framingham Heart Study as we’ve 

done in other recent publications. 8–11 Two of the RBC FA included were Docosahexaenoic 

acid (DHA) and Eicosapentaenoic acid (EPA). The sum of DHA and EPA is reported as the 

omega3 index (O3I). In the studies, genome wide association analyses were conducted for 

DHA, EPA, and O3I using residual models adjusting for age, sex, and familial relationships. 

We will use this data to demonstrate our method. We will show the accuracy of the slope and 

standard error of the slope calculated using the summary statistics from the individual EPA 

and DHA models and the method presented in this paper as compared to the slope and 

standard error that is obtained from running the entire linear model specifically on the O3I. 

Please refer to the studies cited for more information about the significance of their findings, 

the collection of red blood cell fatty acids and the Framingham cohort.8–11

3. Results

3.1. Estimating the covariance of phenotypes

We begin by investigating the performance of our proposed estimation (formula 11) for the 

covariance of phenotypes (yi’s). As seen in Table 1, our results suggest that the error in our 

approximation is highest when the correlation between y1 and y2 is close to 0. As the 

correlation between a pair or yi’s increases, the standard deviation of the error in the 

estimated correlation decreases.

The other two parameters (number of genotypes and number of observations) had little to no 

impact on the standard deviation of the errors (detailed results not shown).

3.2. Estimating variance of genotype

The detailed results of the variance of x simulations can be found in Table 2. Overall, the 

difference between the observed variance of x and the estimated variance of x across all 

simulated genotypes was small with a mean of 0.000043 and standard deviation of 0.0064. 
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Thus as the length of the genotype gets larger, the difference between the observed and 

estimated variances seems to go to zero. While the mean differences are quite small, they are 

nearly all positive indicating that we are underestimating the variance. Because the standard 

error formula (formula 7) divides by the variance our standard error will be inflated and thus 

this method will be slightly conservative. Additionally, as can be seen in Table 2 and Figure 

1, genotypes with larger HWE p-values have differences between the observed and 

estimated variances that are closer to zero.

3.3. Real data results

3.3.1. Using exact formulas—We first consider the accuracy of adding the two 

residual models after adjusting for covariates. It appears that the predictions for the slope of 

the combined linear model made using prediction βEPA + βDHA = βRO3I were accurate. The 

predictions of the model adjusting for covariates after addition βO3I  had a mean difference 

of 0.0000469 and a standard deviation of 0.00204. Figure 2 shows the observed values of 

βO3I plotted against the estimate values, and appears to show that the estimate is relatively 

accurate on the entire range of true slopes.

Using formula 7 for predicting the standard error for the βRO3I, there was a mean error of 

−0.00000177 with a standard deviation of 0.00004717. When comparing the estimate for 

standard error to the actual O3I standard error, the mean error was 0.00058 with a standard 

deviation of 0.000276. Figure 3 demonstrates that when applying the covariates separately to 

the models DHA and EPA we see a slight over prediction of the standard errors.

3.3.2 Estimating covariance of the y’s—Using the method described in 2.4 the 

estimated correlation between EPA and DHA was 0.707 while the actual correlation between 

the two variables is 0.682. The error between the true value and the predicted value will in 

turn lead to a slightly inflated standard error estimate.

3.3.3 Estimating the variance of x—When using our estimate of the variances of the 

genotype in the standard error equation, we see some increased variation in the estimations, 

as seen in Figure 4. However, filtering by Hardy Weinberg equilibrium p-value (eliminate 

genotypes with HWE p-values less than 0.000001 as per GWAS standard)12 removes all of 

the extreme variation between estimated and predicted estimates of the variation of the 

genotypes.

3.3.4 Analysis of p-value—We examine –log10 p-value plots to see the overarching 

effect the method presented in this paper has on the significance of the study. In this analysis 

we compare the p-values obtained from using our summary statistic model with the true p-

values from the linear model before adjusting for covariates. When estimating the variance 

of the genotype we filtered by a Hardy-Weinberg equilibrium p-value of 0.000001.

3.3.5 Careful analysis of top hits—One of the important aspects of using summary 

level statistics is that it will not greatly affect the most significant genotype phenotype 

associations. As seen in supplemental tables 5, 6, and 7 the differences in β, SE(β) and 

overall p-values between the summary statistic model and the traditional model is minimal.
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4. Discussion

We have demonstrated how to accurately estimate the strength of association for a linear 

combination of an arbitrary number of individual phenotypes with a single genotype of 

interest using only commonly available summary statistics from large biobanks. In addition, 

we have provided a mathematical overview of why these relationships hold, demonstrated 

how to estimate these values from summary statistics and distributions of summary statistics, 

and then evaluated their performance on both simulated and real data.

Practically, we have now provided a tool for researchers to perform genome-wide and 

related analyses on linear combinations of phenotypes using only summary statistics, which 

has the potential to dramatically reduce computational time and storage, simplify data 

transfer, and grossly mitigate privacy and security concerns, especially for large biobank-

style datasets. For example, in our data analysis of The Framingham Heart Study the Rdata 

file size needed to run the analysis was reduced from 1.2 GB to 0.04 GBs. Notably, the 

reduction in file size and processing time should increase significantly with an increased 

sample size. While linear combinations of phenotypes are a powerful tool (e.g., averaging 

multiple measurements of a trait of interest), future work is needed to explore more general 

ways of combining phenotypes which will have broader applicability. For example, 

multiplicative combinations of phenotypes (y1 * y2 or y1⁄y2) and exponentiated phenotypes 

are also a powerful and common class of complex phenotypes (e.g., BMI = Weight/

Height^2). ). If future work is able to establish a similar class of methods for multiplicative 

phenotypes as has been shown in this manuscript for linear combinations, we would then be 

in position to also derive general methods for ‘logical’ combinations of dichotomous 

phenotypes. Logical combinations can be expressed as arithmetic operations. The ‘and’ 

operation can be expressed as y1* y2 and the ‘or’ operation can be expressed as (y1+ y2) − 

(y1* y2). Future work also includes consideration of multi-allelic models, the impact of 

different assumptions in models/software creating summary statistics on downstream 

inference using our proposed method, and direct comparison and evaluation of changes in 

computation time.

Some limitations of our method are worth noting. First, we have been able to accurately 

estimate the variance of x (x in other words, the genotype) using the variance formula for a 

binomial distribution and the minor allele frequency. This estimate has been verified through 

simulations and we have shown that as the genotypes reach perfect Hardy-Weinberg 

equilibrium the difference between the observed and estimated variances of x approaches 0. 

While in practice, variants out of HWE are removed from the data, variants that are ‘nearly’ 

out of HWE using standard GWAS quality thresholds11 (e.g., HWE p-value < 1×10−6) may 

experience more noise in downstream estimates. Secondly, while our simulations and real 

data application are reasonably comprehensive, application to additional datasets and 

consideration of additional simulated datasets (e.g., with different sample sizes; different 

proportions of and distributions of missing data; different levels of correlation between 

phenotypes) is recommended.

The use of summary statistics from large biobanks in downstream statistical analyses offers 

great promise to address numerous hurdles in the use of biobank data and dramatically 
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increase the opportunity to leverage biobanks to understand the etiology of complex human 

diseases. We have provided precise equations to leverage summary statistics for linear 

combinations of phenotypes. The method presented in this paper sets the essential 

foundation and provides a necessary building block for being able to investigate the genetic 

associations of millions of complex phenotypes with summary statistics alone. Future work 

is needed to explore multiplicative and other more complex ways to combine phenotypes to 

provide a complete approach to phenotype combinations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
This plot shows the results of the simulation of 10,000 genotypes from 500,000 subjects. 

The Hardy-Weinberg equilibrium p-value is on the y-axis and the difference in the variance 

is on the x-axis.
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Fig. 2. 
The observed beta values are on the y-axis and the predicted beta values are on the x-axis. 

This shows the accuracy of the combined beta formula.
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Fig. 3. 
The observed standard errors for the beta is on the y-axis and the predicted standard errors of 

the beta is on the x-axis. This shows the accuracy of our standard error estimate.

Gasdaska et al. Page 13

Pac Symp Biocomput. Author manuscript; available in PMC 2019 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 4. 
The graph on the left demonstrates the accuracy of the standard error estimates for the beta 

values using all SNP’s in the data set. The graph on the right filters by Hardy-Weinberg 

equilibrium p-value of 0.000001, which removes most of the less accurate predictions.
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Fig 5. 
The graph on the left demonstrates the accuracy of the negative log of the p-value when our 

formulas for the slopes and standard errors are used with the true variance of x and 

covariances between phenotypes. The middle graph shows the accuracy when covariance of 

the y’s is estimated using our estimation. The graph on the right depicts the accuracy of the 

p-values when the covariance of the y’s and the variance of x are estimated using our given 

estimates.
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Table 1.

This table shows the results from the simulations. The “Correlation” column lists the correlation at which the 

data was generated. The other two columns display the mean and standard deviation of the error of the 

estimate.

Correlation Mean error of estimated correlation Standard deviation of error of estimated correlation

0 −0.000486 0.050

0.3 0.000400 0.045

0.75 6.23E-05 0.022

0.9 0.000282 0.0096
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Table 2.

Results for variance of x simulations, with 10,000 genotypes simulated for 500,000, 100,000, 10,000 and 

1,000 individuals.

Number of 
individuals

P-value Number of genotypes 
that fall at or above p-
value threshold

Mean of the difference 
between observed and 
estimated variance

Lower bound of Wald 
confidence interval for 
mean

Upper bound of Wald 
confidence interval for 
mean

500,000 ≥ 0.99 104 1.4E-06 −7.1E-06 1.0E-05

≥ 0.90 1042 2.6E-06 −7.8E-05 8.3E-05

≥ 0.75 2510 7.5E-07 −2.0E-04 2.0E-04

≥ 0.50 5002 4.5E-06 −4.1E-04 4.2E-04

≥ 0.05 9494 9.6E-06 −9.3E-04 9.5E-04

All 10000 4.1E-06 −1.1E-03 1.1E-03

100,000 ≥ 0.99 98 4.3E-06 −1.3E-05 2.2E-05

≥ 0.90 1025 1.1E-06 −1.7E-04 1.8E-04

≥ 0.75 2551 6.8E-06 −4.4E-04 4.5E-04

≥ 0.50 5015 2.3E-06 −9.2E-04 9.3E-04

≥ 0.05 9497 6.9E-06 −2.1E-03 2.1E-03

All 10000 1.2E-05 −2.4E-03 2.4E-03

10,000 ≥ 0.99 94 3.7E-05 −2.6E-05 1.0E-04

≥ 0.90 999 4.5E-05 −5.2E-04 6.2E-04

≥ 0.75 2481 5.1E-05 −1.4E-03 1.5E-03

≥ 0.50 4938 5.0E-05 −2.8E-03 2.9E-03

≥ 0.05 9501 5.5E-05 −6.8E-03 6.7E-03

All 10000 −8.4E-05 −7.7E-03 7.5E-03

1,000 ≥ 0.99 114 3.8E-04 1.2E-04 6.4E-04

≥ 0.90 962 3.9E-04 −1.4E-03 2.2E-03

≥ 0.75 2439 3.4E-04 −4.2E-03 4.8E-03

≥ 0.50 4963 4.1E-04 −8.8E-03 9.6E-03

≥ 0.05 9452 1.8E-04 −2.1E-02 2.1E-02

All 10000 2.4E-04 −2.4E-02 2.4E-02
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