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Abstract

Curating labeled training data has become the primary bottleneck in machine learning. Recent 

frameworks address this bottleneck with generative models to synthesize labels at scale from weak 

supervision sources. The generative model’s dependency structure directly affects the quality of 

the estimated labels, but selecting a structure automatically without any labeled data is a distinct 

challenge. We propose a structure estimation method that maximizes the ℓ1-regularized marginal 

pseudolikelihood of the observed data. Our analysis shows that the amount of unlabeled data 

required to identify the true structure scales sublinearly in the number of possible dependencies for 

a broad class of models. Simulations show that our method is 100× faster than a maximum 

likelihood approach and selects 1/4 as many extraneous dependencies. We also show that our 

method provides an average of 1.5 F1 points of improvement over existing, user-developed 

information extraction applications on real-world data such as PubMed journal abstracts.

1. Introduction

Supervised machine learning traditionally depends on access to labeled training data, a 

major bottleneck in developing new methods and applications. In particular, deep learning 

methods require tens of thousands or more labeled data points for each specific task. 

Collecting these labels is often prohibitively expensive, especially when specialized domain 

expertise is required, and major technology companies are investing heavily in hand-curating 

labeled training data (Metz, 2016; Eadicicco, 2017). Aiming to overcome this bottleneck, 

there is growing interest in using generative models to synthesize training data from weak 

supervision sources such as heuristics, knowledge bases, and weak classifiers trained 

directly on noisy sources. Rather than treating training labels as gold-standard inputs, such 

methods model training set creation as a process in order to generate training labels at scale. 

The true class label for a data point is modeled as a latent variable that generates the 

observed, noisy labels. After fitting the parameters of this generative model on unlabeled 

data, a distribution over the latent, true labels can be inferred.

The structure of such generative models directly affects the inferred labels, and prior work 

assumes that the structure is user-specified (Alfonseca et al., 2012; Takamatsu et al., 2012; 

Roth & Klakow, 2013b; Ratner et al., 2016). One option is to assume that the supervision 

sources are conditionally independent given the latent class label. However, statistical 
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dependencies are common in practice, and not taking them into account leads to misjudging 

the accuracy of the supervision. We cannot rely in general on users to specify the structure 

of the generative model, because supervising heuristics and classifiers might be independent 

for some data sets but not others. We therefore seek an efficient method for automatically 

learning the structure of the generative model from weak supervision sources alone.

While structure learning in the supervised setting is wellstudied (e.g., Meinshausen & 

Bühlmann, 2006; Zhao & Yu, 2006; Ravikumar et al., 2010, see also Section 6), learning the 

structure of generative models for weak supervision is challenging because the true class 

labels are latent. Although we can learn the parameters of generative models for a given 

structure using stochastic gradient descent and Gibbs sampling, modeling all possible 

dependencies does not scale as an alternative to model selection. For example, estimating all 

possible correlations for a modestly sized problem of 100 weak supervision sources takes 

over 40 minutes. (For comparison, our proposed approach solves the same problem in 15 

seconds.) As users develop their supervision heuristics, rerunning parameter learning to 

identify dependencies becomes a prohibitive bottleneck.

We propose an estimator to learn the dependency structure of a generative model without 

using any labeled training data. Our method maximizes the ℓ1-regularized marginal 

pseudolikelihood of each supervision source’s output independently, selecting those 

dependencies that have nonzero weights. This estimator is analogous to maximum likelihood 

for logistic regression, except that we marginalize out our uncertainty about the latent class 

label. Since the pseudolikelihood is a function of one free variable and marginalizes over 

one other variable, we compute the gradient of the marginal pseudolikelihood exactly, 

avoiding the need for approximating the gradient with Gibbs sampling, as is done for 

maximum likelihood estimation.

Our analysis shows that the amount of data required to identify the true structure scales 

sublinearly in the number of possible dependencies for a broad class of models. Intuitively, 

this follows from the fact that learning the generative model’s parameters is possible when 

there are a sufficient number of better-than-random supervision sources available. With 

enough signal to estimate the latent class labels better than random guessing, those estimates 

can be refined until the model is identified.

We run experiments to confirm these predictions. We also compare against the alternative 

approach of considering all possible dependencies during parameter learning. We find that 

our method is 100× faster. In addition, our method returns 1/4 as many extraneous 

correlations on synthetic data when tuned for comparable recall. Finally, we demonstrate 

that on real-world applications of weak supervision, using generative models with 

automatically learned dependencies improves performance. We find that our method 

provides on average 1.5 F1 points of improvement over existing, user-developed information 

extraction applications on PubMed abstracts and hardware specification sheets.
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2. Background

When developing machine learning systems, the primary bottleneck is often curating a 

sufficient amount of labeled training data. Hand labeling training data is expensive, time 

consuming, and often requires specialized knowledge. Recently researchers have proposed 

methods for synthesizing labels from noisy label sources using generative models. (See 

Section 6 for a summary.) We ground our work in one framework, data programming 

(Ratner et al., 2016), that generalizes many approaches in the literature.

In data programming, weak supervision sources are encoded as labeling functions, heuristics 

that label data points (or abstain). A generative probabilistic model is fit to estimate the 

accuracy of the labeling functions and the strength of any user-specified statistical 

dependencies among their outputs. In this model, the true class label for a data point is a 

latent variable that generates the labeling function outputs. After fitting the parameters of the 

generative model, a distribution over the latent, true labels can be estimated and be used to 

train a discriminative model by minimizing the expected loss with respect to that 

distribution.

We formally describe this setup by first specifying for each data point xi a latent random 

variable yi ∈ {−1,1} that is its true label. For example, in an information extraction task, xi 

might be a span of text. Then, yi can represent whether it is a mention of a company or not 

(entity tagging). Alternatively, xi might be a more complex structure, such as a tuple of 

canonical identifiers along with associated mentions in a document, and then yi can 

represent whether a relation of interest over that tuple is expressed in the document (relation 

extraction).

We do not have access to yi (even at training time), but we do have n user-provided labeling 

functions λ1,...,λn that can be applied to xi to produce outputs Λi1,...,Λin. For example, for 

the company-tagging task mentioned above, a labeling function might apply the regular 

expression .+\sInc\. to a span of text and return whether it matched. The domain of each Λij 

is {−1,0,1}, corresponding to false, abstaining, and true. Generalizing to the multiclass case 

is straightforward.

Our goal is to estimate a probabilistic model that generates the labeling-function outputs Λ 
∈ {−1,0,1}m×n. A common assumption is that the outputs are conditionally independent 

given the true label, and that the relationship between Λ and y is governed by n accuracy 
dependencies

ϕ j
Acc Λi, yi ≔ yiΛi j

with a parameter θ j
Acc modeling how accurate each labeling function λj is. We refer to this 

structure as the conditionally independent model, and specify it as
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pθ(Λ, Y) ∝ exp ∑
i = 1

m
∑
j = 1

n
θ j

Accϕ j
Acc Λi, yi , (1)

where Y := y1,...,ym.

We estimate the parameters θ by minimizing the negative log marginal likelihood pθ(Λ) for 

an observed matrix of labeling function outputs Λ:

arg min
θ

− log∑
Y

pθ(Λ, Y) . (2)

Optimizing the likelihood is straightforward using stochastic gradient descent. The gradient 

of objective (2) with respect to parameter θ j
Acc is

∑
i = 1

m
EΛ, Y ∼ θ ϕ j

Acc Λi, yi − EY ∼ θ Λ ϕ j
Acc Λi, yi ,

the difference between the corresponding sufficient statistic of the joint distribution pθ and 

the same distribution conditioned on Λ. In practice, we can interleave samples to estimate 

the gradient and gradient steps very tightly, taking a small step after each sample of each 

variable Λij or yi, similarly to contrastive divergence (Hinton, 2002).

The conditionally independent model is a common assumption, and using a more 

sophisticated generative model currently requires users to specify its structure. In the rest of 

the paper, we address the question of automatically identifying the dependency structure 

from the observations Λ without observing Y.

3. Structure Learning without Labels

Statistical dependencies arise naturally among weak supervision sources. In data 

programming, users often write labeling functions with directly correlated outputs or even 

labeling functions deliberately designed to reinforce others with narrow, more precise 

heuristics. To address this issue, we generalize the conditionally independent model as a 

factor graph with additional dependencies, including higher-order factors that connect 

multiple labeling function outputs for each data point xi and label yi. We specify the general 

model as

pθ(Λ, Y) ∝ exp ∑
i = 1

m
∑

t ∈ Tt

∑
s ∈ St

θs
tϕs

t Λi, yi . (3)
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Here T is the set of dependency types of interest, and St is a set of index tuples, indicating 

the labeling functions that participate in each dependency of type t ∈ T. We start by defining 

standard correlation dependencies of the form

ϕ jk
Cor Λi, yi ≔ 𝟙 Λi j = Λik .

We refer to such dependencies as pairwise among labeling functions because they depend 

only on two labeling function outputs. We can also consider higher-order dependencies that 

involve more variables, such as conjunction dependencies of the form

ϕ jk
And Λi, yi ≔ 𝟙 Λi j = yi ∧ Λik = yi .

Estimating the structure of the distribution pθ(Λ,Y ) is challenging because Y is latent; we 

never observe its value, even during training. We must therefore work with the marginal 

likelihood pθ(Λ). Learning the parameters of the generative model jointly requires Gibbs 

sampling to estimate gradients. As the number of possible dependencies increases at least 

quadratically in the number of labeling functions, this heavyweight approach to learning 

does not scale (see Section 5.2).

3.1. Learning Objective

We can scale up learning over many potentially irrelevant dependencies by optimizing a 

different objective: the log marginal pseudolikelihood of the outputs of a single labeling 

function λj, i.e., conditioned on the outputs of the others λ\j, using ℓ1 regularization to 

induce sparsity. The objective is

arg min
θ

− logpθ Λ j Λ\ j + ϵ θ

1

= arg min
θ

− ∑
i = 1

m
log∑

yi

pθ Λi j, yi Λi\ j + ϵ θ

1

,

(4)

whereϵ>0 is a hyperparameter.

By conditioning on all other labeling functions in each term log
yi

pθ Λi j, yi Λi\ j , we ensure 

that the gradient can be computed in polynomial time with respect to the number of labeling 

functions, data points, and possible dependencies; without requiring any sampling or 

variational approximations. The gradient of the log marginal pseudolikelihood is the 

difference between two expectations: the sufficient statistics conditioned on all labeling 

functions but λj, and conditioned on all labeling functions:
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−
∂logp Λ j Λ\ j

∂θs
t = α − β, (5)

where

α ≔ ∑
i = 1

m
∑

Λi j, yi

pθ Λi j, yi Λi\ j ϕs
t Λi j, Λi\ j , yi

β ≔ ∑
i = 1

m
∑
yi

p yi Λi ϕs
t Λi, yi .

Note that in the definition of α, ϕs
t  operates on the value of Λij set in the summation and the 

observed values of Λi\ j.

We optimize for each labeling function λj in turn, selecting those dependencies with 

parameters that have a sufficiently large magnitude and adding them to the estimated 

structure.

3.2. Implementation

We implement our method as Algorithm 1, a stochastic gradient descent (SGD) routine. At 

each step of the descent, the gradient (5) is estimated for a single data point, which can be 

computed in closed form. Using SGD has two advantages. First, it requires only first-order 

gradient information. Other methods for ℓ1-regularized regression like interior-point methods 

(Koh et al., 2007) usually require computing second-order information. Second, the 

observations Λ can be processed incrementally. Since data programming operates on 

unlabeled data, which is often abundant, scalability is crucial. To implement ℓ1 regularization 

as part of SGD, we use an online truncated gradient method (Langford et al., 2009).

In practice, we find that the only parameter that requires tuning is ϵ, which controls the 

threshold and regularization strength. Higher values induce more sparsity in the selected 

structure. For the other parameters, we use the same values in all of our experiments: step 

size η = m−1, epoch count 𝒯 = 10, and truncation frequency K = 10.

4. Analysis

We provide guarantees on the probability that Algorithm 1 successfully recovers the exact 

dependency structure. We first provide a general recovery guarantee for all types of possible 

dependencies, including both pairwise and higherorder dependencies. However, in many 

cases, higher-order dependencies are not necessary to model the behavior of the labeling 

functions. In fact, as we demonstrate in Section 5.3, in many useful models there are only 

accuracy dependencies and pairwise correlations. In this case, we show as a corollary to our 

general result that the number of samples required is sublinear in the number of possible 

dependencies, specifically O(n log n).
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Previous analyses for the supervised case do not carry over to the unsupervised setting 

because the problem is no longer convex. For example, analysis of an analogous method for 

supervised Ising models (Ravikumar et al., 2010) relies on Lagrangian duality and a tight 

duality gap, which does not hold for our estimation problem. Instead, we reason about a 

region of the parameter space in which we can estimate Y well enough that we can 

eventually approach the true model.

We now state the conditions necessary for our guarantees. First are two standard conditions 

that are needed to guarantee that the dependency structure can be recovered with any 

number of samples. One, we must have some set Θ ⊂ RM of feasible parameters. Two, the 

true model is in Θ, i.e., there exists some choice of θ* ∈ Θ such that

π*(Λ, Y) = pθ*(Λ, Y),
∀Λ ∈ − 1, 0, 1 m × n, Y ∈ − 1, 1 m

(6)

where π* is the true distribution.

Next, let Φj denote the set of dependencies that involve either labeling function λj or the true 

label y. For any feasible parameter θ ∈ Θ and j ∈ {1,...,n}, there must exist c > 0 such that

cI + ∑
i = 1

m
Cov(Λ, Y) ∼ pθ

Φ j(Λ, Y) |Λi = Λi

≺ ∑
i = 1

m
Cov(Λ, Y) ∼ pθ

Φ j(Λ, Y) |Λi\ j = Λi\ j .

(7)

This means that for each labeling function, we have a better estimate of the dependencies 

with the labeling function than without. It is analogous to assumptions made to analyze 

parameter learning in data programming.

Finally, we require that all non-zero parameters be bounded away from zero. That is, for all 

θi ≠ 0, and some κ > 0, we have that

θi ≥ κ . (8)

Under these conditions, we are able to provide guarantees on the probability of finding the 

correct dependency structure. First, we present guarantees for all types of possible 

dependencies in Theorem 1, proved in Appendix A.2. For this theorem, we define dj to be 

the number of possible dependencies involving either Λj or y, and we define d as the largest 

of d1,...,dn.
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Theorem 1.

Suppose we run Algorithm 1 on a problem where conditions (6), (7), and (8) are satisfied. 
Then, for any δ > 0, an unlabeled input dataset of size

m ≥ 32d

c2κ2log 2nd
δ

is sufficient to recover the exact dependency structure with a probability of at least 1 − δ.

For general dependencies, d can be as large as the number of possible dependencies due to 

the fact that higher-order dependencies can connect the true label and many labeling 

functions. The rate of Theorem 1 rate is therefore not directly comparable to that of 

Ravikumar et al. (2010), which applies to Ising models with pairwise dependencies.

As we demonstrate in Section 5.3, however, real-world applications can be improved by 

modeling just pairwise correlations among labeling functions. If only considering these 

dependencies, then d will only be 2n − 1, rather than the number of potential dependencies. 

In Corollary 2, we show that a number of samples needed in this case is O(nlogn). Notice 

that this is sublinear in the number of possible dependencies, which is O(n2).

Corollary 2.

Suppose we run Algorithm 1 on a problem where conditions (6), (7), and (8) are satisfied. 
Additionally, assume that the only potential dependencies are accuracy and correlation 
dependencies. Then, for any δ > 0, an unlabeled input dataset of size

m ≥ 64n

c2κ2log 4n
δ

is sufficient to recover the exact dependency structure with a probability of at least 1 − δ.

In this case, we see the difference in analyses between the unsupervised and supervised 

settings. Whereas the rate of Corollary 2 depends on the maximum number of dependencies 

that could affect a variable in the model class, the rate of Ravikumar et al. (2010) depends 

cubically on the maximum number of dependencies that actually affect any variable in the 

true model and only logarithmically in the maximum possible degree. In the supervised 

setting, the guaranteed rate is therefore tighter for very sparse models. However, as we show 

in Section 5.1, the guaranteed rates in both settings are pessimistic, and in practice they 

appear to scale at the same rate.

5. Experiments

We implement our method as part of the open source framework Snorkel1 and evaluate it in 

three ways. First, we measure how the probability of returning the exact correlation structure 

is affected by the problem parameters using synthetic data, confirming our analysis that its 

1snorkel.stanford.edu
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sample complexity is sublinear in the number of possible dependencies. In fact, we find that 

in practice the sample complexity is lower than the theoretically guaranteed rate, matching 

the rate seen in practice for fully supervised structure learning. Second, we compare our 

method to estimating structures via parameter learning over all possible dependencies. We 

demonstrate using synthetic data that our method is 100× faster and more accurate, selecting 

1/4 as many extraneous correlations on average. Third, we apply our method to real-world 

applications built using data programming, such as information extraction from PubMed 

journal abstracts and hardware specification sheets. In these applications, users did not 

specify any dependencies between the labeling functions they authored; however, as we 

detail in Section 5.3, these dependencies naturally arise, for example due to explicit 

composing, relaxing, or tightening of labeling function heuristics; related distant supervision 

sources; or multiple concurrent developers writing labeling functions. We show that learning 

this structure improves performance over the conditionally independent model, giving an 

average 1.5 F1 point boost.

5.1. Sample Complexity

We test how the probability that Algorithm 1 returns the correct correlation structure 

depends on the true distribution. Our analysis in Section 4 guarantees that the sample 

complexity grows at worst on the order O(n log n) for n labeling functions. In practice, we 

find that structure learning performs better than this guaranteed rate, depending linearly on 

the number of true correlations and logarithmically on the number of possible correlations. 

This matches the observed behavior for fully supervised structure learning for Ising models 

(Ravikumar et al., 2010), which is also tighter than the best known theoretical guarantees.

To demonstrate this behavior, we attempt to recover the true dependency structure using a 

number of samples defined as

m ≔ 750 ⋅ γ ⋅ d* ⋅ logn (9)

where d* is the maximum number of dependencies that affect any one labeling function. For 

example, in the conditionally independent model d* = 1 and in a model with one correlation 

d* = 2. We vary the control parameter γ from 0.1 to 2.0 to determine the point at which m is 

sufficiently large for Algorithm 1 to recover the true dependency structure. (The constant 

750 was selected so that it succeeds with high probability around γ = 1.0.)

We first test the effect of varying n, the number of labeling functions. For n ∈ 
{25,50,75,100}, we set two pairs of labeling functions to be correlated with θ jk

Cor = 0.25. We 

set θ j
Acc = 1.0 for all j. We then generate m samples for each setting of γ over 100 trials. 

Figure 1 shows the fraction of times Algorithm 1 returns the correct correlation structure as 

a function of the control parameter γ. That the curves are aligned for different values of n 
shows that the sample complexity in practice scales logarithmically in n.

We next test the effect of varying d*, the maximum number of dependencies that affect a 

labeling function in the true distribution. For 25 labeling functions, we add correlations to 
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the true model to form cliques of increasing degree. All parameters are the same as in the 

previous experiment. Figure 2 shows that for increasing values of d*, (9) again predicts the 

number of samples for Algorithm 1 to succeed. That the curves are aligned for different 

values of d* shows that the sample complexity in practice scales linearly in d*.

5.2. Comparison with Maximum Likelihood

We next compare Algorithm 1 with an alternative approach. Without an efficient structure 

learning method, one could maximize the marginal likelihood of the observations Λ while 

considering all possible dependencies. To measure the benefits of maximizing the marginal 

pseudolikelihood, we compare its performance against an analogous maximum likelihood 

estimation routine that also uses stochastic gradient descent, but instead uses Gibbs sampling 

to estimate the intractable gradient of the objective.

We create different distributions over n labeling functions by selecting with probability 0.05 

pairs of labeling functions to make correlated. Again, the strength of correlation is set at 

θ jk
Cor = 0.25 and accuracy is set at θ j

Acc = 1.0. We generate 100 distributions for n ∈ 

{25,30,35,...,100}. For each distribution we generate 10,000 samples and attempt to recover 

the true correlation structure.

We first compare running time between the two methods. Our implementation of maximum 

likelihood estimation is designed for speed: for every sample taken to estimate the gradient, 

a small update to the parameters is performed. This approach is state-of-the-art for high-

speed learning for factor graphs (Zhang & Ré, 2014). However, the need for sampling the 

variables Λ and Y is still computationally expensive. Figure 3 shows that by avoiding 

variable sampling, using pseudolikelihood is 100× faster.

We next compare the accuracy of the two methods, which depends on the regularization. The 

ideal is to maximize the probability of perfect recall with few extraneous correlations, 

because subsequent parameter estimation can reduce the influence of an extraneous 

correlation but cannot discover a missing correlation. We tune ϵ independently for each 

method. Figure 4 (top) shows that maximum pseudolikelihood is able to maintain higher 

levels of recall than maximum likelihood as the problem size increases. Figure 4 (bottom) 

shows that even tuned for better recall, maximum pseudolikelihood is more precise, 

returning 1/4 as many extraneous correlations. We interpret this improved accuracy as a 

benefit of computing the gradient for a data point exactly, as opposed to using Gibbs 

sampling to estimate it as in maximum likelihood estimation.

5.3. Real-World Applications

We evaluate our method on several real-world information extraction applications, 

comparing the performance of data programming using dependencies selected by our 

method with the conditionally independent model (Table 1). In the data programming 

method, users express a variety of weak supervision rules and sources such as regular 

expression patterns, distant supervision from dictionaries and existing knowledge bases, and 

other heuristics as labeling functions. Due to the noisy and overlapping nature of these 
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labeling functions, correlations arise. Learning this correlation structure gives an average 

improvement of 1.5 F1 points.

Extracting structured information from unstructured text by identifying mentioned entities 

and relations is a challenging task that is well studied in the context of weak supervision 

(Bunescu & Mooney, 2007; Alfonseca et al., 2012; Ratner et al., 2016). We consider three 

tasks: extracting mentions of specific diseases from the scientific literature (Disease 
Tagging); extracting mentions of chemicals inducing diseases from the scientific literature 

(Chemical-Disease); and extracting mentions of electronic device polarity from PDF parts 

sheet tables (Device Polarity). In the first two applications, we consider a training set of 500 

unlabeled abstracts from PubMed, and in the third case 100 PDF parts sheets consisting of 

mixed text and tabular data. We use hand-labeled test sets to evaluate on the 

candidatemention-level performance, which is the accuracy of the classifier in identifying 

correct mentions of specific entities or relations, given a set of candidate mentions. For 

example, in Chemical-Disease, we consider as candidates all pairs of co-occurring chemical-

disease mention pairs as identified by standard preprocessing tools2.

We see that modeling the correlations between labeling functions gives gains in performance 

which appear to be correlated with the total number of sources. For example, in the disease 

tagging application, we have 233 labeling functions, the majority of which check for 

membership in specific subtrees of a reference disease ontology using different matching 

heuristics. There is overlap in the labeling functions which check identical subtrees of the 

ontology, and we see that our method increases end performance by a significant 2.6 F1 

points by modeling this structure.

Examining the Chemical-Disease task, we see that our method identifies correlations that are 

both obviously true and ones that are more subtle. For example, our method learns 

dependencies between labeling functions that are compositions of one another, such as one 

labeling function checking for the pattern [CHEM] induc.* [DIS], and a second labeling 

function checking for this pattern plus membership in an external knowledge base of known 

chemical-disease relations. Our method also learns more subtle correlations: for example, it 

selected a correlation between a labeling function that checks for the presence of a chemical 

mention in between the chemical and disease mentions comprising the candidate, and one 

that checks for the pattern. *-induced appearing in between.

5.4. Accelerating Application Development

Our method is in large part motivated by the new programming model introduced by weak 

supervision, and the novel hurdles that developers face. For example in the Disease Tagging 

application above, we observed developers significantly slowed down in trying to to leverage 

the rich disease ontologies and matching heuristics they had available without introducing 

too many dependencies between their labeling functions. In addition to being slowed down, 

we also observed developers running into significant pitfalls due to unnoticed correlations 

between their weak supervision sources. In one collaborator’s application, for every labeling 

function that referenced the words in a sentence, a corresponding labeling function 

2ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator/index.cgi
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referenced the lemmas, which were often identical, and this significantly degraded 

performance. By automatically learning dependencies, we were able to significantly mitigate 

the effects of such correlations. We therefore envision an accelerated development process 

enabled by our method.

To further explore the way in which our method can protect against such types of failure 

modes, we consider adding correlated, random labeling functions to those used in the 

Chemical-Disease task. Figure 5 shows the average estimated accuracy of copies of a 

random labeling function. An independent model grows more confident that the random 

noise is accurate. However, with structure learning, we identify that the noisy sources are not 

independent and they therefore do not outvote the real labeling functions. In this way, 

structure learning can protect against failures as users experiment with sources of weak 

supervision.

6. Related Work

Structure learning is a well-studied problem, but most work has assumed access to hand-

labeled training data. Some of the earliest work has focused on generalized linear models. 

The lasso (Tibshirani, 1996), linear regression with ℓ1 regularization, is a classic technique. 

Zhao & Yu (2006) showed that the lasso is a consistent structure estimator. The Dantzig 

selector (Candes & Tao, 2007) is another structure estimator for linear models that uses ℓ1, 

which can learn in the high-dimensional setting where there are more possible dependencies 

than samples. Ng (2004) showed that ℓ1-regularized logistic regression has sample 

complexity logarithmic in the number of features. ℓ1 regularization has also been used as a 

prior for compressed sensing (e.g., Donoho & Elad, 2003; Tropp, 2006; Wainwright, 2009).

Regularized estimators have also been used to select structures for graphical models. 

Meinshausen & Buhlmann¨ (2006) showed that parameter learning with ℓ1 regularization for 

Gaussian graphical models under similar assumptions also consistently selects the correct 

structure. Most similar to our proposed estimator, Ravikumar et al. (2010) propose a fully 

supervised pseudolikelihood estimator for Ising models. Also related is the work of 

Chandrasekaran et al. (2012), which considers learning the structure of Gaussian graphical 

models with latent variables. Other techniques for learning the structure of graphical models 

include grafting (Perkins et al., 2003; Zhu et al., 2010) and the information bottleneck 

approach for learning Bayesian networks with latent variables (Elidan & Friedman, 2005).

Using heuristic sources of labels is increasingly common. Treating labels from a single 

heuristic source as gold labels is called distant supervision (Craven & Kumlien, 1999; Mintz 

et al., 2009). Some methods use multi-instance learning to reduce the noise in a distant 

supervision source (Riedel et al., 2010; Hoffmann et al., 2011). Others use hierarchical topic 

models to generate additional training data for weak supervision, but they do not support 

user-provided heuristics (Alfonseca et al., 2012; Takamatsu et al., 2012; Roth & Klakow, 

2013a;b). Previous methods that support heuristics for weak supervision (e.g., Bunescu & 

Mooney, 2007; Shin et al., 2015) do not model the noise inherent in these sources. Also, 

Downey & Etzioni (2008) showed that PAC learning is possible without hand-labeled data if 

the features monotonically order data by class probability.
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Estimating the accuracy of multiple label sources without a gold standard is a classic 

problem (Dawid & Skene, 1979), and many proposed approaches are generalized in the data 

programming framework. Parisi et al. (2014) proposed a spectral approach to estimating the 

accuracy of members of classifier ensembles. Many methods for crowdsourcing estimate the 

accuracy of workers without hand-labeled data (e.g., Dalvi et al., 2013; Joglekar et al., 2015; 

Zhang et al., 2016). In data programming, the scaling of data to label sources is different 

from crowdsourcing; a relatively small number of sources label all the data. We can 

therefore learn rich dependency structures among the sources.

7. Conclusion and Future Directions

We showed that learning the structure of a generative model enables higher quality data 

programming results. Our method for structure learning is also 100× faster than a maximum 

likelihood approach. If data programming and other forms of weak supervision are to make 

machine learning tools easier to develop, selecting accurate structures for generative models 

with minimal user intervention is a necessary capability. Interesting questions remain. Can 

the guarantee of Theorem 1 be tightened for higher-order dependencies to match the 

pairwise case of Corollary 2? Preliminary experiments show that they converge at similar 

rates in practice.
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Appendix

A. Proofs

In this appendix, we provide proofs for Theorem 1 and Corollary 2 from the main text. In 

Section A.1, we provide an outline of the proof and state several lemmas. In Section A.2, we 

prove Theorem 1. In Section A.3, we prove Corollary 2, which follows directly from 

Theorem 1. In Section A.4, we prove the lemmas stated in Section A.1.

A.1. Outline and Lemma Statements

A.1.1. Outline of Theorem 1 Proof—We first show that the negative marginal log-

pseudolikelihood is strongly convex under condition (7). In particular, in Lemma 1, we 

derive the gradient and Hessian of each term of the negative marginal log-pseudolikelihood, 

and in Lemma 2, we show that the negative marginal log-pseudolikelihood is strongly 

convex under condition (7).

Next, in Lemma 3, we show that, under condition (6), the gradient of the negative marginal 

log-pseudolikelihood at the true parameter θ* is small with high probability.
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Finally, we show that if we run SGD until convergence and then truncate, we will recover 

the exact sparsity structure with high probability. In Lemma 4, we show that if the true 

parameter θ* has a small gradient, then the empirical minimum θˆ will be close to it, and in 

Lemma 5, we show that the correct sparsity structure is recovered.

A.1.2. Lemma Statements—We now formally state the lemmas used in our proof.

Lemma 1.: Given a family of maximum-entropy distributions

pθ(x) = 1
Zθ

exp θTϕ(x) ,

for some function of sufficient statistics h: Ω → ℝM, if we let J be the negative log-
pseudolikelihood objective for some event A ⊆ Ω,

J(θ) = − logpx ∼ pθ
(x ∈ A |Λ\ j),

then its gradient is

∇J(θ) = − 𝔼x ∼ pθ
[ϕ(x) | x ∈ A, Λ\ j] + 𝔼x ∼ pθ

[ϕ(x) |Λ\ j]

and its Hessian is

∇2J(θ) = − Covx ∼ pθ
[ϕ(x) | x ∈ A, Λ\ j] + Covx ∼ pθ

[ϕ(x) |Λ\ j]

Lemma 2.: Let J be the empirical negative log-pseudolikelihood objective for the event 
Λ j = Λ j

J(θ) = − ∑
i = 1

m
logpx ∼ pθ

Λi j = Λi j |Λi\ j = Λi\ j .

Let Θj denote the set of parameters corresponding to dependencies incident on either 
labeling function λj or the true label y, and let Θ\j denote all the set of all remaining 
parameters.

Then, J(θ) is independent of the variables in Θ\j, and under condition (7), J(θ) is strongly 
convex on the variables in Θj with a parameter of strong convexity of c.

Lemma 3.: Let dj be the number of dependencies that involve either λj or y, and let θ* be 
the true parameter specified by condition (6). Define W as the gradient of the negative log-
pseudolikelihood of λj at this point
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W = − ∇J θ*; X .

Then, for any δ.

Pr W ∞ ≥ δ ≤ 2d jexp −mδ2
8

Lemma 4.: Let J be a c-strongly convex function in d dimensions, and let θ  be the 
minimizer of J. Suppose kJ(θ*)k∞ ≤ δ. Then,

θ − θ* ∞ ≤ δ
c d

Lemma 5.: Suppose that conditions (6), (7), and (8) are satisfied. Suppose we run Algorithm 
1 with m samples, a sufficiently small step size η, a sufficiently large number of epochs 𝒯, 
and truncate once at the end with K𝜂𝜀 = k/2. Then, the probability that we fail to recover the 
exact sparsity structure is at most

2ndexp −mc2κ2
32d .

A.2. Proof of Theorem 1

Theorem 1.—Suppose we run Algorithm 1 on a problem where conditions (6), (7), and (8) 

are satisfied. Then, for any δ > 0, an unlabeled input dataset of size

m ≥ 32d

c2κ2log 2nd
δ

is sufficient to recover the exact dependency structure with a probability of at least 1 − δ.

Proof.: If follows from Lemma 5 that the probability that we fail to recover the sparsity 

structure is at most

2ndexp −mc2κ2
32d .

By using the provided m, the probability of failure is at most

2ndexp
− 32d

c2κ2log 2nd
δ c2κ2

32d = 2ndexp −log 2nd
δ = δ .
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Thus, we will succeed with probability at least 1 − δ.

A.3. Proof of Corollary 2

Corollary 3.—Suppose we run Algorithm 1 on a problem where conditions (6), (7), and (8) 

are satisfied. Additionally, assume that the only potential dependencies are accuracy and 
correlation dependencies. Then, for any δ > 0, an unlabeled input dataset of size

m ≥ 64n

c2κ2log 4n
δ

is sufficient to recover the exact dependency structure with a probability of at least 1 − δ.

Proof.: In this case, each labeling function λj is involved in n − 1 with other labeling 

functions, and the true label y is involved in n dependencies. Thus, d = (n − 1) + n < 2n.

We can then apply Theorem 1 to show that the probability of success is at least 1 − τ for the 

specified m.

A.4. Proofs of Lemmas

Lemma 1.—Given a family of maximum-entropy distributions

pθ(x) = 1
Zθ

exp θTϕ(x) ,

for some function of sufficient statistics h: Ω → ℝM, if we let J be the negative log-
pseudolikelihood objective for some event A ⊆ Ω,

J(θ) = − logpx ∼ pθ
(x ∈ A |Λ\ j),

then its gradient is

∇J(θ) = − 𝔼x ∼ pθ
[ϕ(x) | x ∈ A, Λ\ j] + 𝔼x ∼ pθ

[ϕ(x) |Λ\ j]

and its Hessian is

∇2J(θ) = − Covx ∼ pθ
[ϕ(x) | x ∈ A, Λ\ j] + Covx ∼ pθ

[ϕ(x) |Λ\ j]

Proof.: We first rewrite the netative log-pseudolikelihood as
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J(θ) = − log Pr
x ∼ πθ

(x ∈ A |Λ\ j)

= − log
Prx ∼ πθ

x ∈ A, Λ\ j

Prx ∼ πθ
Λ\ j

= − log
x ∈ A, Λ\ j

pθ(x)

x ∈ Λ\ j
pθ(x)

= − log
x ∈ A, Λ\ j

exp θTϕ(x)

x ∈ Λ\ j
exp θTϕ(x)

= − log ∑
x ∈ A, Λ\ j

exp θTϕ(x) + log ∑
x ∈ Λ\ j

exp θTϕ(x) .

We now derive the gradient

∇J(θ) = ∇ −log ∑
x ∈ A, Λ\ j

exp θTϕ(x) + log ∑
x ∈ Λ\ j

exp θTϕ(x)

= − ∇log ∑
x ∈ A, Λ\ j

exp θTϕ(x) + ∇log ∑
x ∈ Λ\ j

exp θTϕ(x)

= −
x ∈ A, Λ\ j

ϕ(x)exp θTϕ(x)

x ∈ A, Λ\ j
exp θTϕ(x)

+
x ∈ Λ\ j

ϕ(x)exp θTϕ(x)

x ∈ Λ\ j
exp θTϕ(x)

= − 𝔼x ∼ pθ
[ϕ(x) | x ∈ A, Λ\ j] + 𝔼x ∼ pθ

[ϕ(x) |Λ\ j]

We now derive the Hessian

Bach et al. Page 17

Proc Mach Learn Res. Author manuscript; available in PMC 2019 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



∇2J(θ) = ∇ −
x ∈ A, Λ\ j

ϕ(x)exp θTϕ(x)

x ∈ A, Λ\ j
exp θTϕ(x)

+
x ∈ Λ\ j

ϕ(x)exp θTϕ(x)

x ∈ Λ\ j
exp θTϕ(x)

= − ∇
x ∈ A, Λ\ j

ϕ(x)exp θTϕ(x)

x ∈ A, Λ\ j
exp θTϕ(x)

+ ∇
x ∈ Λ\ j

ϕ(x)exp θTϕ(x)

x ∈ Λ\ j
exp θTϕ(x)

= −
x ∈ A, Λ\ j

ϕ(x)ϕ(x)Texp θTϕ(x)

x ∈ A, Λ\ j
exp θTϕ(x)

−
x ∈ A, Λ\ j

ϕ(x)exp θTϕ(x) x ∈ A, Λ\ j
ϕ(x)exp θTϕ(x)

T

x ∈ A, Λ\ j
exp θTϕ(x)

2

= +
x ∈ Λ\ j

ϕ(x)ϕ(x)Texp θTϕ(x)

x ∈ Λ\ j
exp θTϕ(x)

−
x ∈ Λ\ j

ϕ(x)exp θTϕ(x) x ∈ Λ\ j
ϕ(x)exp θTϕ(x)

T

x ∈ Λ\ j
exp θTϕ(x)

2

= − 𝔼x ∼ pθ
ϕ(x)ϕ(x)T | x ∈ A, Λ\ j − 𝔼x ∼ pθ

[ϕ(x) | x ∈ A, Λ\ j]𝔼x ∼ pθ
[ϕ(x) | x ∈ A, Λ\ j]

T

+ 𝔼x ∼ pθ
ϕ(x)ϕ(x)T | x ∈ Λ\ j − 𝔼x ∼ pθ

[ϕ(x) | x ∈ Λ\ j]𝔼x ∼ pθ
[ϕ(x) | x ∈ Λ\ j]

T

= − Covx ∼ pθ
[ϕ(x) | x ∈ A, Λ\ j] + Covx ∼ pθ

[ϕ(x) |Λ\ j] .

Lemma 2.—Let J be the empirical negative log-pseudolikelihood objective for the event 
Λ j = Λ j

J(θ) = − ∑
i = 1

m
logpx ∼ pg

Λi j = Λi j |Λi\ j = Λi\ j .

Let Θj denote the set of parameters corresponding to dependencies incident on either 
labeling function λj or the true label y, and let Θ\j denote all the set of all remaining 
parameters.

Then, J(θ) is independent of the variables in Θ\j, and under condition (7), J(θ) is strongly 
convex on the variables in Θj with a parameter of strong convexity of c.
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Proof.: First, we show that J(θ) is independent of the variables in Θ\j. We simplify J(θ) as

J(θ) = ∑
i = 1

m
−log ∑

x ∈ Λ
exp θTϕ(x) + log ∑

x ∈ Λ\ j

exp θTϕ(x)

= ∑
i = 1

m
−log ∑

x ∈ Λ
exp θ j

Tϕ j(x) + θ\ j
T ϕ\ j(x) + log ∑

x ∈ Λ\ j

exp θ j
Tϕ j(x) + θ\ j

T ϕ\ j(x)

= ∑
i = 1

m
−log ∑

x ∈ Λ
exp θ j

Tϕ j(x) exp (θ\ j
T ϕ\ j(x) + log ∑

x ∈ Λ\ j

exp θ j
Tϕ j(x) exp (θ\ j

T ϕ\ j(x)

= ∑
i = 1

m
−log exp θ\ j

T ϕ\ j(x) ∑
x ∈ Λ

exp(θ j
Tϕ j(x)) + log exp θ\ j

T ϕ\ j(x) ∑
x ∈ Λ\ j

exp(θ j
Tϕ j(x))

= ∑
i = 1

m
−log exp θ\ j

T ϕ\ j(x) − log ∑
x ∈ Λ

exp(θ j
Tϕ j(x) + logexp θ\ j

T ϕ\ j(x) + log ∑
x ∈ Λ\ j

exp(θ j
Tϕ j(x)

= ∑
i = 1

m
−log ∑

x ∈ Λ
exp θ j

Tϕ j(x) + log ∑
x ∈ Λ\ j

exp θ j
Tϕ j(x) ,

which does not depend on any variables in Θ\j.

Next, we prove that J(θ) is c-strongly convex in the variabes in Θj. By combining the 

previous result and Lemma 1, we can derive the Hessian

∇2J Θ j = ∑
i = 1

m
−Cov(Λ, Y) ∼ pθ

Φ j(Λ, Y) |Λi = Λi + Cov(Λ, Y) ∼ pθ
Φ j(Λ, Y) |Λi\ j = Λi\ j

= − ∑
i = 1

m
Cov(Λ, Y) ∼ pθ

Φ j(Λ, Y) |Λi = Λi + ∑
i = 1

m
Cov(Λ, Y) ∼ pθ

Φ j(Λ, Y) |Λi\ j = Λi\ j .

It then follows from condition (7) that

cI ≺ ∇2J Θ j ,

which implies that J is c-strongly convex on variables in Θj.

Lemma 3.—Let dj be the number of dependencies that involve either λj or y, and let θ* be 
the true parameter specified by condition (6). Define W as the gradient of the negative log-
pseudolikelihood of λj at this point

W = − ∇J θ*; X .

Then, for any δ.
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Pr W ∞ ≥ δ ≤ 2d jexp −mδ2
8

Proof.: From Lemma 1, we know that each element of W can be written as the average of m 
i.i.d. terms. From condition (7), we know that the terms have zero mean, and we also know 

that the terms are bounded in absolute value by 2, due to the fact that the dependencies have 

values falling in the interval [−1,1].

We can alternatively think of the average of the terms as the sum of m i.i.d. zero-mean 

random variables that are bounded in absolute value by 2
m . The two-sided Azuma’s 

inequality bounds the probability that any term in W is large.

Pr W j ≥ δ ≤ 2exp −δ2

2
i = 1
m 2

m
2 ≤ 2exp −mδ2

8

The union bound then bounds the probability that any component of W is large.

Pr W ∞ ≥ δ ≤ 2d jexp −mδ2
8

Lemma 4.—Let J be a c-strongly convex function in d dimensions, and let θˆbe the 
minimizer of J. Suppose kJ(θ*)k∞ ≤ δ. Then,

θ − θ* ∞ ≤ δ
c d

Proof.: Because J is c-strongly convex,

∇J θ* − ∇J(θ ) T θ* − θ ≥ c θ* − θ 2
2 .

(θ ) = 0

∇J θ* T θ* − θ ≥ c θ* − θ 2
2 .

Then, because kJ(θ*)k∞ ≤ δ,

c θ* − θ 2
2 ≤ δ θ* − θ 1

θ* − θ 2
2 ≤ δ

c θ* − θ 1 .
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Then, we have that

θ* − θ 2
2 ≤ δ2

c2d θ* − θ 2 ≤ δ
c d,

which implies that

θ* − θ ∞ ≤ δ
c d .

Lemma 5.—Suppose that conditions (6), (7), and (8) are satisfied. Suppose we run 
Algorithm 1 with m samples, a sufficiently small step size η, a sufficiently large number of 
epochs 𝒯, and truncate once at the end with. Then, the probability that we fail to recover the 
exact sparsity structure is at most

2ndexp −mc2κ2
32d .

Proof.: First, we bound the probability that we fail to correctly recover the dependencies 

involving λj. By Lemma 3, we can bound the probability that the gradient is large at θ* by

Pr ‖W‖∞ ≥ cκ
2 d

≤ 2dexp −mc2κ2
32d .

Notice that if ‖W‖∞ ≥ cκ
2 d , then θ* − θ ∞ ≤ κ /2. If then follows from Lemma 4 that

Pr θ* − θ ∞ ≥ κ /2 ≤ 2dexp −mc2κ2
32d .

If this is the case, then upon truncation, the correct dependencies will be recovered for λj. 

We now use the union bound to show that we will fail to recover the exact sparsity structure 

with probability at most

2ndexp −mc2κ2
32d .
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Figure 1. 
Algorithm 1 returns the true structure consistently when the control parameter γ reaches 1.0 

for the number of samples defined by (9). The number of samples required to identify a 

model in practice scales logarithmically in n, the number of labeling functions.
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Figure 2. 
Algorithm 1 returns the true structure consistently when the control parameter γ reaches 1.0 

for the number of samples defined by (9). The number of samples required to identify a 

model in practice scales linearly in d*, the maximum number of dependencies affecting any 

labeling function.
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Figure 3. 
Comparison of structure learning with using maximum likelihood parameter estimation to 

select a model structure. Structure learning is two orders of magnitude faster.
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Figure 4. 
Comparison of structure learning with using maximum likelihood parameter estimation to 

select a model structure. Even when tuned for better recall (top), structure learning is also 

more precise, returning 1/4 as many extraneous correlations (bottom).
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Figure 5. 
Structure learning identifies and corrects correlated, random labeling functions added to the 

Chemical-Disease task.
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