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Abstract

Baroreceptors are mechanosensitive elements of the peripheral nervous system that maintain 

homeostasis by coordinating physiological responses to external and internal stimuli. While it is 

recognized that carotid and cardiopulmonary baroreceptor reflexes modulate autonomic output to 

mitigate excessive fluctuations in arterial blood pressure and to maintain intravascular volume, 

increasing evidence suggests that baroreflex pathways also project to key regions of the central 

nervous system (CNS) that regulate somatosensory, somatomotor and CNS arousal. In addition to 

maintaining autonomic homeostasis, baroreceptor activity modulates the perception of pain, as 

well as neuroimmune, neuroendocrine, and cognitive responses to physical and psychological 

stressors. In this review, we summarize the role that baroreceptor pathways play in modulating 

acute and chronic pain perception. The contribution of baroreceptor function to postoperative 

outcomes is also presented. Finally, methods that enhance baroreceptor function, which hold 

promise in improving postoperative and pain management outcomes are presented.

Summary Statement:

We discuss the evidence that baroreceptor function modulates acute and chronic pain perception 

and contributes to perioperative outcomes. As such, these little-studied associations represent an 

opportunity to investigate a novel process that impacts: 1) our understanding of physiological 

factors that mediate chronic pain and perioperative outcomes and 2) the implement novel 

interventions that will improve pain management and perioperative outcomes.
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Introduction

The central (CNS) and peripheral (PNS) nervous systems work in concert to maintain 

homeostasis in response to psychological and physical stressors. An ensemble of 

coordinated biological processes modulates sensory, emotional, motor, autonomic, 

neuroendocrine, and immune responses to tissue damage, including surgery.1–5 

Mechanosensitive baroreceptor afferents mediate physiological responses to internal stimuli 

by integrating and modulating PNS and CNS responses to internal stimuli and stressors to 

maintain homeostasis. These receptors respond to changes in arterial pressure (AP), venous 

pressure, and respiratory dynamics.6–8 Baroreceptor afferents transmit information to 

discrete regions of the brain stem nucleus tractus solitarius (NTS), via afferents coursing in 

or with the vagus nerve (aortic depressor nerve and cardiopulmonary afferents) and 

glossopharyngeal nerve (carotid arterial baroreceptors). Carotid and cardiopulmonary 

baroreceptor reflexes modulate autonomic output to maintain resting blood pressure, buffer 

excessive fluctuations in AP (carotid sinus baroreceptors), and to maintain intravascular 

volume (cardiopulmonary baroreceptors). Baroreceptor activity engages CNS networks that 

regulate somatosensory, somatomotor, CNS arousal, as well as autonomic, neuroimmune, 

and neuroendocrine responses to physical and psychological stressors.2 An important, but 

under-investigated, area of study is whether changes in baroreceptors contribute to 

pathological conditions in a variety of clinical settings. In this review, we summarize the 

neurobiology of the baroreceptor function and how baroreflex mechanisms are thought to 

contribute to acute and chronic pain conditions as well as perioperative outcomes.

Baroreceptor Reflex

Baroreceptor activation: Arterial, carotid sinus, baroreceptors are mechanoreceptors that 

are located in the aortic arch and carotid sinuses and are “tuned” to changes in systemic 

arterial pressure. These receptors have terminals associated with both myelinated (Aδ) and 

unmyelinated (C) afferent fibers in the inner adventitial layer of the arterial wall that respond 

to stretch generated by transmural pressure on a beat-to-beat basis.8 Stimulation of arterial 

baroreceptors modulates transient changes in blood pressure to maintain a homeostatic set 

point for AP by dynamically adjusting sympathetic and parasympathetic output to the heart 

and the peripheral vascular system. Arterial baroreceptor mechanoreceptors respond to 

increases in intramural pressure depending on resting AP, mainly systolic and pulse 

pressure. As resting AP increases, a given incremental change in AP evokes greater 

activation of carotid sinus baroreceptor afferents, thereby promoting a greater increase in 

parasympathetic tone and a decrement in sympathetic tone. For normotensive individuals, 

the threshold for baroreceptor activation is at a carotid mean arterial pressure of 

approximately 60 mmHg9, and it is active across the whole range of normal blood pressures.
10 This threshold changes with aging with lower carotid sinus pressure thresholds observed 

for young subjects (45 mmHg at 22 ± one year) compared to older subjects (80 mmHg at 61 

± two years).11

Nucleus tractus solitarius and cardiovascular response: The NTS is the central 

projection site for baroreceptors and modulates the activity of spinal and supraspinal 

networks that coordinate the responses to environmental stressors. The NTS sends excitatory 
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glutamatergic projections to the caudal ventrolateral medulla12, which projects GABAergic 

inhibitory fibers to the rostral ventrolateral medulla.13 This short neural circuit converts the 

baroreceptor excitatory input to NTS into an inhibitory output that reduces the descending 

excitatory tone originating in the rostral ventrolateral medulla that projects to the 

intermediolateral region of the spinal cord.12,13 Activation of this pathway produces a 

reduction in cardiosympathetic tone and vascular resistance.14 The NTS also sends direct 

excitatory projections to the dorsal vagal motor nucleus and nucleus ambiguus, which 

enhances parasympathetic output.15,16 This baroreceptor-elicited shift in autonomic balance 

towards the parasympathetic side results in a reduction in heart rate, AP, and adrenal 

secretion of adrenaline.17,18

Assessment of Baroreflex Sensitivity and Influencing Factors

One way of assessing baroreceptor function is through the measurement of the baroreceptor 

sensitivity (BRS), which is typically defined by the relationship between the change in AP 

and the associated effect on inter-beat interval19,20 and most procedures measure the change 

in heart rate as a function of the change in systolic AP (SAP). The development of reliable 

methods to estimate BRS has opened a window that enables the investigation of the role of 

baroreflex dysfunction in many medical conditions. The gold-standard procedure for 

assessing BRS is to measure the ratio of change in heart rate to the change in SAP in 

responses to the intravenous administration of a low dose of a vasopressor agent (e.g., 

phenylephrine).21–26 In addition, non-invasive methods have been developed to allow for the 

assessment of BRS in response to the small natural continuous variations in blood pressure, 

i.e., ‘spontaneous BRS.’27 In Fig. 1 illustrates how the simultaneous recording of beat-to-

beat SAP and heart rate is used to estimate BRS by the sequence method (For more details 

on the methods for the estimation of BRS see the Supplemental Digital Content 1).

Thresholds for normal and abnormal spontaneous BRS have been proposed by the 

Autonomic Tone and Reflexes After Myocardial Infarction Study.25,28 In general, a normal 

BRS is defined as > 6 ms/mmHg a moderate dysfunction as 3–6 ms/mmHg, and severe 

dysfunction as < 3 ms/mmHg. However, estimates of BRS must be interpreted in the context 

of gender, age, and circadian rhythm. Female subjects have 50% lower cardiac baroreflex 

sensitivity than men29, which is associated with lower AP and estrogen-mediated central 

sympathoinhibition and peripheral vasodilation.30 BRS fluctuates across the reproductive 

cycle with increases during the mid-luteal phase when estrogen and progesterone levels are 

elevated31,32 and around the ovulation33 whereas it is markedly suppressed during 

pregnancy34, contributing to pregnancy complications such as orthostatic hypotension and 

severe hypotension with peripartum hemorrhage.31 Also, there is an age-related decline in 

BRS that results from increased arterial wall stiffness and a subsequent reduction in the 

ability of baroreceptor mechanoreceptors to process changes in arterial pressure.35 This 

leads to increases in sympathetic nerve activity and SAP with aging.36 Finally, diurnal 

variations in BRS have been identified in humans, with reduced sensitivity after waking 

compared to sleep, although other more complex patterns have also been described.37
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Baroreflex Regulation of Pain Perception

Influence of arterial and venous blood pressure on pain perception: To date, 

most studies have indirectly examined the relationship between BRS and pain perception by 

examining the association of pain perception with experimentally-induced changes in AP 

and venous blood pressure (i.e., physiological events that activate baroreceptor afferent 

activity). In animals, vasopressor mediated arterial hypertension in response to vasopressor 

agents38 or abdominal aortic occlusion produce hypoalgesia or antinociceptive behaviors.39 

Similarly, genetically hypertensive rats are hypoalgesic, which is reversed by lowering 

arterial blood pressure via ganglionic blockade or by right vagatomy.40 Similarly, chronic 

hypertension induced by renal artery clipping or increasing dietary salt in salt-sensitive 

rats41 induces a hypoalgesia that is reversed by lowering blood pressure.42 Noteworthy, 

spinal nociceptive transmission is diminished in genetically hypertensive rats43, and the 

observed hypoalgesia can be reversed with pharmacologic procedures that lower AP. 

Similarly, elevating arterial pressure in normotensive rats impairs spinal nociceptive 

transmission39 and in normotensive animals lowering AP induces hyperalgesia.40 Elevating 

venous pressure by volume expansion activates cardiopulmonary volume vagal afferents and 

evokes a profound hypoalgesia in rats.44–46 In addition to venous blood pressure, the 

activation of vagal afferents with intravenously administered morphine, met-

enkephalimamide, or other vagal afferent stimulants, produces an almost immediate 

cardiopulmonary mediated hypoalgesia in rats that appears to be independent of CNS 

penetration.46–48

An association between AP and pain perception has also been demonstrated in humans, with 

evidence that healthy normotensive individuals experience decreased pain sensitivity as a 

function of increasing resting AP.49–58 In contrast, individuals with chronically low resting 

AP are prone to thermal hyperalgesia.59 As observed in rats, hypertension-associated 

hypoalgesia in humans is correlated with systolic AP as opposed to diastolic AP.57 The 

processing of nociceptive stimuli also varies throughout the cardiac cycle such that during 

systole (e.g., maximal baroreceptor load) pain sensitivity is diminished compared to during 

diastole.60–63 There is a greater effect size of systolic AP compared to diastolic AP on pain 

sensitivity.49,50,56,64–67 This further suggests a pain-modulatory role for arterial 

baroreceptors although the relative contribution of slowly and rapidly adapting baroreceptor 

afferents to sustained versus phasic changes in blood pressure on pain perception remains an 

open question.

Changes in AP have also been reported to contribute to the suppression of pain perception 

measured in conditioned pain modulation paradigms, procedures which assesses the strength 

of endogenous pain regulatory systems.68,69 The strength of endogenous inhibitory pain 

positively correlate with increases in AP elicited by a noxious conditioning stimulus.70 

Considering that reduced conditioned pain suppression has been linked with the 

development of chronic pain71, it remains to be determined if reduced baroreceptor function 

and blood pressure are risk determinates for acute perioperative and chronic pain.

It should also be noted that some studies have not observed a reciprocal relationship between 

AP and pain sensitivity. The hypoalgesia exhibited by hypertensive patients persists after 
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reductions of AP with medical treatment.72 Hypoalgesia is already present in borderline 

hypertension and is antecedent to established hypertension.72 Normotensives with a family 

history of hypertension, and a presumed genetic risk for hypertension, also have reduced 

responsiveness to acute pain despite having a normal resting AP73–76, although this has been 

reported for males but not for females77 and has not been observed by others investigators.72 

Moreover, pain tolerance measured in normotensive individuals at age 14 predicts 

ambulatory blood pressure later in life.78 It has been proposed that mechanisms independent 

of AP, such as venous hypertension, which is antecedent to the expression of essential 

hypertension, may explain the temporal discordance between early life AP and pain 

sensitivity.40 In support of this hypothesis, an increase in venous pressure – a stimulus that 

stimulates low-pressure cardiopulmonary baroreceptors and induces hypoalgesia - occurs 

before the onset of arterial hypertension in genetically hypertensive rats.40 Furthermore, 

low-pressure cardiopulmonary baroreceptors, unlike arterial baroreceptors, do not reset and 

continue exerting a modulatory influence on pain processing in the presence of sustained 

elevation in AP.79

In summary, there is evidence that supports an association between AP and pain perception: 

pain sensitivity is correlated with responses to acute episodic changes in AP, is diminished in 

chronic hypotension, and is inversely correlated with resting AP in normotensive 

individuals. Also, a substantial body of functional and anatomical evidence supports the 

causal nature of this association. The temporal and causal relation between AP, BRS, and 

pain perception requires further investigation that promises to reveal a better understanding 

of the pathophysiological processes that contribute to aberrant pain perception and 

autonomic function.

Baroreflex stimulation and pain perception: The demonstrated relationship between 

pain perception and carotid sinus and cardiopulmonary baroreceptor activation1,46,58,80,81 

implies that this relationship can be affected by changes in BRS; however, the relationship 

between BRS and pain perception has been much less studied. Spontaneous BRS has been 

shown to be inversely correlated with ischemic and thermal pain responses in normotensive 

human subjects.82 Similarly, a reciprocal relationship between BRS assessed during cold 

noxious stimulation has been reported in normotensive human subjects.83 It should be noted 

that the relationship between BRS and pain is temporally dynamic and influenced by the 

individual’s physiological and emotional status. For example, the magnitude of the 

relationship between BRS and cold pain perception is inversely associated with resting AP.83 

Moreover, BRS assessed with rises in AP increases versus decreases in AP are differentially 

associated with experimentally-evoked pain in normotensive subjects.82

In an attempt to provide insight into the causal nature of these associations, investigators 

have used direct mechanical or electrical manipulations of baroreceptors, which allow more 

stimulus control than other indirect methods of stimulation (e.g., tilt-table, pharmacological, 

and volume-induced AP changes). The mechanical stimulation of carotid baroreceptors with 

external neck suction, which simulates an AP increase, reduces mechanical pain84 although 

it has no effect on thermal84, electrically-induced pain61, or experimentally-induced 

ischemic pain85 in normotensive human subjects. In contrast, external neck compression, 

which mimics a reduction in AP, reduces electrically-induced pain ratings in normotensive 
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adults.61 The electrical stimulation of the cervical vagus, which activates baroreceptor 

afferents, produces antinociceptive effects at high intensities and pronociceptive effects low 

intensities of stimulation in rats86, cats87, and humans.88 Thus, carotid baroreceptors and 

vagal afferents exhibit a complex and dynamic influence on nociceptive processing.

Collectively, these findings provide evidence to support the view that baroreflex function 

modulates pain perception. The occurrence, efficacy, and directionality of baroreceptor 

reflex activity as indexed by BRS on pain perception is influenced by many factors, such as 

level of resting AP, pain modality, method of baroreceptor stimulation, among many other 

factors. At present, we do not know if alterations in baroreflex function contribute to chronic 

pain syndromes where BRS is known to be substantially reduced (see below section 

‘Clinical Implications of Impaired Baroreceptor-Mediated Pain Modulation’).

Physiological mechanisms mediating baroreflex inhibition of pain: The 

mechanisms and pathways by which elevations in arterial and venous blood pressure 

decreases pain sensitivity are not fully understood. Arterial and venous blood pressure-

related hypoalgesia have been associated with carotid sinus46,62,89,90 and cardiopulmonary 

baroreceptors.47,91,92 Several studies have documented an attenuation of hypertension-

associated hypoalgesia by decreasing or interrupting the sinoaortic afferent limb of the 

baroreflex.38,45,91,93 Volume expansion induces hypoalgesia that is partially reversed by 

right vagotomy.44–46 In addition, noxious heat-evoked responses of wide-dynamic-range and 

high-threshold lumbosacral spinal dorsal horn neurons are reduced in spontaneously 

hypertensive rats compared to normotensive controls.43 In agreement with this observation, 

spontaneous BRS correlates with the temporal summation of pain since higher resting 

systolic AP and greater BRS are associated with significantly lower temporal “wind-up” of 

heat pain in healthy human subjects.94 These findings suggest that (a) AP-mediated 

hypoalgesia requires an intact baroreceptor afferent input and (b) the activation of second-

order spinal nociceptive neurons by primary nociceptive afferents is inhibited by 

baroreceptor stimulation evoked by increases in AP.

Animal studies support a role for endogenous opioid activity as one of many possible 

endogenous neurotransmitter systems involved in hypertension associated hypoalgesia.
41,42,95–98 Maixner and colleagues demonstrated that naloxone reverses the hypoalgesia 

observed in spontaneously hypertensive rats in both pre-hypertensive neonatal and 

hypertensive adult animals.40 Similarly, sympathetic inhibition resulting from baroreceptor 

stimulation is mediated by endogenous opioid networks in rabbits99 that appear to originate 

in the NTS and rostral ventrolateral medulla.100 Hypertensive rats exhibit neurochemical 

markers of elevated opioid activity in the spinal cord and other CNS nuclei.41,101 

Interestingly, it has been proposed that in the presence of essential hypertension there is 

reduced hypothalamic sensitivity to endogenous opioids, which leads to (a) a reduction in 

baroreflex-inhibition of the sympathetic output, (b) an increase and prolongation of AP 

response to environmental stimuli, (c) prolonged baroreceptor stimulation, and finally, (d) an 

excessive release of endogenous opioids.102 The proposed excessive release of endogenous 

opioids, whether elicited by baroreflexes or by non-baroreflex mechanisms (e.g., a primary 

brain stem nuclei dysfunction103), may mediate the hypoalgesia seen in hypertensive 

conditions. In human studies, hypertensive subjects exhibit enhanced levels of circulating 
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endorphins and diminished sensitivity to noxious thermal stimuli.104 Of note, pain-relieving 

actions of angiotensin II, which is increased several hypertensive conditions, have been 

related to the AT2-receptor-mediated central release of endogenous opioids.105 However, a 

conclusive role for endogenous opioids in hypertension-associated hypoalgesia remains to 

be established, as naloxone fails to reverse hypoalgesia in hypertensive humans.50,106

A second likely mediator of hypoalgesia under hypertensive conditions and baroreceptor 

stimulation is the activation of α2-adrenergic receptors in brain regions involved in both 

autonomic and sensory processing. Noteworthy, NTS, rostral ventrolateral medulla, and 

caudal ventrolateral medulla contain noradrenergic and adrenergic neurons.100,107 

Microinjection of the α2-adrenergic receptor agonist clonidine into NTS produces analgesia 

mediated by opioid receptors in normotensive rats and spontaneously hypertensive rats.108 

Of note, morphine administration to the region of the NTS produces naloxone-reversible 

analgesia in rats.109 Both analgesia induced by increased AP and hypoalgesia in 

spontaneously hypertensive animals are abolished following α-adrenergic blockade.46,97,110 

Again, the translation to humans is lacking, although there is indirect evidence that subjects 

with elevated AP within the normotensive range demonstrate increased pain tolerance along 

with higher circulating levels of norepinephrine.111

Clinical Implications of Impaired Baroreceptor-Mediated Pain Modulation

Baroreceptor Dysfunction and Chronic Musculoskeletal Pain: Emerging evidence 

suggests that diminished BRS not only augments the perception pain to experimental 

noxious stimuli but also contributes to the etiology of chronic musculoskeletal pain 

conditions, such as fibromyalgia, temporomandibular disorders, and chronic back pain.
58,64,112,113 In these patients, changes in the sensitivity to experimental pain and the 

perceived intensity of ongoing clinical pain correlates with diminished BRS and resting AP.
94,112,114 These chronic pain states share several features including altered autonomic 

nervous system function.115 Specifically, many fibromyalgia patients show a high 

prevalence of orthostatic hypotension.116 Fibromyalgia patients also exhibit a negative 

correlation between BRS sensitivity and clinical pain intensity and the severity of clinical 

complaints, and there is a reduction in resting BRS by nearly 35% in fibromyalgia patients 

compared to healthy control women.113 Furthermore, systolic, diastolic, and mean arterial 

pressures are correlated with thermal and ischemic pain in males but not females, with 

higher blood pressure associated with lower pain sensitivity in males.117,118 The observed 

sex difference in the blood pressure-pain sensitivity relationships coupled with a reduction in 

BRS in females may represent an important risk pathway that partially explains the female 

predominance of common chronic pain conditions like fibromyalgia119 and sex differences 

in responses to both pharmacologic and non-pharmacologic interventions for pain.120

At the population level, there is a lower incidence and prevalence of common 

musculoskeletal pain conditions in individuals with elevated AP, supporting a relationship 

between hypertension and hypoalgesia in various chronic pain states. In a large headache 

study, higher systolic and diastolic blood pressures were associated with a reduced risk for 

non- migrainous headache121 and chronic musculoskeletal complaints.122 Moreover, there is 

a significant negative relationship between several self-reported chronic pain conditions and 
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hypertension.123 The association between AP and the prevalence/incidence of chronic pain 

could be mediated by an impaired baroreceptor function that disrupts the normal modulatory 

effect of AP on pain processing. Whether altered baroreflex function represents a risk factor 

for the onset and persistence of chronic musculoskeletal pain and whether strengthening of 

baroreflex function represents a resilience factor that protects from common chronic pain 

conditions are questions that remain to be answered.

Baroreflex Dysfunction and Inflammatory Mediated Pain: BRS is inversely 

associated with carotid atherosclerosis inflammatory markers124, subclinical 

hypothyroidism125, and pregnancy-induced hypertension.126 Baroreflex dysfunction can 

occur secondary to autonomic dysfunction in response to focal or systemic pathologies.127 

While autonomic dysfunction is generally thought to be a consequence of chronic 

inflammation, new research indicates that in many cases autonomic dysfunction actually 

precedes the development of some of these conditions. Compared to healthy controls, 

patients at risk of developing rheumatoid arthritis (i.e., positive for multiple auto-antibodies) 

have lower cardio-parasympathetic activity and elevated cardio-sympathetic activity, 

manifested by reduced HRV and elevated resting heart rate. Individuals at risk for 

rheumatoid arthritis display a cardio-parasympathetic/sympathetic profile similar to patients 

with established rheumatoid arthritis as well as higher serum levels of norepinephrine, an 

indicator of augmented sympathetic nervous activity.128 In patients with rheumatoid arthritis 

who have suffered a stroke, inflammation is reduced on the paralyzed side.129 Moreover, 

sympathetic tone is positively correlated with plasma IL-6 levels in hypertensive 

postmenopausal women.130 Consistently, central sympathetic inhibition in hypertensive 

patients reduces systemic TNFα levels in young healthy non-pregnant women.131 Thus, 

these clinical studies demonstrate a clear baroreflex and systemic autonomic dysfunction 

association with inflammation.

Animal studies suggest that the association between autonomic dysfunction and 

inflammation depends on the bi-directional communication between the autonomic nervous 

system, neuroimmune, and inflammatory processes (reviewed in detail elsewhere132,133). 

Thus, the severity of inflammation is not merely immune-mediated but is also modulated by 

the nervous and endocrine systems. Peripheral mediators of inflammation, specifically 

interleukin IL-1β and TNFα activate vagal afferents. The efferent limb of this reflex 

involves vagal parasympathetic fibers that release acetylcholine, which deactivates 

macrophages, preventing the secretion of inflammatory cytokines, and inhibits the synthesis 

of TNF-α in innervated immune organs, including the liver, spleen, and heart.23,134 

Moreover, baroreflex activation diminishes neutrophil migration and synovial concentrations 

of inflammatory cytokines TNFα, IL-1β, and IL-6 in the rat by inhibiting sympathetic drive 

to the knee in an experimental arthritis model.135 Unlike parasympathetic anti-inflammatory 

effects, sympathetic stimulation is associated with pro-inflammatory effects mediated by that 

activation of adrenergic receptors on immune cells or indirectly via numerous mechanisms, 

including the production and distribution of lymphocytes and modulation of the release of 

pro-inflammatory peptides.136 In a rat model of stroke, infection rates are reduced after 

sympathectomy, which attenuates sympathetically-mediated immunosuppression.137
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Emerging evidence suggests a direct causal relationship between baroreflex function and 

inflammatory reflex arcs. The electrical activation of baroreflex pathways attenuates joint 

inflammation in experimental arthritis induced by the administration of zymosan into the 

femorotibial cavity in rats with lumbar sympathectomy, adrenalectomy, celiac 

subdiaphragmatic vagotomy or splenectomy.135 Baroreflex activation attenuates neutrophil 

migration and the synovial levels of pro-inflammatory cytokines TNF, IL-1β, and IL-6 but 

not anti-inflammatory cytokine IL-10.135 Baroreflex and autonomic dysfunctions also 

modulate local and systemic inflammatory in animal inflammatory models.138 The 

autonomic regulation of inflammatory mediators act either directly on nociceptors or 

indirectly on sympathetic nerve terminals to produce and release inflammatory substances 

that contribute to the perception of pain139 and chronic inflammatory pain conditions like 

arthritis.140 In addition, afferent pain signaling can directly modulate other components of 

inflammation, including plasma extravasation and neutrophil function, which are modulated 

by vagal afferent activity.141 The sympathetic contribution to hyperalgesia has also been 

demonstrated in humans142, and it is well-described in neuropathic pain conditions such as 

complex regional pain syndromes.

Baroreflex Dysfunction and Perioperative Pain: The putative causal relationship 

between baroreflex dysfunction and exaggerated inflammation in human subjects is of 

substantial relevance to perioperative outcomes. Baroreflex dysfunction is observed 

preoperatively in patients with several comorbidities and postoperatively, particularly after 

endarterectomy or other neck surgeries affecting the carotid sinus nerve.127 In a prospective 

surgical study 143 that examined thirty patients undergoing carpal tunnel surgery who 

underwent preoperative BRS testing and postoperative pain assessments at 6 weeks (acute 

pain) and ~1 year (persistent pain), there was a significant negative correlation between a 

measure of heart-rate variability (i.e., the square root of the mean squared differences of 

successive R-R intervals, RMSSD) and acute postoperative pain. Preoperative resting AP, 

and presumably, baroreceptor activation, has also been reported to be associated with 

postoperative pain intensity at 24 h and 48 h postoperatively in men undergoing 

prostatectomy, even after accounting for patient-controlled opioid use.144 Similarly, there is 

a negative correlation between resting preoperative AP and postoperative pain after cesarean 

section.145

Baroreceptor dysfunction associated with impaired autonomic homeostasis increases the 

vulnerability to the hypotensive effects of general anesthesia.146,147 Chronic hypertensive 

patients have lower baseline values of BRS and exhibit a more pronounced decrease in both 

systolic and diastolic AP following propofol administration.148 Furthermore, endotracheal 

intubation, which is a sympathetic stimulus that should raise AP, decreases AP in chronic 

hypertensive patients.148 Intraoperative hypotension caused by diminished baroreceptor 

activation is likely to contribute to augmented inflammatory reactions to surgical trauma, 

and as a result, to exaggerate acute postoperative pain and an increased vulnerability to 

chronic postoperative pain. Further work is required to establish the contribution of 

diminished BRS to perioperative adverse events, postoperative pain and the likelihood of 

developing persistent pain following common surgical procedures.
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The Association of Medical and Health Conditions with BRS

Significant alterations in BRS have been observed in several diseases and health conditions 

(Fig. 2). Low BRS is commonly seen in patients with hypertension and diabetes149,150, 

carotid atherosclerosis151,152, obesity153, in smokers154, and high alcohol consumption.155 

Patients with obstructive sleep apnea have an attenuated BRS156, which is associated with 

increased blood pressure variability157, increased sympathetic activity158, desensitization of 

vascular adrenergic receptors, and decreased peripheral vascular adrenergic responses.159 In 

the context of perioperative outcomes, this autonomic dysfunction is of relevance since it is 

linked to cardiovascular morbidity and obstructive sleep apnea.160 Autonomic dysfunction is 

also prevalent in patients with chronic kidney disease who have an increased risk of sudden 

cardiac death associated with reduced spontaneous BRS.161 Interestingly, BRS dysfunction 

is correlated with glomerular filtration rate162, suggesting that there is a direct association 

between reduced BRS and declining renal function. All of these BRS-associated events can 

be further aggravated by the fact that prolonged bed rest induces rapid detrimental changes 

in baroreflex function.163 Congruent with a baroreflex-mediated modulation of pain, there is 

an increased prevalence of chronic pain and/or greater pain perception in patients with 

conditions with reduced BRS as well as obstructive sleep apnea164, diabetes165, obesity166, 

chronic kidney disease 167, smoking168, alcoholism169, and hypertension170, although the 

mechanisms mediating these associations are not yet well understood. (see Fig. 2)

Baroreflex dysfunction expressed as a reduced BRS has been reported in several 

cardiovascular conditions such as essential hypertension, impaired cardiac contractility171, 

post-myocardial infarction sudden death172, heart failure173,174, coronary artery disease25, 

and atrial fibrillation.175 Baroreflex function has also been implicated in modulating muscle 

tone62, sensorimotor performance176, startle reflex177, cortical activity3, and sleep178, 

cognitive performance179–182, and cortical arousal.80 Of note, about fifty percent of cardiac 

surgery patients183,184 and up to 26% of elderly non-cardiac surgery patients185 experience 

early postoperative cognitive dysfunction, which can persist in the long-term, significantly 

diminishing the life quality. The etiology of postoperative cognitive dysfunction is 

multifactorial and known to be associated with several patient-related factors.186 It is not 

known if BRS contributes to postoperative changes in cognition. The pathophysiological 

processes involved in postoperative surgical outcomes are complex; however, it is clear that 

postoperative outcomes do not solely result from surgical insult but instead are strongly 

influenced by the patient’s preoperative physiologic status that is regulated, at least in part, 

by baroreceptor function and BRS.

Is BRS a Modifiable Risk Factor?

While there are several interventions that can modify BRS, the most extensively assessed 

approach is vagal nerve stimulation, which has been evaluated for the treatment of a variety 

of conditions: neurological (partial seizures187, drug-resistant epilepsy188, tinnitus189,190, 

traumatic brain injury191,192, stroke193), psychiatric (Alzheimer’s disease194,195, cognitive 

decline196, posttraumatic stress disorder197, treatment-resistant anxiety disorders198), 

painful/inflammatory (headaches199,200, rheumatoid arthritis201,202, fibromyalgia203, 

chronic pelvic pain204, Crohn’s disease205), and cardiovascular/metabolic (coronary artery 

disease206, heart failure207, hypertension208–211, obesity212). Among these conditions where 
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pain, inflammation, cognitive impairment, and cardiovascular events are likely to occur, 

vagal nerve stimulation has been proposed as a preoperative optimization procedure with the 

goal of reducing the incidence of adverse postoperative outcomes.

Other less invasive procedures that have been suggested to increase BRS in a clinically 

meaningful way include increasing venous pressure via fluid management45,213,214, 

acupuncture or somatic afferent stimulation215–218, the stimulation of cranial vagal afferents 

arising from the ear’s concha219,220, cardiovascular conditioning221–223, operant learning 

procedures224, intraoral appliances114, and relaxation/biofeedback therapies225–228. Future 

studies are required to assess the effects of these procedures on BRS, acute and chronic pain 

perception and perioperative surgical outcomes.

Conclusions

We have summarized the evidence suggesting a role for baroreceptor function in both acute 

and chronic pain conditions as well as perioperative outcomes. While the measurement of 

baroreflex function in the perioperative period currently remains mostly relegated to the 

research environment, the assessment of perioperative BRS is highly likely to yield 

important clinically meaningful information that leads to novel strategies for organ 

protection and pain management. Preoperative recognition of impaired baroreflex function 

as an important modifiable risk factor requires exploration. Further research in this field is 

warranted since it is likely to provide actionable information that will reduce the sequelae of 

surgical stress and improve the management of chronic pain, and adverse surgical outcomes. 

Existing non-invasive interventions known to increase BRS should be explored for managing 

patients with chronic pain and implemented preoperative to optimization surgical outcomes.
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FIGURE 1: 
Estimation of BRS using the sequence method. ECG and SAP waveforms are recorded 

simultaneously, then beat-to-beat SAP and the calculated R-R intervals (RRI) are plotted 

against time course. Panel A: SAP and RR interval signals and the baroreflex sequences 

acquired using the sequence method. Closed squares indicate UP sequences. Open squares 

indicate DOWN sequences. Sequence selection criteria: SAP > 0.5 mmHg, RRI > 1 ms, 

sequence > 3, a significant correlation coefficient (r > 0.9). Note that the significant 

sequences cluster in segments where SAP and RRI signals apparently oscillate more 
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coherently (in this case, at the start and the end of this recording.). Panel B: Within-subject 

variability of the BRS. Mean UP, DOWN, and overall BRS calculated from the sequences 

shown in panel A.
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FIGURE 2: 
Reduced BRS is frequently observed in patients with cardiovascular, renal, sleep, and 

metabolic disorders, a feature that is shared with acute and chronic pain conditions, and that 

is associated with high prevalent chronic pain in these disorders. AF: atrial fibrillation. 

CAD: coronary artery disease. CKD: chronic kidney diseases. TMD: Temporal mandibular 

disorders.

Suarez-Roca et al. Page 26

Anesthesiology. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Suarez-Roca et al. Page 27

TABLE 1:

Association between BRS and AP with persistent postoperative pain

AP or BRS measurements Surgical procedure Outcome

Preoperative BRS Carpal tunnel release Negative correlation with both acute and persistent postoperative pain.143

Presurgical systolic AP Prostatectomy Negative correlation with 24h and 48h postoperative acute pain.144

Resting preoperative blood pressure Cesarean section Negative correlation with postoperative pain.145
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