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Changes in the asymmetric 
distribution of cholesterol in the 
plasma membrane influence 
streptolysin O pore formation
Fumihiko Ogasawara1, Fumi Kano2, Masayuki Murata3, Yasuhisa Kimura1, Noriyuki Kioka   1,4 
& Kazumitsu Ueda   1,4

ATP-binding cassette A1 (ABCA1) plays a key role in generating high-density lipoprotein (HDL) and 
preventing atherosclerosis. ABCA1 exports cholesterol and phospholipid to apolipoprotein A-I (apoA-I) 
in serum to generate HDL. We found that streptolysin O (SLO), a cholesterol-dependent pore-forming 
toxin, barely formed pores in ABCA1-expressing cells, even in the absence of apoA-I. Neither cholesterol 
content in cell membranes nor the amount of SLO bound to cells was affected by ABCA1. On the 
other hand, binding of the D4 domain of perfringolysin O (PFO) to ABCA1-expressing cells increased, 
suggesting that the amount of cholesterol in the outer leaflet of the plasma membrane (PM) increased 
and that the cholesterol dependences of these two toxins differ. Addition of cholesterol to the PM by 
the MβCD–cholesterol complex dramatically restored SLO pore formation in ABCA1-expressing cells. 
Therefore, exogenous expression of ABCA1 causes reduction in the cholesterol level in the inner leaflet, 
thereby suppressing SLO pore formation.

ATP-binding cassette A1 (ABCA1) is ubiquitously expressed in the body and plays a key role in the genera-
tion of high-density lipoprotein (HDL)1–3. ABCA1 loads cholesterol and phosphatidylcholine (PC) onto a lipid 
acceptor apolipoprotein A-I (apoA-I) in serum to generate discoidal nascent HDL4. Recent work suggested that 
ABCA1 is associated with other various cellular events, e.g., modulation of growth signaling, adaptation to cell 
crowding, and inflammatory responses of macrophages5–7. However, because ABCA1-mediated HDL generation 
is regulated at the transcriptional level, and the bloodstream maintains a level of ~5 μg/ml lipid-free apoA-I8, 
ABCA1-mediated apoA-I–dependent HDL generation is not a sufficiently fast and tunable reaction to regu-
late these cellular events. When excess cholesterol accumulates in cells, intracellular concentrations of oxysterols 
increase; subsequently, the liver X receptor (LXR), activated via binding of oxysterols, stimulates transcription of 
ABCA1. Because ABCA1 is a large membrane protein, consisting of 2261 amino acid residues, its transcription, 
splicing, translation, and maturation require several hours after transcriptional activation.

Recently, we reported that cholesterol is asymmetrically distributed in the PM, and that this cholesterol distri-
bution modulates Wnt3a signaling5, although this remains controversial9. Under normal conditions, cholesterol 
concentration in the outer leaflet is higher than in the inner leaflet, and the asymmetric distribution disappears 
when both ABCA1 and ABCG1 are knocked down and sphingomyelin (SM) in the PM is degraded by sphin-
gomyelinase (SMase). On the other hand, Courtney et al.10 reported that cholesterol primarily (80%) resides in 
the cytoplasmic leaflet in the PM of human erythrocytes. Because cholesterol is not synthesized in erythrocytes, 
excess cholesterol does not accumulate in erythrocytes; it is likely that ABCA1 does not function in these cells. 
Furthermore, because erythrocytes do not receive external stimuli, such as growth signals, modulation of signa-
ling by cholesterol distribution is not necessary. We speculate that cholesterol distribution in the PM could differ 
between erythrocytes and other body cells. These results suggest that ABCA1 continuously flops cholesterol from 
the inner to the outer leaflet of the PM in cells other than erythrocytes, in which SM maintains the cholesterol 
gradient, and that it regulates cellular events via this activity.
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Streptolysin O (SLO) is a member of the cholesterol-dependent cytolysin (CDC) family, a large family of 
pore-forming toxins. It has been proposed that CDCs initially bind to the PM via cholesterol and form oligomer-
ized complexes, and are then inserted into the membrane and create β-barrel pores11. However, although SLO 
forms a pore dependent upon cholesterol in the PM, SLO binds to the PM even after cholesterol depletion12, 
and a SLO mutant in which two residues in the cholesterol-binding domain have been replaced also binds to the 
PM12,13. Therefore, it remains unclear how SLO binds to the PM and forms a pore.

Because the pore formed by SLO is large enough for cytosolic proteins (or any proteins of interest) to pass 
through, SLO can be used for semi-intact cell experiments14,15. We tried to establish the conditions for semi-intact 
cell experiments using SLO, with the goal of revealing the mechanism of the function of ABCA1. Unexpectedly, 
however, we found that ABCA1-expressing cells could barely be permeabilized by SLO. In light of the choles-
terol transport activity of ABCA1 and the cholesterol dependency of SLO pore formation, we speculated that a 
change in cholesterol distribution could be associated with suppression of SLO pore formation. In this study, we 
tested the hypothesis that ABCA1 changes the cholesterol distribution in the PM, thereby suppressing SLO pore 
formation.

Results
ABCA1 inhibits pore formation by SLO in an ATPase-dependent manner.  To examine the effect 
of ABCA1 on SLO pore formation, cells expressing GFP, ABCA1-GFP, and non-functional ATPase-deficient 
ABCA1(MM)-GFP were treated with SLO and DAPI. Although nuclei were efficiently stained with DAPI in cells 
expressing GFP or ABCA1(MM)-GFP, very little DAPI staining was observed in ABCA1-GFP–expressing cells 
(see processed images of Fig. 1A). The proportion of DAPI-positive cells in ABCA1-GFP–expressing cells was 
4.5%, whereas in control GFP-positive and ABCA1(MM)-GFP–positive cells, the proportions were greater than 
70% (Fig. 1B). Because DAPI does not pass through the intact membrane, only nuclei of cells in which the plasma 
membrane was permeabilized by the pore-forming action of SLO were stained. These results indicate that ABCA1 
makes cells resistant to the pore-forming action of SLO, and that this property is ATPase-dependent.

Figure 1.  ABCA1 inhibits pore formation by SLO in an ATPase-dependent manner. (A) HEK293 cells 
transiently transfected with plasmids encoding GFP, ABCA1-GFP, and ABCA1(MM)-GFP were treated with 
SLO and DAPI. To make images clearer for counting DAPI-stained and GFP-positive cells, the images were 
processed (panel at the right end) as described in Methods. (B) DAPI-stained (magenta in processed image) 
and unstained GFP-positive cells were counted, and proportions were calculated. Average values are shown with 
S.E. For each samples, images were acquired at five positions in the dish. **P < 0.001 vs. control (GFP).
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SLO binding is not affected by ABCA1.  Because SLO is a member of the cholesterol-dependent cytolysin 
family, we hypothesized that ABCA1 causes a change in the cholesterol content of the PM, thereby reducing bind-
ing of SLO to the PM. Unexpectedly, however, there was no significant difference in the amount of SLO bound 
between cells expressing ABCA1-GFP and GFP (Fig. 2A,B). Because cells were incubated with SLO in the absence 
of apoA-I, which required for HDL generation, cholesterol export from cells was not expected to occur. Indeed, 
free cholesterol content in the total membrane fraction was not altered by ABCA1 expression (Fig. 2C). These 
results suggest that ABCA1 suppresses the pore-formation step, but not the binding step, of SLO.

PFO-D4–accessible cholesterol in the outer leaflet of the PM is increased by ABCA1.  It has been 
proposed that the plasma membrane contains different types or pools of cholesterol, e.g., lipid raft and non-raft16 
or labile and non-labile17. It is likely that the cholesterol content in the PM was not altered, as the removal of cho-
lesterol from cells did not occur, and free cholesterol content in the total membrane fraction was unaffected by 
expression of ABCA1 (Fig. 2C). We therefore speculated that the distribution or organization of cholesterol in the 
PM could be affected by ABCA1. To explore this possibility, we performed flow cytometry using the Alexa Fluor 
647–labeled D4 domain of perfringolysin O (PFO), which binds to cholesterol in the outer leaflet of the PM5,18. 
FreeStyle293-F suspension cells were used in this assay to obviate the necessity of trypsin treatment, which digests 
ABCA1 on the cell surface4. PFO-D4 binding increased with expression of ABCA1: the median value was about 
2-fold higher in the ABCA1-GFP–positive population, but was not much changed in the control GFP–positive 
cells or ABCA1(MM)-GFP–positive cells (Fig. 3A,B). These results suggest that the level of PFO-D4–accessible 
cholesterol in the outer leaflet of the PM is increased by exogenous expression of ABCA1.

MβCD-cholesterol treatment drastically increases SLO pore formation.  Next, we examined the 
effect of treatment with the MβCD–cholesterol complex, which would increase the level of cholesterol in the PM. 
This treatment strongly increased PFO-D4 binding to both ABC1-GFP-negative and positive cells (Fig. 4A) and 
the ratio of DAPI-positive cells in ABCA1-GFP–expressing cells was dramatically restored, from 18% to 83% 
(Fig. 4B,C), suggesting that SLO pore formation efficiently occurred in ABCA1-GFP–expressing cells after the 

Figure 2.  SLO binding and cholesterol content in the PM are not affected by ABCA1. (A) HEK293 cells 
transiently transfected with plasmids for GFP and ABCA1-GFP were lysed soon after treatment with SLO 
and analyzed by western blotting with anti-SLO and anti-vinculin antibodies; the latter was used as a loading 
control. (Original images are shown in Supplementary Fig. 4.) (B) SLO band intensity was measured using 
Fiji software and normalized against the vinculin band intensity in the same membrane. The experiment was 
performed in triplicate, and average values are shown with S.E. n.s., P > 0.05 vs. control (GFP). (C) Cholesterol 
content in membranes. Membrane fractions were isolated from HEK293 cells transfected with plasmids for 
GFP and ABCA1-GFP and cultured under the same conditions used for the SLO pore formation experiment. 
The cholesterol content was normalized against the phosphatidylcholine content from the same sample. The 
experiment was performed in triplicate, and average values are shown with S.E. n.s., P > 0.05 vs. control (GFP).
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addition of cholesterol. The PFO-D4–accessible cholesterol level in the outer leaflet was also increased in cells in 
which SLO pore formation was suppressed by ABCA1 (Fig. 3). These results suggest that the suppression of SLO 
pore formation was not due to a change in cholesterol level or organization in the outer leaflet of the PM but to a 
change in cholesterol content of the inner leaflet.

SMase treatment increases SLO pore formation in control cells, but not in ABCA1-expressing 
cells.  Next, we examined the effect of treatment with SMase, which was expected to perturb cholesterol pools 
in the PM by degrading SM5,17. In control cells, the ratio of DAPI-positive cells increased from 75 ± 2.0% to 
97 ± 1.3% following treatment (Fig. 5A,B). By contrast, the ratio of DAPI-positive cells did not increase much after 
treatment of ABCA1-GFP–expressing cells (22 ± 4.1% and 26 ± 3.5% before and after treatment, respectively) 
(Fig. 5A,B). PFO-D4–binding increased in both ABCA1-negative and positive cells, and also in control cells, and 
the median value in the ABCA1-GFP–positive population was 2-fold higher than in the ABCA1-GFP–negative 
population, even after SMase treatment (Fig. 5C,D). SMase treatment releases cholesterol from SM-associated 
pool and increases labile SM-free cholesterol both in the outer and inner leaflet of the PM. Therefore, our results 
suggest that the suppression of SLO pore formation is due to a change in cholesterol content in the inner leaflet 
and that exogenously expressed ABCA1 maintains cholesterol content in the inner leaflet even in the absence of 
SM.

ABC proteins, which transport cholesterol, inhibit SLO pore formation.  Finally, we examined 
other ABC proteins, which transport hydrophobic substrates including cholesterol, to demonstrate that ABCA1 
inhibited SLO pore formation by moving cholesterol as a substrate (Fig. 6). ABCG1, which transports choles-
terol to HDL19 and contributes to the asymmetric distribution of cholesterol in the PM together with ABCA15, 
inhibited SLO pore formation, just as ABCA1 did. The proportions of DAPI-positive cells were 19% and 5.5% in 
ABCG1-GFP– and ABCA1-GFP–expressing cells, respectively. On the other hand, in cells expressing ABCA7, 
a close homolog of ABCA1 that transports phosphatidylcholine in an apoA-I–dependent manner, but does not 
transport cholesterol20, the proportion of DAPI-positive cells (64%) was as high as in control GFP cells (63%). In 
cells expressing ABCB1, a multidrug transporter that does not transport cholesterol21, the proportion was 70%. 
Among these ABC proteins, only ABCA1 and ABCG1 increased PFO-D4 binding (Fig. 6C). These results suggest 
that the inhibitory effect on SLO pore formation is dependent upon cholesterol transport activity.

Discussion
In this study, we found that SLO pore formation was suppressed in ABCA1-expressing cells. The amount of SLO 
bound to the PM was not altered by ABCA1 expression (Fig. 2), suggesting that the pore-forming step of SLO 
after binding to the PM was suppressed. The level of PFO-D4–accessible cholesterol in the outer leaflet of the PM 
was increased by ABCA1 (Fig. 3), whereas the free cholesterol content in the total membrane fraction was not 
altered (Fig. 2C). The addition of cholesterol to the PM restored SLO pore formation in ABCA1-GFP–expressing 
cells (Fig. 4). It has been proposed17 that the PM contains three different types or pools of cholesterol: (1) a pool 
accessible to the bacterial toxin PFO, which binds cholesterol in membranes; (2) a SM-sequestered pool that 

Figure 3.  PFO-D4–accessible cholesterol in the outer leaflet of the PM is increased by ABCA1. (A) PFO-D4–
accessible cholesterol in the outer leaflet of the PM was analyzed by flow cytometry. PFO-D4 was labeled with 
Alexa Fluor 647. FreeStyle293-F cells with fluorescent intensities greater than 20,000 were defined as GFP-
positive, and others as GFP-negative. Linear regression between GFP and Alexa Fluor 647 is shown as a black 
line. (B) Fold change in the median value of Alexa Fluor 647 fluorescence intensity in GFP-positive vs. GFP-
negative cells.
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binds PFO only after SM is degraded by SMase; and (3) a residual pool that does not bind PFO even after SMase 
treatment. If we add to this picture the concept of transbilayer distribution in the two leaflets of the PM, we can 
reconsider these pools as follows (Fig. 7): (I) SM-associated cholesterol in the outer leaflet; (II) SM-free choles-
terol in the outer leaflet; and (III) cholesterol in the inner leaflet. Treatment with MβCD–cholesterol complex, 
which increased PFO-D4 binding to cells, dramatically increased SLO pore formation (Fig. 4), and the PFO-D4–
accessible cholesterol level was also increased in cells in which SLO pore formation was suppressed by ABCA1 
(Fig. 3), suggesting that the suppression of SLO pore formation was not due to a change in pool-II cholesterol. 
SMase treatment, which increases pool-II and pool-III cholesterol, increased SLO pore formation in control cells, 
but not in ABCA1-GFP–expressing cells (Fig. 5). Landry et al.22 has reported that there is no obvious difference 
in terms of plasma membrane total cholesterol content in ABCA1 and mock-transfected cells and that MβCD 
can extract 40–50% more cholesterol from ABCA1 cells than from mock-transfected cells at 0 °C, suggesting that 
ABCA1 expression increases the level of cholesterol in the outer leaflet of the PM. This indicates that increase in 
cholesterol level in the outer leaflet by ABCA1 is a cause of increased PFO-D4 binding observed in this study. 
These results suggest that a change in the content of pool-III cholesterol affects SLO pore formation. Because 
ABCA1 suppresses SLO pore formation even after SMase treatment, it is likely that ABCA1 maintains the content 
of pool-III cholesterol even in the absence of SM.

The transverse asymmetry (sidedness) of cholesterol in plasma membrane bilayers became a hot topic 
recently23–25. Several studies reported that cholesterol and ergosterol concentrations in the inner leaflet are 
2–4-fold higher than in the outer leaflet10,26,27, whereas Liu et al.5 reported that cholesterol concentration is higher 
in the outer leaflet than in the inner leaflet. Although it is unclear what caused these discrepancies, it could be 
due to differences in how cholesterol distribution was analyzed and which pools of cholesterol were measured. 
Courtney et al.10 reported that only 20% of the erythrocyte cholesterol was extracted by MβCD at 0 °C, implying 
that cholesterol primarily (80%) resides in the cytoplasmic leaflet in the PM of human erythrocytes. However, 
Zha’s group has also reported that cholesterol in the PM of ABCA1-expressing cells is more accessible to MβCD 
extraction at 0 °C22. These results suggest that ABCA1 flops cholesterol from the inner to the outer leaflet of the 
PM in cells other than erythrocytes.

Furthermore, it remains unclear how fast cholesterol flip-flops (diffuses between two leaflets of the PM) in 
living cells, but it has been suggested to proceed on time scales of less than a second28,29. However, because the cell 

Figure 4.  MβCD-cholesterol treatment drastically increases SLO pore formation. (A) FreeStyle293-F cells 
transiently transfected with plasmids encoding ABCA1-GFP were treated with (right) or without (left) MβCD–
cholesterol complex just before flow cytometry analysis. Cells with fluorescence intensity greater than 50,000 
were defined as ABCA1-GFP–positive, and others as ABCA1-GFP–negative. The median value of Alexa Fluor 
647 fluorescence intensity of each population is shown. (B) HEK293 cells transiently transfected with plasmids 
encoding ABCA1-GFP were treated with (right) or without (left) MβCD–cholesterol complex just before the 
SLO treatment (original images are shown in Supplementary Fig. 1). (C) DAPI-stained and -unstained cells 
in GFP-positive cells were counted, and proportions were calculated. Average values are shown with S.E. For 
each sample, images were acquired at five positions in the dish. **P < 0.001 vs. cells not treated with MβCD–
cholesterol complex.
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membrane contains a high concentration of protein, that interact with membrane lipids, the proportion of mem-
brane lipid molecules that can move freely may be limited30 and the average flip-flop rate of cholesterol in the PM 
could be slower than we supposed. We reported that ABCA1 KD decreases asymmetric cholesterol distribution 
from 10 to 5-fold5, suggesting that ABCA1 itself contributes to the 2-fold asymmetry. Purified ABCA1 hydrolyzes 
one to three ATP molecules per second31–33. Future studies should be carefully measure the speed of cholesterol 
flopping in living cells to confirm that it is high enough to maintain an asymmetric distribution of cholesterol. 
Although we have not directly measured asymmetric cholesterol distribution, we observed the suppression of 
SLO pore formation by ABCA1 not only in HEK293 but also in HeLa and BHK cells (data not shown), suggesting 

Figure 5.  SMase treatment increases SLO pore formation in control cells, but not in ABCA1-expressing 
cells. (A) HEK293 cells transiently transfected with plasmids for GFP and ABCA1-GFP were treated with 
SMase just before the treatment with SLO and DAPI (original images are shown in Supplementary Fig. 2). 
(B) DAPI-stained and -unstained GFP-positive cells were counted, and proportions were calculated. Filled 
bars, before SMase treatment; empty bars, after SMase treatment. Average values are shown with S.E. For each 
sample, images were acquired at five positions in the dish. *P < 0.01 compared with SMase-untreated. n.s. 
P > 0.05 compared with control (GFP). (C) FreeStyle293-F cells transiently transfected with plasmids encoding 
ABCA1-GFP or control empty vector were treated with SMase just before flow cytometry analysis. Cells with 
fluorescence intensity greater than 50,000 were defined as GFP-positive, and others as GFP-negative. Linear 
regression between GFP and Alexa Fluor 647 is shown as a black line. The median value of Alexa Fluor 647 
fluorescence intensity of each population is shown. (D) Fold change in the median value of Alexa Fluor 647 
fluorescence intensity in GFP-positive vs. GFP-negative cells.
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that this phenomenon is not cell type–specific. It is conceivable that flopping of cholesterol (transport from the 
inner to outward leaflet) by exogenously expressed ABCA1 causes asymmetric cholesterol distribution in the PM, 
which makes cells resistant to SLO pore formation.

Among the ABC proteins that transport hydrophobic substrates, ABCA1 and ABCG1 suppressed SLO pore 
formation, whereas ABCB1 and ABCA7 did not (Fig. 6). ABCG1 exports cholesterol and SM to HDL19,34,35, and 
together with ABCA1 contributes to the asymmetric distribution of cholesterol in the PM5. ABCA7 does not 
transport cholesterol, but it is a close homolog of ABCA1 and transports phosphatidylcholine in an apoA-I–
dependent manner20. ABCB1 is a multidrug exporter that interacts with cholesterol but does not export it21,36. 
These results suggest that the inhibitory effect of these proteins on SLO pore formation is dependent upon their 
cholesterol transport activity.

While this study was under revision, Courtney et al. reported9 that phospholipid head groups and acyl chain 
saturation of phospholipids impact binding of the cholesterol probe DAN-D4, which Liu et al. used to demon-
strate the asymmetric cholesterol distribution5. Furthermore, DAN-D4 binding was highly sensitive to proteins 
in the medium9. Therefore, the capacity of microinjected DAN-D4 to bind the cytoplasmic leaflet of the PM was 
speculated to be severely diminished in live cells. However, Liu et al. reported the increased binding of the probes 

Figure 6.  Cholesterol-transporting ABC proteins inhibit SLO pore formation. (A) HEK293 cells transiently 
transfected with plasmids encoding GFP, ABCA1-GFP, ABCA7-GFP, ABCB1-GFP, or ABCG1 were treated 
with SLO and DAPI (original images are shown in Fig. S3). (B) DAPI-stained and -unstained GFP-positive cells 
were counted, and proportions were calculated. Average values are shown with S.E. For each sample, images 
were acquired at five positions in the dish. **P < 0.001 compared with control (GFP). n.s. P > 0.05 compared 
with control (GFP). (C) Cholesterol content in the outer leaflet of the PM was analyzed by FACS with PFO-D4 
labeled with Alexa Fluor 647. FreeStyle293-F cells with fluorescence intensity greater than 50,000 were defined 
as GFP-positive, and others as GFP-negative. Original data are shown in Supplementary Fig. 3.

Figure 7.  Schematic illustration of cholesterol distribution in the PM. The PM contains three different types 
or pools of cholesterol: (I) SM-associated cholesterol in the outer leaflet; (II) SM-free cholesterol in the outer 
leaflet; and (III) cholesterol in the inner leaflet. ABCA1 flops cholesterol from the inner to the outer leaflet of the 
PM. The enhanced asymmetric distribution of cholesterol caused by exogenously expressed ABCA1 suppresses 
SLO pore formation.
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to the inner leaflet of the PM of cells, in which ABCA1 and ABCG1 were both knocked down, suggesting that the 
probes functioned in cells. In this study, we showed that SLO pore formation was not affected by ABCA7, which 
transports phospholipids but not cholesterol (Fig. 6). The addition of cholesterol by MβCD-cholesterol treatment 
drastically increased SLO pore formation (Fig. 4), and SMase treatment affected SLO pore formation in control 
cells but not in ABCA1-expressing cells (Fig. 5). Together, these results suggest that the suppression of SLO pore 
formation is caused by cholesterol flopping (transport from the inner to the outer leaflet) in the PM by ABCA1 
and is not merely due to changes in phospholipid environment, but instead to the reduction in the cholesterol 
level in the inner leaflet (Fig. 7).

As discussed above, the cholesterol dependences of PFO and SLO are quite different, although both are 
pore-forming toxins in the CDC family: PFO is highly dependent on cholesterol in the outer leaflet at the step of 
binding to the PM; whereas SLO is not. Moreover, the results of this study suggest that the pore formation step 
of SLO is dependent on cholesterol in the inner leaflet. This difference could be based on differences in strategies 
for infection, in the host cells themselves, or in their evolutionary paths. These toxins represent potentially useful 
tools for detecting asymmetric distributions of cholesterol in the PM and to reveal the novel physiological func-
tions of cholesterol. Given that asymmetric distribution of cholesterol in the two leaflets of the PM is involved in 
the modulation of various cellular events, such tools would be of immense value for cell biology.

Materials and Methods
Materials.  Purified SLO (01–531) and the rabbit anti-SLO antibody (64–001) were purchased from Bio 
Academia. The mouse anti-vinculin antibody (V9131), MβCD, cholesterol, SMase, and DAPI were purchased 
from SIGMA. CellMask Orange was purchased from Invitrogen.

Cell culture.  HEK293 cells were grown in a humidified incubator (5% CO2) at 37 °C in Dulbecco’s modified 
Eagle’s medium (DMEM) supplemented with 10% heat-inactivated fetal bovine serum (FBS). FreeStyle 293-F 
cells were maintained in FreeStyle 293 expression medium containing 5 µg/mL gentamicin at 37 °C under 8% 
CO2.

Plasmids.  Expression vectors for wild-type ABCA1 and ABCA1MM tagged with GFP at the C terminus were 
generated as previously described31,37. Expression vector for ABCB1 was generated as previously described38, and 
GFP was inserted into the C terminus. ABCA7 and ABCG1 cDNAs were inserted into pEGFP-N2 (Clontech). 
The expression vector for PFO-D4-GFP was kindly provided by Dr. Toshihide Kobayashi of the University 
of Strasburg. GFP was removed from the vector using the In-Fusion HD Cloning Kit (Clontech). The DNA 
fragment was amplified by PCR with primers 5′-CAGCCATATGGCTAGCAAGGGAAAAATAAA-3′ and 
5′-CTAGCCATATGGCTGCCGCG-3′.

Transfection.  HEK293 cells were transfected with 1 µg/mL of each expression vector using 2 µg/mL 
Polyethyleneimine “MAX” (PolySciences)35 in DMEM containing 10% FBS. FreeStyle 293-F cells were trans-
fected with 4 µg/mL of each expression vector using 8 µL/mL 293fectin (Thermo Fisher Scientific) in FreeStyle 293 
Expression Medium containing 5 µg/mL gentamicin.

SLO pore formation.  HEK293 cells (5 × 105) were subcultured in a 3.5-cm poly-L-lysine–coated glass-base 
dish in DMEM containing 10% FBS. After 24 h of incubation, the cells were transfected with each expression 
vector and incubated for an additional 24 h. The cells were washed with Hank’s Balanced Salt Solution (HBSS) 
and incubated with CellMask Orange in HBSS containing 0.02% BSA at room temperature for 20 min to stain 
the PM. After CellMask Orange was removed, SLO (100 ng /mL) in ice-cold DMEM was added, and the cells 
were incubated on ice for 8 min. The cells were then washed three times with PBS− (phosphate-buffered saline 
without CaCl2 and MgCl2), incubated with DAPI in transport buffer (25 mM HEPES-KOH, pH 7.4, 115 mM 
KOAc, 2.5 mM MgCl2) at 37 °C for 5 min, washed twice with transport buffer, and observed under a confocal 
microscope (ECLIPSE Ti; Nikon). Images were acquired in five locations within each sample. Treatment with 
methyl-beta-cyclodextrin (MβCD)–cholesterol complex (MβCD: cholesterol = 4.5 mM/mL: 0.5 mM/mL) or 
SMase (0.2 mU/mL) was performed in DMEM containing 0.02% BSA at 37 °C for 30 min before CellMask Orange 
staining. To avoid cholesterol diffusion, the cells were incubated with CellMask Orange on ice for 10 min.

Image processing.  Images acquired in the SLO treatment assay were processed using the Fiji software. First, 
the original images of GFP, CellMask Orange, and DAPI were binarized, and noise was removed based on par-
ticle size (1–100 pixels) and circularity (0.5–1). The GFP image was subtracted from the inverted image of Cell 
Mask Orange to represent GFP on the PM. Because GFP leaked through SLO pores, and GFP fluorescence at the 
PM was quite low in control cells expressing only GFP, the GFP image was acquired with saturated intensity to 
improve detection. The images of GFP on the PM and DAPI were merged.

Flow cytometry analysis.  FreeStyle 293-F cells were seeded on 6-well plates at a density of 2 × 106 cells 
per well, and then transfected with each expression vector. After 24 h of rotation culture, the cells were harvested 
and suspended in HBSS. The cells were incubated at 20 °C for 30 min with PFO-D4 labeled with Alexa Fluor 
647, and then analyzed on a flow cytometer (Accuri C6, BD). SMase (0.2 mU/mL) treatment was performed in 
FreeStyle 293 expression medium containing 5 µg/mL gentamicin at 37 °C for 30 min, prior to harvest. Plot data 
were exported to Excel, logarithmically transformed, and calculated by linear regression. The pseudocolor plot 
graph was generated using Cytospec. For each sample, 30,000 cells were analyzed. Intensities of PFO-D4 binding 
to GFP-positive and -negative cells were compared with the median values in each population.
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Purification of PFO-D4 and labelling with Alexa Fluor 647.  E. coli strain BL21(DE3) was used for 
overexpression of PFO-D4. After induction with IPTG, E. coli cells were harvested and resuspended in PBS−. The 
cell suspension was sonicated and centrifuged, and PFO-D4 was purified from the supernatant using Profinity 
IMAC Ni-Charged Resin (BIO-RAD). After the buffer was exchanged using a PD MidiTrap G-25 column (GE 
Healthcare), PFO-D4 was concentrated with an Amicon Ultra-0.5 3k (Merck) and labeled with Alexa Fluor 647 
NHS ester (Thermo Fisher Scientific). After buffer exchange and re-concentration of PFO-D4, an equal volume 
of glycerol was added, and the sample was stored in −30 °C.

SLO binding.  HEK293 cells were seeded on poly-L-lysine–coated 24-well plates and treated as described 
for the SLO pore formation assay. After SLO treatment, the cells were lysed with RIPA buffer (20 mM Tris-HCl, 
pH7.5, 1% Triton X-100, 0.1% SDS, 1% sodium deoxycholate) with EDTA-free protein inhibitor cocktail (com-
plete, Roche) on ice. Laemmli buffer39 was added, and the sample was incubated at 98 °C for 5 min. Samples 
were electrophoresed on 10% SDS-polyacrylamide gels and analyzed by western blotting with anti-SLO and 
anti-vinculin antibodies.

Measurement of cholesterol content in membrane fractions.  HEK293 cells were subcultured in 
6-well plates at a density of 5 × 105 cells/well in DMEM containing 10% FBS. After 24 h of incubation, the cells 
were transfected with each expression vector and incubated for an additional 24 h. The cells were kept on ice, 
washed with PBS−, and harvested with a cell scraper in PBS−. The cells were then lysed with 30 strokes in a 
Dounce homogenizer and spun at 2,000 rpm for 15 min in a HITACHI T15A39–1400 rotor to remove nuclei. 
To isolate membrane fractions, the supernatant was spun at 15,000 rpm for 30 min at 4 °C in the same rotor. The 
membrane fractions were resuspended in PBS−, and the choline phospholipid (PL) and cholesterol contents were 
determined using colorimetric enzyme assays as described previously40.

Statistical analysis.  The statistical significance of differences between mean values was evaluated using the 
unpaired t-test. Multiple comparisons were evaluated using the Tukey test following one-way ANOVA. All exper-
iments were performed at least two times.
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