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Conjugated linoleic acid (CLA)-
induced milk fat depression: 
application of RNA-Seq technology 
to elucidate mammary gene 
regulation in dairy ewes
Aroa Suárez-Vega1, Beatriz Gutiérrez-Gil1, Pablo G. Toral   1,2, Gonzalo Hervás   2, 
Juan José Arranz   1 & Pilar Frutos   2

Milk fat depression (MFD) is characterized by a reduction in the content of milk fat, presumably 
caused by the anti-lipogenic effects of rumen biohydrogenation intermediates, such as trans-10 cis-
12 conjugated linoleic acid (CLA). In this study, RNA-Seq technology was used to help elucidate the 
mammary responses involved in CLA-induced MFD in lactating ewes. To this end, we compared the 
milk somatic cell transcriptome of ewes suffering from CLA-induced MFD with control ewes (i.e., those 
without MFD), as well as with ewes fed a diet supplemented with fish oil (FO-MFD) that we previously 
reported affects the mammary transcriptome. In the differential expression analysis between CLA-MFD 
and controls, we identified 1,524 differentially expressed genes (DEGs), whereas 653 were detected 
between CLA- and FO-MFD groups. Although this article focuses on lipid metabolism, CLA affected 
the expression of many genes related to other biological processes, especially immunity. Among the 
55 genes shared by both MFD conditions, some genes linked to fatty acid synthesis, such as ACACA, 
AACS, ACSS2, or ACSS3, were downregulated. In addition, this study provides a list of candidate genes 
that are not usually considered in the nutrigenomics of MFD but that may act as key regulators of this 
syndrome in dairy ewes.

Milk fat depression (MFD) syndrome is generally characterized by a strong reduction in milk fat content without 
significant changes in the yield of milk or other milk components1. This syndrome was first described in dairy 
cows fed highly fermentable or plant oil-containing diets, where it is primarily mediated by the rumen metabolite 
trans-10 cis-12 CLA2. Dairy sheep and goats are not affected by those feeding conditions, but they may suffer from 
the syndrome when their diets are supplemented with marine lipids3,4, resulting in economic losses because most 
ovine and caprine milk is destined for cheese manufacturing.

Diet supplementation with marine lipids (e.g., fish oil (FO) or marine algae) is a nutritional strategy that 
aims at modulating milk fatty acid (FA) composition towards a potentially healthier profile for consumers (e.g., 
with increased concentration of CLA5,6). Reported health benefits of CLA include anti-obesity, anti-carcinogenic, 
anti-atherogenic and immunomodulatory effects7.

Although marine lipid-induced MFD is not due to greater ruminal accumulation of the anti-lipogenic 
trans-10 cis-12 CLA, mammary lipogenesis is also inhibited in small ruminants receiving this isomer from an 
external source4,8,9. In fact, dairy ewes displaying trans-10 cis-12 CLA-induced MFD have been proposed as a 
model to examine mammary mechanisms explaining low-fat milk syndrome in cows9. Nevertheless, these ewes 
might not be a good model to study the diet-induced MFD in ewes themselves, which is caused by marine lipid 
supplementation.

In a study conducted in lactating sheep fed a diet supplemented with either FO or trans-10 cis-12 CLA4, sim-
ilar changes were observed in the milk fat content and in the processes of de novo FA synthesis and FA uptake, 
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suggesting that both types of MFD might share regulatory mechanisms. However, milk FA composition differed 
significantly between these two types of MFD and supported that FO-induced MFD was not mediated by trans-
10 cis-12 CLA but likely by other potentially anti-lipogenic rumen FAs. The ability of these latter metabolites 
to downregulate the expression of key mammary lipogenic genes, as demonstrated for trans-10 cis-12 CLA9, 
is unkown. In another study examining dairy ewes fed FO or trans-10 cis-12 CLA10, differences in the mRNA 
abundance of certain candidate genes involved in mammary lipogenesis indicated substantial divergence in the 
transcriptional mechanisms underlying FO- or CLA-induced MFD. Because mechanisms driving the response 
to marine lipids are poorly understood, especially in sheep, we used RNA sequencing technology (RNA-Seq) to 
provide a comprehensive profile of the transcriptomic changes occurring in the mammary gland of ewes suffering 
from FO-induced MFD11. This technology has been demonstrated as a useful approach to identify target genes in 
nutrigenomics, as well as to understand the biological processes underlying MFD in other ruminants12,13.

The objective of this study was to help characterize the mammary responses involved in CLA-induced MFD 
in lactating ewes by evaluating changes in the milk somatic cell transcriptome caused by dietary inclusion of a 
rumen-protected product rich in trans-10 cis-12 CLA. Comparisons were conducted not only with control ewes 
fed the same diet without lipid supplementation (i.e., in the absence of MFD, control) but also with ewes receiving 
a diet supplemented with FO that we previously reported11 to cause shifts in mammary gene expression.

Materials and Methods
Animals and diets.  All protocols animals were approved by the Animal Welfare Committee of the Instituto 
de Ganadería de Montaña, the Spanish National Research Council (CSIC) and the Junta de Castilla y León 
(Spain), following proceedings described in Spanish and EU legislations (R.D. 53/2013, and Council Directive 
2010/63/EU). All animals used in this study were handled in strict accordance with good clinical practices, and all 
efforts were made to minimize suffering. This study is an integral part of a larger experiment conducted to inves-
tigate the low-fat milk syndrome induced by either marine lipids or trans-10, cis-12 CLA in dairy ewes. Three 
groups of dairy ewes were submitted to the following treatments: control (no MFD), FO-induced MFD, and CLA-
induced MFD. In a first report10, treatment effects on the mRNA abundance of candidate lipogenic genes in milk 
somatic cells (MSCs) were analyzed by RT-qPCR. However, given the suggested differences in the transcriptional 
mechanisms between MFD conditions, we decided to go further in this research by using RNA-seq technology. 
Because of the complexity of this latter analysis, the study was split into two works: the first one addressed the 
condition caused by dietary marine lipids and was published by Suárez-Vega et al.11. This work, the second one, 
deals with CLA-induced MFD.

Briefly, lactating Assaf ewes at mid lactation (66 ± 1.8 days in milk at the beginning of the assay; par-
ity = 2.5 ± 0.52) were individually housed and randomly divided into two groups that were assigned to one of two 
dietary treatments: no lipid supplementation (control) or supplementation with 10 g of a rumen-protected CLA 
product/kg of diet dry matter (CLA-MFD). The commercial CLA supplement (Lutrell Pure, BASF, Ludwigshafen, 
Germany) contained similar amounts of cis-9 trans-11 and trans-10 cis-12 isomers. The basal diet consisted of 
a total mixed ration based on alfalfa hay and concentrates (forage:concentrate ratio 40:60). All animals were fed 
the control diet for a 21-d adaptation period and then both experimental diets for 40 more days. Samples were 
collected at the end of the experiment, when ewes on the CLA-MFD treatment exhibited a stable decrease in milk 
fat concentration (monitored daily by infrared spectrophotometric analysis of raw milk samples; ISO 9622:1999). 
Diets, which were prepared weekly and included molasses to reduce selection of components, were offered ad 
libitum, and animals were milked twice daily in a single side milking parlor (DeLaval, Madrid, Spain). Further 
details can be found in Toral et al.10.

Although this trial was conducted with a higher number of sheep, based on criteria of maximum cost of the 
experiment and selection of phenotypically homogenous individuals, RNA-Seq analyses were initially performed 
on four ewes per group. Nevertheless, due to the high variability of data within the CLA-MFD condition (details 
are explained below), two more individuals were included in this treatment group (n = 6).

Consumption of dietary trans-10 cis-12 CLA significantly reduced milk fat concentration in ewes (5.99 vs. 
3.76%, SED = 0.399, for control and CLA-MFD, respectively). This decrease (37.2%) was stronger than that 
observed in FO-MFD animals11. Milk fat secretion was reduced to a similar extent (−33.5% relative to control; 
P < 0.001). On the other hand, as expected, feed intake (on average, 2.70 kg/d), milk production (on average, 
1.46 kg/d), and milk composition in terms of protein, lactose, somatic cell count (log10) and FA profile did not 
significantly differ compared to control. Milk somatic cell count was similar in MFD- and control ewes (P > 0.10), 
but it was 5.6% lower in FO- than in CLA-MFD treatment (P = 0.012). Mean values remained low in the three 
dietary conditions (mean of non-transformed data: 77 × 103/mL of raw milk).

Sampling, RNA extraction and sequencing.  Milk samples for RNA extraction were collected on days 
38 and 39 on treatments. As detailed by Suárez-Vega et al.14, the sample collection was performed one hour after 
milking and ten minutes after the injection of 5 IU of Oxitocine Facilpart (Syva, León, Spain) to maximize the 
concentration of MSCs. Udders were cleaned with water and soap; then, they were disinfected with povidone 
iodine; and finally the nipples were washed with RNAseZap (Ambion, Austin, TX, USA). To ensure high yield 
and quality of RNA, samples were obtained by hand-milking each half of the mammary gland of ewes into an 
RNAse-free 50-mL tube (2 samples/ewe). A sterile gauze was used to cover the tube and filter the milk. Samples 
were held in ice and transferred immediately to the laboratory where they were processed.

For the RNA extraction, MSCs in the 50 ml of fresh milk were pelleted by centrifugation at 650 × g for 10 min 
at 4 °C in the presence of a final concentration of 0.5 mM of EDTA. The cell pellet was washed with 10 mL of PBS 
(pH 7.2 and 0.5 mM of EDTA) followed by an additional centrifugation at 650 × g for 10 min at 4 °C. Washing and 
centrifugation procedures were repeated twice using 2 and 1.5 mL of the same PBS solution. Then, total RNA was 
extracted and purified from the milk cell pellet with 500 μL of TRIzol (Invitrogen, Carlsbad, CA, USA).
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Once RNA was extracted, an Agilent 2100 Bioanalyzer device (Agilent Technologies, Santa Clara, CA, USA) 
was used to assess RNA integrity value (RIN). The mean RIN of the CLA-MFD RNA samples was 7.8 ± 0.22 
(range 6.8–8.4).

RNA sequencing was conducted at CNAG (Centro Nacional de Análisis Genómico, Barcelona, Spain), where 
the TruSeq Stranded Total RNA Library Prep Kit (Illumina, San Diego, CA, USA) was used to generate stranded 
paired-end libraries with 300 bp fragments. The fragments were sequenced to a minimum depth of 30 million 
reads on an Illumina Hi-Seq 2000 sequencer (Fasteris SA, Plan-les-Ouates, Switzerland), generating stranded 
paired-end reads of 75 bp. CLA-MFD samples were sequenced in two different batches: four samples together 
with four FO-MFD and four control samples, while the other two samples were sequenced at a later stage.

Power calculations.  Power calculations were performed using the online tool Scotty (http://scotty.genetics.
utah.edu/scottyOutput.php). A table of counts with MSC transcriptome gene expression for four control and four 
CLA-MFD samples was used as input to estimate the power of the differential expression analyses. Moreover, 
the following criteria were set: an alignment rate of 75%, a maximum of six replicates per condition, a cost per 
replicate of 100 (control) and 100 (test) US Dollars (USD), a read depth between 10–50 million reads, a cost per 
million reads aligned to genes of 100 USD, a maximum cost of the experiment of 100,000 USD, 50% of differ-
entially expressed genes detected with a fold change of two, a p-value cut-off of 0.05, and a minimum of 50% of 
genes with at least 50% maximum power.

Alignment and quantification.  Alignment, quantification, differential expression analysis and functional 
annotation were performed using the RNA-Seq data extracted from the CLA-MFD samples described above but 
also using controls and FO-MFD data detailed by Súarez-Vega et al.11.

Samples were aligned to the Oar_v.3.1 ovine reference genome using the Oar_v.3.1_r88 annotation, and all the 
files were downloaded from Ensembl database. Sample alignment was performed using STAR v.2.4.015. Within the 
basic command line, we used the options “–outFilterType BySJout” to reduce spurious junctions, “–outWigStrand 
Stranted” to indicate that our RNA-Seq data was stranded, and the option “–quantMode TranscriptomeSAM” to 
create an output file with alignments translated into transcript coordinates required by the quantification tool 
RSEM16. The quantification step was performed using RSEM v.1.3.016 with the options–bam and–no-bam-output 
to indicate that a bam file with reads aligned to the transcriptome was provided as an input and should not be 
created by RSEM. The options–paired-end and–forward-prob 0 were used to indicate that our RNA-Seq data is 
paired-end and stranded, with the upstream read derived from the reverse strand. Moreover, we applied the 
options–estimate-rspd to estimate the read start position distribution,–calc-ci to calculate 95% credibility intervals 
and posterior mean estimates and–seed 12345 to set the seed for the random number generators used in calculat-
ing posterior mean estimates and credibility intervals.

Differential expression analysis.  Data from RSEM was imported to the R environment with the R pack-
age tximport17. The program DESeq.2 v.1.18.118 was used to perform differential expression analysis. For the 
analysis, technical replicates from the same sample were first collapsed with the function collapseReplicates. Based 
on the rlog transformed gene counts, we performed a principal component analysis (PCA) to cluster the samples 
based on gene expression data.

Due to the high variability of data within the CLA-MFD group in the estimation of dispersion of the power 
analysis and in the PCA plot performed with R (Fig. 1), we decided to perform the comparison between dif-
ferent conditions separately. Thus, the function DESeq, which estimates size factors, dispersion, and performs 
differential expression analysis, was run pairwise only with the samples from the two conditions to be compared 
(CLA-MFD vs. control, and CLA-MFD vs. FO-MFD, as recommended by DESeq2 when there is an extreme 
range of within-group variability).

For CLA-MFD samples, we first evaluated batch effect through a likelihood ratio test (lrt) to compare total 
model with the model only, evaluating the batch effect and identifying the genes whose expression level was 
influenced by the batch. Next, differentially expressed genes (DEGs) between the different conditions (CLA-MFD 
vs. control, and CLA-MFD vs. FO-MFD) were identified using a Wald test. Genes with a p-adjusted value (padj) 
<0.05 after the correction of p-values for multiple testing using the Benjamini–Hochberg’s approach were con-
sidered DEGs.

Figure 1.  Principal Component Analysis (PCA) plot of milk somatic cell transcriptomes from control (red), 
CLA-induced (CLA-MFD; blue), and fish oil-induced milk fat depression (FO-MFD; green) ewes.
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Functional enrichment analysis.  Several Gene Ontology (GO) term functional enrichment analyses 
were performed using WebGestaltR19 with the following options: minNum (minimum number of genes per cate-
gory) = 5 of the total genes in the input, fdrMethod (False discovery rate method) = BH (Benjamini–Hochberg), 
sigMethod (Significant method) = FDR (False Discovery Rate), and fdrThr (FDR threshold) = 0.05. These analyses 
were performed for the different lists of DEGs highlighted by the previous analyses: upregulated or downregu-
lated genes identified by different comparisons performed for the CLA-MFD samples, as well as genes usually 
identified as DEGs after comparing the two MFD treatments (CLA-MFD and FO-MFD) versus control.

Results
Power of the design.  Results for the power analysis showed that the most cost-effective experiment for per-
forming the differential expression analysis with sufficient power to detect at least 50% of the genes at a p-value 
cut-off of 0.05 and a true fold change of two included four replicates sequenced to a depth of 10 million reads 
aligned to genes per replicate. The most powerful experiment was sequencing six replicates to a depth of 50 
million reads aligned to genes per replicate. CLA replicates used to test the power showed a dispersion of 0.39, 
whereas the estimated dispersion of control samples was 0.20, which are within the common values of over dis-
persion of biological replicate pairs (0.2–0.4; http://scotty.genetics.utah.edu/). Thus, given the dispersion of the 
CLA-MFD samples, we decided to sequence six rather than four samples to increase the power of our experiment. 
The experimental conditions of the study presented herein meet the power requirements to detect an acceptable 
proportion (approximately 60%) of differentially expressed genes.

Sequencing and alignment: basic statistics.  Samples were sequenced to a minimum of 30 million 
paired-end reads. However, there were one control and two CLA-MFD samples that did not reach the minimum 
reads fixed and were resequenced. For the majority of samples, which reached the minimum depth fixed, the 
average paired-end reads generated per sample was 41,317,509 (SD = 5,239,094.7). For a control sheep, two tech-
nical replicates were sequenced with 17,686,309 and 24,006,681 reads per replicate. The two CLA-MFD samples 
that did not reach the minimum depth fixed initially were sequenced twice, with 19,597,009 and 22,390,871, and 
17,686,309 and 24,006,681 paired end reads, respectively. All fastq files obtained from sequencing were individu-
ally mapped to the sheep reference genome (Oar_v.3.1). The average alignment rate of the individual samples to 
unique sites in the sheep genome was 89.9% (SD = 1.35).

PCA results.  Results from the PCA performed based on the rlog-transformed gene counts showed that the 
first two principal components accounted for 45% (PC1) and 10% (PC2) of the variance (Fig. 1). PC1 seemed 
to group the samples by conditions and reflected a high level of dispersion for the CLA-MFD samples, whereas 
FO-MFD and control groups exhibited lower variability.

Differential expression analysis.  CLA-MFD vs. Control.  Seven genes were affected by the batch, with 
a padj <0.05 in CLA-MFD samples (ENSOARG00000000222, RND2, CCL28, ENSOARG00000009395, RXFP2, 
ENSOARG00000014187, ENSOARG00000015539). In the differential expression analysis between CLA-MFD 
and control samples, we found 1,257 upregulated and 271 downregulated genes in CLA-MFD sheep. Four of 
the genes influenced by the batch (i.e., ENSOARG00000000222, RND2, CCL28, ENSOARG00000009395) were 
identified as differentially expressed in this analysis (specifically, one was upregulated and three downregulated) 
and were excluded from the list of DEGs used to perform the functional analysis. The 1,256 genes upregulated in 
the CLA-MFD group were clustered in 1,205 GO terms [994 in the GO biological process category (GO-BP), 95 
in the GO Molecular Function category (GO-MF) and 116 in the GO Cellular Component category (GO-CC); 
Supplementary Table S1]. In the GO-BP, there were 18 terms with an FDR = 0, the majority of which were related 
to immune response. The highest enriched GO terms within the GO-MF was “cytokine binding” (FDR = 4.74E-08)  
and within the GO-CC was “endocytic vesicle”, “vacuolar part” and “side of membrane” (FDR = 0). Some terms 
with the highest number of genes linked to lipid metabolism were “lipid catabolic process” (29 genes; FDR = 0.01), 
“lipid transport” (28 genes; FDR = 0.04) and “lipid storage” (16 genes; FDR = 8.68E-06).

The 268 genes downregulated in the CLA-MFD condition were clustered in 87 GO terms (44 in GO-BP, 19 in 
GO-MF, and 24 in GO-CC; Supplementary Table S2). The highest enriched terms for each of these categories were 
“citrate metabolic process” (FDR = 1.00E-06), “cofactor binding” (FDR = 1.29E-07) and “mitochondrial matrix” 
(FDR = 5.65E-07), respectively. Specific terms directly related to fat metabolism were “fatty acid metabolic pro-
cess” (16 genes; FDR = 2.57E-03), “fatty acid catabolic process” (7 genes; FDR = 2.52E-02) and “fatty-acyl-CoA 
binding” (4 genes; FDR = 3.14E-02).

CLA-MFD vs. FO-MFD.  First, we evaluated the influence of the batch, detecting seven differentially expressed 
genes due to this effect (ATP8, ENSOARG00000009152, ENSOARG00000009395, RXFP2, ENSOARG00000015539, 
PPIC and ENSOARG00000020879). In the comparison between CLA-MFD and FO-MFD sheep, 654 DEGs were 
identified (569 upregulated and 85 downregulated in CLA-MFD). Only the PPIC gene was differentially expressed 
both due to the batch effect and between CLA-MFD and FO-MFD; therefore, it was deleted from the list of DEGs 
to perform the GO analysis. The upregulated genes within CLA-MFD were clustered in 662 GO terms (566 terms 
within GO-BP, 32 in GO-MF and 64 in GO-CC; Supplementary Table S3). There were four terms in GO-BP with 
a FDR = 0, all of which related to immunity. The highest enriched terms in GO-MF were “cytokine receptor activ-
ity” and “cytokine binding” (FDR = 7.28E-05), and in the GO-CC “membrane raft” and “membrane microdomain” 
(FDR = 2.15E-10). Among the enriched GO terms in CLA-MFD upregulated genes, we found the terms “lipid stor-
age” (9 genes; FDR = 8.68E-04), “regulation of lipid storage” (7 genes; FDR = 2.07E-03), “positive regulation of lipid 
storage” (4 genes; FDR = 2.65E-02), “response to fatty acid” (7 genes; FDR = 4.69E-02), and “lipid particle” (6 genes; 
FDR = 1.29E-02).
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Thirty-two significant GO terms (16 in GO-BP, 5 in GO-MF and 11 in GO-CC) were identified when clus-
tering the genes downregulated in the CLA-MFD group (Supplementary Table S4). The highest enriched term 
in the GO-BP was “small molecule catabolic process” (FDR = 1.64E-04), and remarkably, within this category, 
the majority of terms were related to catabolic processes on lipids/fatty acids. In the remaining categories, 
GO-MF and GO-CC, the highest enriched terms were “cofactor binding” (FDR = 1.97E-05) and “peroxisome” 
(FDR = 3.98E-04).

Comparison between CLA-MFD vs. Control and FO-MFD vs. Control.  Because MFD is the phenotype shared by 
CLA-MFD and FO-MFD sheep when compared to the control, DEGs in CLA-MFD vs. control and FO-MFD vs. 
control were contrasted to assess the similarities between both types of MFD. Gene expression changes caused 
by FO-induced MFD were detailed in a previous study11. However, RNA-Seq bioinformatics analyses have now 
been repeated with the workflow described above (STAR v.2.4.0, RSEM v.1.3.0 and DESeq.2 v.1.18.1 software) and 
the new release of the sheep genome assembly annotation (Oar_v.3.1-r88). The number of DEGs identified in the 
present study in the comparison of FO-MFD vs. control was 237. Among these DEGs, 178 genes were concordant 
with the 213 DEGs genes described previously11; therefore, they were used for the comparison of CLA-MFD vs. 
control DEGs.

Among upregulated genes in both MFD conditions, we found 35 shared upregulated genes, whereas only 
63 were upregulated in FO-MFD, and 1,222 genes were upregulated in CLA-MFD. Concerning downregu-
lated genes, there were 20 genes shared in both MFD conditions, whereas only 60 genes were downregulated in 
FO-MFD and only 251 in CLA-MFD.

When clustering the 35 common upregulated genes identified for the two MFD conditions, one GO-BP 
enriched term was identified, “divalent metal ion export” (FDR = 3.63E-02). The 20 genes downregulated in both 
conditions were clustered in 10 significant enriched GO terms (5 GO-BP and 5 GO-MF); the highest enriched 
terms were “acyl-CoA metabolic process” (FDR = 8.40E-03) within the GO-BP category and “acid-thiol ligase 
activity” (FDR = 2.79E-05) within the GO-MF (Supplementary Table S5).

Discussion
This study was conducted to assess changes in the milk somatic cell transcriptome in dairy sheep displaying 
CLA-induced MFD to help characterize this condition.

First, the large number of DEGs between CLA-MFD and control sheep stands out (1,524 genes), illustrating 
that diet supplementation with CLA has a higher impact on the mammary gland transcriptome of dairy ewes 
than does supplementation with FO (213 DEGs) previously detailed in Suárez-Vega et al.11. Moreover, consider-
ing the global gene expression levels in MSCs (Fig. 1), the observed variability within the CLA-MFD group was 
much higher than within the other two groups (FO-MFD and control).

A large number of enriched terms related with immune function were identified in the mammary transcrip-
tome of CLA-MFD ewes. Milk somatic cell counts are sensitive to animal health status20, but values in this treat-
ment, low and not different from the control, would not explain the observed results. However, the CLA product 
contained the trans-10 cis-12 and cis-9 trans-11 CLA isomers, which have been reported to exert beneficial effects 
on immunity due to the modulation of T-cell and cytokine responses, as well as activation of the PPARG signaling 
pathway (reviewed by Viladomiu et al., 2016)21. This transcription factor, PPARG, also seems to have a key role in 
milk fat synthesis in ruminants, but its implication in CLA-induced MFD, if any, are uncertain22,23. Upregulation 
of PPARG in the CLA-MFD samples, which is consistent with qPCR results reported previously as part of the 
same study10, may suggest activation of PPARG-mediated anti-inflammatory mechanisms21,22. Among the vast 
number of terms related to the immune response in our results, contradictory terms linked to both innate and 
adaptive responses were detected, such as cytokine activation and negative regulation of cytokine production or 
T-cell activation and negative regulation of T-cell activation. This is in line with the controversy concerning the 
pro-/anti- inflammatory effect of CLA under different environment conditions21. Moreover, we speculate that the 
activation of signaling pathways, such as Toll-like Receptors (TLRs) signaling pathway, and the involvement of 
other transcription factors upregulated in this study, like nuclear factor kappa B and activator protein-1, could 
contribute to explain the large transcriptional response seen in sheep MSCs supplemented with CLA. In any 
event, despite the relevance of the influence of CLA diet supplementation on immunity, dedicated research is 
required to gain new insight in this regard. Moreover, the subject is outside the framework of this article and 
therefore will not be further discussed herein.

In this study, we focused our attention on terms involved in lipid metabolism, to try to identify those most 
directly related to the mechanisms underlying both types of milk fat depression.

Starting with the upregulated genes, in the CLA-MFD vs. control comparison, there were several terms puta-
tively linked to MFD, such as “negative regulation of lipid storage”, “regulation of lipase activity”, “lipid catabolic 
process”, “response to fatty acid” and “lipase activity”, suggesting the involvement of CLA in lipolysis in the mam-
mary gland, as recently suggested in the adipose tissue of cows24. Thus, upregulated genes within these terms 
could be postulated as key factors in the MFD caused by CLA. For instance, carnitine palmitoyltransferase 1 
(CTP1A), one of the 57 genes clustered in the five GO terms listed above, was reported to be upregulated in goat 
mammary epithelial cells incubated with CLA13. This protein has a pivotal role in the regulation of long-chain 
fatty acid oxidation in the mitochondria, which might indicate increased energy expenditure in the mammary 
gland of ruminants in response to CLA supplementation13, contrary to what normally occurs during lactation, 
when fatty acid synthesis predominates over oxidation25.

However, other DEGs that were also clustered into terms related to fatty acid oxidation and lipid catabolic pro-
cesses, ECH1, ETFDH, GCDH, IVD, SCP2, were upregulated in FO-MFD compared to CLA-MFD, which might 
suggest that different genes trigger similar biological processes under different MFD conditions. It is probably 
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worth mentioning that considerable effort has been invested in elucidating the relationship between MFD and 
lipogenesis9, but the role of lipid catabolic processes is less known.

Among these upregulated genes in FO-MFD, when compared to CLA-MFD, there was, for instance, acti-
vation of enoyl coenzyme A hydratase 1 (ECH1). In mouse liver, overexpression of this enzyme reduces lipid 
accumulation when animals ingest high fat diets and inhibits lipogenic gene expression26. Missense mutations 
in another gene upregulated in FO-MFD that codes for flavoprotein dehydrogenase (ETFDH) have been related 
to glutaric aciduria type IIC in humans. The clinical signs of this disease include, among others, accumulation of 
subcutaneous fat, liver steatosis and lipid storage myopathy27, which relates the abnormal function of this gene to 
lipid accumulation. Mutations in the glutaryl-CoA dehydrogenase (GCDH) gene have also been related to glutaric 
aciduria, but to type I in this case. Marti-Masso et al.28 linked alterations in mitochondrial fatty acid metabo-
lism due to mutations in the GCDH gene to the development of muscular dystonia in glutaric aciduria type I in 
humans. Finally, the SCP2 gene, encoding the sterol carrier protein 2, is increased in the mammary gland of cows 
supplemented with diets rich in unsaturated fatty acids that elicit MFD12.

Among genes upregulated in CLA-MFD compared to FO-MFD, the enriched GO biological process terms 
related to lipid metabolism were linked to “lipid storage”, “regulation of lipid storage”, and “response to fatty acid”. 
Eleven genes (ABCG1, ABHD5, ID3, IL1B, NFKBIA, PTAFR, PTGER2, PTGER4, TLR2, UCP2, ZC3H12A) 
clustered within these enriched terms were also upregulated in CLA-MFD compared to control. A contrast in 
the expression levels of these genes for the three considered conditions is presented in Fig. 2, as they may be 
key factors in determining the specific mechanisms underlying the occurrence of CLA-induced MFD. We are 
aware of very few reports in ruminants relating variations in the expression of these genes and implications in 
lipid metabolism. For instance, increased ABCG1 expression in CLA-MFD samples was detected by qPCR in a 

Figure 2.  Plot showing gene expression (DESeq2 normalized counts) of eleven genes linked to lipid catabolism 
and lipid storage found upregulated in CLA-induced milk fat depression (CLA-MFD) compared to control and 
fish oil-induced MFD (FO-MFD) and SREBF2 gene (found upregulated when CLA-MFD was compared to FO-
MFD).
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previous study10 and might suggest changes in cholesterol homeostasis29. Concerning the ABHD5 gene, which 
encodes the alpha-beta hydrolase domain-containing 5 protein, a key regulator of adipose triglyceride lipase 
(ATGL)-mediated lipolysis30, its upregulation in the adipose tissue of cows supplemented with palmitic acid has 
been related to enhanced lipolysis to support increased milk yield31. The inhibitor of DNA binding 3 HLH protein 
(ID3) is involved in the inhibition of FA synthesis in rat adipocytes by reducing expression of fatty acid synthase 
through inhibition of SREBP-1c32. The PTGER2 and PTGER4 genes encode for prostaglandin receptors E 2 and 4, 
respectively, and PTGER4 knockout mice exhibit a lean phenotype due to the reduction of adipose tissue and the 
accumulation of triglycerides in other organs due to impaired triglyceride clearance33. The UCP2 gene encodes 
for the uncoupling protein 2 of the respiratory chain, and its function has been associated with increased energy 
expenditure34. This gene has been demonstrated to be upregulated in mice supplemented with CLA35–37 and in the 
mammary gland of cows under plant oil-induced MFD conditions12, which are associated with the anti-lipogenic 
effect of trans-10 cis-12 CLA1. Finally, ZC3H12A encodes the regnase-1 protein and in Caenorhabditis elegans has 
been linked to lipid metabolism by acting as a posttranscriptional regulator38. Specifically, regnase-1 protein has 
been shown to favor fat accumulation by degrading mRNA encoding the ETS-4 fat-loss-promoting transcription 
factor38. In cattle, dietary restriction increased ZC3H12A expression in the rumen epithelium and liver, which 
was speculated to have some association with the concomitant downregulation of genes involved in nutrient 
processing and metabolism39,40. Hence, further research is necessary to identify the potential role of these genes 
in the mammary gland of dairy ewes suffering from CLA-induced MFD.

Concerning downregulated genes, the highest enriched term when CLA-MFD samples were compared to 
controls was “citrate metabolic process”. Among genes within this term, we found the isocitrate dehydrogenase 
1 (IDH1), which has been suggested to play a key role in generating the primary source of NADPH necessary 
for de novo fatty acid synthesis in the bovine mammary gland41. CLA has been proposed to inhibit mammary 
lipogenesis, at least to a certain extent, due to the decrease of IDH1 expression42. Interestingly, this gene was also 
downregulated in animals on the CLA diet when compared to those receiving FO, suggesting differences between 
these dietary supplements with respect to regulation of this gene. In this regard, changes in milk FA profile would 
support a greater inhibition of de novo synthesis in CLA-MFD treatment than in FO-MFD10.

In addition, among the genes downregulated in CLA-MFD compared to control, there were also GO terms 
related to fatty acid and acyl-CoA metabolic processes. Within these terms, we detected genes encoding key 
proteins involved in de novo fatty acid synthesis, such as fatty acid synthase (FASN) and acetyl-CoA carboxylase 
alpha (ACACA)43, consistent with the trend observed in qPCR analysis10. The latter enzyme was also reported to 
be downregulated in FO-MFD compared to control11. Moreover, other genes related to lipid metabolism were 
also downregulated in both CLA- and FO-MFD when these conditions were compared to the control, such as 
some genes associated with activation of acetoacetate to acetoacetyl-CoA (AACS), activation of fatty acids with 
CoA (ACSS2, ACSS3), and desaturation of fatty acids (FADS2)43. Expression of most of these lipogenic genes is 
controlled by the sterol regulatory element-binding protein-1 (SREBP1) signaling pathway44,45, which was found 
to be inhibited in our previous study comparing the transcriptomes of FO-MFD and control ewes11. In addition 
to the differences between the mechanisms of action of CLA and FO, these downregulated genes suggest there are 
common pathways activated in both types of diet-induced MFD.

Interestingly, the sterol regulatory element-binding transcription factor 2 (SREBF2) was downregulated in 
FO-MFD ewes compared to those receiving CLA (Fig. 2). Although both SREBF1 and SREBF2 have been asso-
ciated with lipid metabolism in the mammary gland43,46, each isoform may have different roles47. Thus, SREBF2 
would be mainly involved in cholesterol biosynthesis47, whereas SRBEP1 signaling would be crucial to MFD45,48. 
As mentioned above, several genes clustered in this pathway were found to be downregulated in CLA and FO, but 
these did not include SREBF1. This lack of variation is consistent with our previous qPCR results10 but contrasts 
with most reports on MFD in ruminants13,45,48. The complex posttranscriptional regulation of SREBF145, as well 
as the relatively advanced stage of lactation, may be of relevance in this regard. CLA-induced downregulation of 
SREBF1 was previously detected in sheep during early and mid-lactation (15 and 70 days in milk) but not during 
late lactation (120 days in milk49), and our ewes were at approximately 102–103 days in milk when samples were 
collected.

In summary, we identified several downregulated genes involved in the synthesis of fatty acids, such as 
ACACA, AACS, ACSS2, ACSS3 and FADS2, in response to both CLA- and FO-MFD conditions. However, 
although the phenotype induced by dietary supplementation with either CLA or FO is similar4,10, inclusion of 
CLA is related to global expression patterns showing higher variability than the addition of FO. Moreover, CLA 
causes a significant impact in terms of gene expression changes by influencing not only the expression of genes 
related to lipid metabolism but also of others involved in different biological processes, especially immunity. 
Furthermore, some genes related to lipid catabolism were upregulated in CLA-MFD compared to control and 
FO groups, while others implicated in the same function were upregulated by FO- compared to CLA-MFD. This 
suggests that both supplements might affect the expression of different genes associated with biological processes 
leading to similar phenotypes. Finally, this study provides a list of candidate genes that are not usually considered 
in the nutrigenomics of MFD but that may act as key regulators in biological processes inducing low-fat milk 
syndrome in dairy ewes fed either marine lipid- or CLA-supplemented diets.
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