Skip to main content
. Author manuscript; available in PMC: 2019 Mar 14.
Published in final edited form as: Comput Stat. 2018 May 15;33(4):1589–603. doi: 10.1007/s00180-018-0813-z

Table 5.

Relative biases (“R.B.”), standard errors (“S.E.”) and mean squared errors (“MSE”) of the estimated coefficients at quantile levels 0.1 and 0.5 from 200 Monte-Carlo simulations in Model (7)

Quantile levels M = 10 M = 20 M = 50 M = 100
0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5
S1–1 R.B.
(%)
β^1,FI 1.000 −2.600 0.300 −1.800 2.400 0.500 2.100 0.400
β^2,FI −0.500 2.200 −0.700 1.300 −1.800 −0.200 −1.500 −0.300
S.E. β^1,FI 0.364 0.275 0.366 0.276 0.362 0.283 0.358 0.283
β^2,FI 0.342 0.253 0.341 0.258 0.344 0.262 0.346 0.260
MSE β^1,FI 0.133 0.076 0.134 0.077 0.131 0.080 0.129 0.080
β^2,FI 0.117 0.064 0.116 0.067 0.119 0.069 0.120 0.068
S1–2 R.B.
(%)
β^1,FI −2.800 −12.800 −3.600 −13.400 −4.100 −13.600 −4.400 14.200
β^2,FI 4.700 7.600 5.900 9.700 6.600 10.200 7.000 11.500
S.E. β^1,FI 4.700 0.248 0.069 0.265 0.079 0.277 0.085 0.282
β^2,FI 0.078 0.240 0.098 0.247 0.110 0.253 0.115 0.259
MSE β^1,FI 0.003 0.078 0.006 0.088 0.008 0.095 0.009 0.100
β^2,FI 0.008 0.063 0.013 0.070 0.016 0.074 0.018 0.100

Relative bias is defined as the ratio between the bias and the true value. Here S1–1 means the missingness is independent with Y and ei is normal. S1–2 means the missingness is independent with Y and ei is chi-square. FI stands for the proposed fast imputation algorithm. The estimated coefficients at quantile level 0.9 are just similar to the case at quantile level 0.1