Table 4.
Average computing times on all quantile levels from 200 Monte-Carlo simulations in Model (7) under all settings (Seconds)
| S1–1 | S1–2 | |||
|---|---|---|---|---|
| N = 500 | N = 1000 | N = 500 | N = 1000 | |
| FI (M = 10) | 0.826 | 1.313 | 0.789 | 1.357 |
| FI (M = 20) | 0.903 | 2.883 | 1.775 | 2.972 |
| MI (m = 10) | 8.353 | 21.929 | 18.079 | 22.355 |
| S2–1 | S2–2 | |||
| N = 500 | N = 1000 | N = 500 | N = 1000 | |
| FI (M = 10) | 0.519 | 1.365 | 1.237 | 2.354 |
| FI (M = 20) | 0.986 | 1.972 | 1.550 | 3.533 |
| FIIPW (M = 10) | 0.509 | 1.404 | 1.316 | 2.345 |
| FIIPW (M = 20) | 0.995 | 2.020 | 1.635 | 3.535 |
| IPW | 0.062 | 0.112 | 0.049 | 0.079 |
| MI (m = 10) | 9.469 | 14.622 | 23.649 | 38.588 |
| MIIPW (m = 10) | 9.744 | 15.301 | 25.685 | 40.350 |
Here FI, FIIPW, IPW, MI, MIIPW are the imputation approaches. N stands for sample size and M stands for the number of x we simulate from the estimate function f (x|zi). m stands for the repeated imputation-estimation times in MI and MIIPW