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Mass spectrometry-based proteome
profiling of extracellular vesicles and their
roles in cancer biology
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Abstract
Over the past three decades, extracellular vesicles (EVs) have arisen as important mediators of intercellular
communication that are involved in the transmission of biological signals between cells to regulate various biological
processes. EVs are largely responsible for intercellular communication through the delivery of bioactive molecules,
such as proteins, messenger RNAs (mRNAs), microRNAs (miRNAs), DNAs, lipids, and metabolites. EVs released from
cancer cells play a significant role in signal transduction between cancer cells and the surrounding cells, which
contributes to the formation of tumors and metastasis in the tumor microenvironment. In addition, EVs released from
cancer cells migrate to blood vessels and flow into various biological fluids, including blood and urine. EVs and EV-
loaded functional cargoes, including proteins and miRNAs, found in these biological fluids are important biomarkers
for cancer diagnosis. Therefore, EV proteomics greatly contributes to the understanding of carcinogenesis and tumor
progression and is critical for the development of biomarkers for the early diagnosis of cancer. To explore the potential
use of EVs as a gateway to understanding cancer biology and to develop cancer biomarkers, we discuss the mass
spectrometric identification and characterization of EV proteins from different cancers. Information provided in this
review may help in understanding recent progress regarding EV biology and the potential roles of EVs as new
noninvasive biomarkers and therapeutic targets.

Introduction
Extracellular vesicles (EVs) are membrane-surrounded

vesicles released by numerous cell types into the extra-
cellular microenvironment1–3. EVs are involved in cell–cell
communication, coagulation, inflammation, immune
response modulation, and disease progression2,4–7.
Although EVs vary in size, biological function, and com-
ponents, their significance in cancer progression and the
potential use of EV molecules as novel cancer biomarkers
has gradually increased. Cancer cells actively release
EVs into neighboring tissues, and these EVs play

dynamic roles in cancer progression and metastasis,
invasion, angiogenesis, tumorigenesis, and immune
modulation8–10. EVs released by cancer cells are usually
chosen as a gateway in the search for biomarkers for a
specific cancer type. Recent results pertaining to EV-cargo
molecules, including proteins and miRNAs, are sum-
marized in EVpedia (http://evpedia.info), an integrated
and comprehensive database of EVs11.
The main focus of this review is proteome profiling of

EVs using mass spectrometry (MS)-based proteomic
approaches. We discuss the mass spectral characterization
of isolated EV proteins from different cancers and the use
of these proteins as predictive cancer biomarkers. Addi-
tionally, we summarize the key characteristics of enriched
proteins in cancer-associated EVs as potential therapeutic
targets and provide novel information on their roles in
cancer development and progression. Information
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provided in this review may help in understanding recent
progress regarding EV biology and the prospective roles of
EVs as new noninvasive biomarkers and therapeutic tar-
gets, as well as emerging therapeutic opportunities and
associated challenges.

Classification of EVs
EVs are small spherical vesicles that are secreted into

the extracellular milieu by many cell types. The term “EV”
was invented by the International Society of Extracellular
Vesicles (ISEV) and is used to define all phospholipid
bilayer-bound vesicles that are secreted by cells into the
extracellular microenvironment, regardless of the differ-
ences in biogenesis, size, and composition12,13. The roles
of EVs in different physiological and pathological pro-
cesses have made them a novel field of research. EVs are
categorized into several subtypes based on their size,
density, shape, subcellular origin, function, and molecular
cargo14. The four major subtypes of EVs are exosomes,
microvesicles, apoptotic bodies, and oncosomes (Table 1
and Fig. 1). Exosomes are 30–200-nm-sized homogeneous
membrane vesicles, and they form through the endosomal
trafficking pathway5,15,16. Exosomes contain late endoso-
mal markers, even though biochemically indistinguishable
vesicles can bud directly from the plasma membrane16,17.
They play critical roles in cell–cell communications, such
as that occurring during the regulation of cell and tissue
homeostasis, as well as in pathological conditions18.
Microvesicles are 100–1000-nm-sized heterogeneous
membrane vesicles that originate via outward budding
and the fission of the plasma membrane due to dynamic
interactions during phospholipid redistribution. Phos-
pholipid distribution is controlled by aminophospholipid
translocases16,18–24 and cytoskeletal protein contraction.
Microvesicles are released mostly under cellular stress or
in pathological processes18. Like exosomes, microvesicles
transfer bioactive molecules into target cells. Apoptotic
bodies (> 1 µm) are released by cells that undergo the
apoptosis process or programmed cell death18,24, and they
can be characterized by cellular organelles and DNA.
Finally, the vesicles named “oncosomes” are much
larger than most other EV types characterized to date
(1–10 μm). Owing to their unusual size, large oncosomes
might have unique properties in vivo and would provide
novel opportunities for tumor profiling25.
EVs contain proteins, lipids, metabolites, and RNAs.

However, the mechanisms by which these components
enter EVs remain obscure. EVs are shed from almost all
cell types and are present in biological fluids and condi-
tioned cell culture media. EVs are involved in cell–cell
communication, coagulation, inflammation, immune
response modulation, and disease progression4–7. The
functional roles of EVs in intercellular communication
have made them of major interest in many scientific fields. Ta

b
le

1
B
ri
ef

cl
as
si
fi
ca
ti
on

of
ex

tr
ac
el
lu
la
r
ve

si
cl
es

EV
su
b
ty
p
e

D
ia
m
et
er

B
io
g
en

es
is

M
ar
ke

rs
Re

fe
re
nc

es

Ex
os
om

es
30
–2
00

nm
Re
le
as
ed

fro
m

m
ul
tiv
es
ic
ul
ar

bo
di
es

w
ith

in
th
e

en
do

so
m
al
ne

tw
or
k

M
em

br
an
e
tr
an
sp
or
t
an
d
fu
si
on

pr
ot
ei
ns

(a
nn

ex
in
s,
G
TP
as
es
,a
nd

fl
ot
ill
in
),
te
tr
as
pa
ni
ns

(C
D
9,

C
D
63
,C

D
81
,a
nd

C
D
82
),
he

at
-s
ho

ck
pr
ot
ei
ns

(H
sc
70

an
d
H
sp
90
),
pr
ot
ei
ns

in
vo
lv
ed

in
M
VB

bi
og

en
es
is
(A
lix

an
d
Ts
g1

01
),
lip
id
-r
el
at
ed

pr
ot
ei
ns

an
d
ph

os
ph

ol
ip
as
es
,E
SC

RT
,a
nd

M
H
C

4,
5,
13
–
15

M
ic
ro
ve
si
cl
es

10
0–
10
00

nm
Pr
od

uc
ed

by
di
re
ct

bu
dd

in
g
fro

m
th
e
ce
ll
m
em

br
an
e

Se
le
ct
in
s,
in
te
gr
in
s
(B
1)
,m

et
al
lo
pr
ot
ea
se

su
rfa
ce

ph
os
ph

at
id
yl
se
rin

e,
ve
si
cl
e-
as
so
ci
at
ed

m
em

br
an
e
pr
ot
ei
n
3,
C
D
34
,C

D
40
,C

D
45
,g

ly
co
ph

or
in
,o

r
bl
oo

d
gr
ou

p
an
tig

en
s

16
–
22
,2
5,
58

A
po

pt
ot
ic
bo

di
es

>
1
µm

Re
le
as
ed

on
ly
by

ce
lls

un
de

rg
oi
ng

ap
op

to
si
s
or

pr
og

ra
m
m
ed

ce
ll
de

at
h
(a
po

pt
os
is
fra
gm

en
ts
)

Su
rfa
ce

ph
os
ph

at
id
yl
se
rin

eh
is
to
ne

s,
ca
ln
ex
in
,c
yt
oc
hr
om

e
C
,a
nn

ex
in

V,
C
3b

,a
nd

TS
P

4,
14
–
22

O
nc
os
om

es
1–
10

µm
N
on

-a
po

pt
ot
ic
pl
as
m
a
m
em

br
an
e
bl
eb

s
sh
ed

by

“a
m
eb

oi
d”

m
ig
ra
tin

g
tu
m
or

ce
lls

or
fro

m
tu
m
or
s

C
av
-1
,A

RF
6,
M
yr
,A

kt
1,
an
d
H
B‑
EG

F
23

Bandu et al. Experimental & Molecular Medicine (2019) 51:30 Page 2 of 10

Official journal of the Korean Society for Biochemistry and Molecular Biology



The biomolecular composition of EVs could play a sig-
nificant role in disease progression in several neurode-
generative diseases as well as in cancer.

MS in EV proteome analyses
EV proteome analysis is a novel approach and is part of

the growing interest in proteomics cancer research. Over
the past three decades, many proteomics studies per-
formed on EVs have elucidated their diverse roles. Large-
scale proteomics datasets and protein-interaction
networks have established significant relationships
between EV proteins, which improves the understanding
of vesicle biogenesis and pathophysiological roles24,26,27.
Proteomic studies on EVs from different origins have also
suggested a controlled protein-sorting mechanism and
the random packaging of EV proteins from various cell
types that contain common vesicular proteins. Further-
more, proteomic studies of EVs have produced a high-
throughput vesicular proteome dataset from various cell
types and body fluids28. Since EVs are normally isolated in
small amounts, better sensitivity is required for their
analysis. Liquid chromatography (nanoscale or ultra-high
performance)–electrospray ionization tandem mass
spectrometry (LC/ESI–MS/MS) is the most popular and
versatile analytical technique to study the molecular
contents of EVs. In particular, nano-ESI–MS/MS provides
high sensitivity and resolution, allowing the detection,
identification, characterization, and quantification of
thousands of proteins from even a single EV sample.
Similar to other biological fields, LC–MS/MS-based
technological platforms have become the most popular
fundamental tools for elucidating the structural and
functional architecture of EVs. The fragment ions from
ESI (positive- and negative-ion) tandem MS experiments

provide the composition, unambiguous structural char-
acterization, and proper identification of proteins present
in various biological samples. Due to the high
sensitivity and small initial sample volumes required for
MS, MS-based proteomic analysis has increased the
understanding of EV protein content. Several investiga-
tors26,29–32 have used ESI tandem MS experiments in
combination with chromatographic methods (HPLC,
UHPLC, UPLC, and nano LC) to profile and structurally
characterize proteins in various cancer cells, tissues, bio-
fluids, and biological samples, which have been sum-
marized in Table 2.

EV proteomes in various cancers and biomarker
discovery
Proteomic analysis of EVs has revealed significant

changes in protein expression under various physiological
and pathological conditions26,29,30. Characterization of
these proteomic profiles may be useful in understanding
disease pathogenesis and assisting in the discovery of new
biomarkers for different diseases. The secretion of EVs
from several types of tumor cells is a significant means of
conditioning and altering the tumor microenvironment
by malignant cells31,32. Multiple studies have reported
that the secretion of EVs from cancer cells contributes to
angiogenesis, metastasis, tumor formation, and disease
progression2,10,31,32. EVs are more attractive sources of
biomarkers because of their biological consequences and
relatively noninvasive accessibility in a wide range of
biological fluids. EVs have been studied in relation to
numerous cancers, such as colorectal27,33, bladder34,
prostate35, pancreatic36, breast37, gastric38, lung39,
blood40, ovarian41, cholangiocarcinoma42, hepatocellular
carcinoma43, and oral squamous cell carcinoma44

Fig. 1 Biogenesis of four major subtypes of extracellular vesicles
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(Table 2), as well as cardiovascular diseases45 and malig-
nancies of the central nervous system21. The proteomic
analysis of EVs, specifically the analysis of their protein
composition, may be helpful for further understanding the
mechanisms of their biogenesis and their functional roles.
Molecular communication between cancer cells and their
stromal microenvironment is a key factor for cancer
progression46,47. In conjunction with typical secretory
pathways, it was proposed that these small membranous
vesicles are alternate mediators of intercellular commu-
nication19. EVs carry an effector-rich proteome with the
ability to control different functional properties of the
recipient cell48. The protein composition of EVs from dif-
ferent sources was studied previously by using MS30,49–54,
providing a robust basis for the identification of bio-
marker proteins in EVs for the purpose of quality control
research. A thorough understanding of the protein com-
position of EV subtypes and the extent to which EV
composition reflects the source cell composition is
essential for further development of diagnostics and
therapeutics. Although EVs are secreted by almost all cell
types, some available data suggest the enhanced release of
EVs under pathological conditions, such as cancer55. It is
reasonable to expect that these vesicles may also play key

roles in tumorigenesis since they can facilitate distant
intercellular communication. Tumor-derived EVs typi-
cally carry tumor antigens, and functional proteins can be
transferred to recipient cells through EVs23,54,56. A better
understanding of the molecular bases underlying cancer
invasion and metastasis is necessary to develop effective
targets for therapy.
EV proteins from many cancers have similar biological

processes and functions. To understand the functions of
differentially expressed proteins (DEPs) in cancer, we
performed gene ontology analysis on a variety of DEPs57.
As expected, the EV–DEPs from different cancer types
were implicated in similar biological processes, such as
cell adhesion, migration, and transport. Considering that
EVs are potential metastasis factors, those proteins appear
to be relevant for cancer metastasis or cancer cell pro-
liferation. Of the 12 different cancers evaluated, we
observed that DEPs that overlapped more than five times
were primarily related to cancer metastasis or cancer cell
proliferation, and many of the DEPs had strong interac-
tions with each other (Fig. 2). Even though the selection of
these DEPs from different cancers was biased, the roles of
EVs in different cancers focused mainly on cell adhesion
and cell migration.

Fig. 2 Protein–protein interaction network of differentially expressed extracellular vesicle proteins in cancer cell-derived EVs
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Conclusions
In this review, we summarized different EV studies to

discuss the potential of EVs in cancer treatment. All
studies discussed in this review indicated that the spe-
cific protein composition of various EVs has high
potential for identifying different cancers. The majority
of these studies revealed the relationship of cancer with
changes in the protein contents of various body fluids.
Moreover, we have highlighted the emerging roles of
EVs in cancer, specifically their role in metastasis, which
opens the possibility of the rapid translation of EV
research for clinical applications in diagnosis, prognosis,
and treatment. Ultimately, the majority of the investi-
gations discussed in this review need further verification
in large-cohort, multicenter clinical studies. In the
future, highly reliable EV proteome data could be
combined with well-developed current popular genomic
and other “omics-” studies to provide extended knowl-
edge of EVs from the perspective of systems biology
approaches.

Future perspectives
There are many perspectives on the potential con-

tribution of EV research for the development of cancer
therapeutics and diagnosis. EVs could play key roles in
intercellular communication during cancer develop-
ment, which may offer new therapeutic strategies for
various cancers. EV protein composition in different
body fluids reveals the overall condition of the patient
and is also useful for screening the efficacy and toxicity
of anticancer treatments. Additionally, EVs could be
used as cancer vaccines and drug delivery components.
Moreover, the inhibition of intercellular communication
through EVs might provide opportunities to suppress
tumor progression. In the near future, clinical applica-
tions of EVs could contribute to cancer management
and treatment. However, before EV-targeted therapy
can be applied in cancer, the identification of cancer-
specific genes or molecules that are crucial for EV
communication is necessary.
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