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Summary

The immune system is essential for maintaining a delicate balance

between eliminating pathogens and maintaining tolerance to self-tissues

to avoid autoimmunity. An enormous and complex community of gut

microbiota provides essential health benefits to the host, particularly by

regulating immune homeostasis. Many of the metabolites derived from

commensals can impact host health by directly regulating the immune

system. Many autoimmune diseases arise from an imbalance between

pathogenic effector T cells and regulatory T (Treg) cells. Recent interest

has emerged in understanding how cross-talk between gut microbiota and

the host immune system promotes autoimmune development by control-

ling the differentiation and plasticity of T helper and Treg cells. At the

molecular level, our recent study, along with others, demonstrates that

asymptomatic colonization by commensal bacteria in the gut is capable of

triggering autoimmune disease by molecular mimicking self-antigen and

skewing the expression of dual T-cell receptors on T cells. Dysbiosis, an

imbalance of the gut microbiota, is involved in autoimmune development

in both mice and humans. Although it is well known that dysbiosis can

impact diseases occurring within the gut, growing literature suggests that

dysbiosis also causes the development of gut-distal/non-gut autoimmu-

nity. In this review, we discuss recent advances in understanding the

potential molecular mechanisms whereby gut microbiota induces autoim-

munity, and the evidence that the gut microbiota triggers gut-distal

autoimmune diseases.
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Introduction

The mammalian gastrointestinal tract is home to an enor-

mous and complex community of commensal bacteria.1–3

This gut microbial community (microbiota) has co-evolved

with its host over millennia, suggested by the fact that out

of 52 bacterial phyla, two dominant phyla, Bacteroidetes

and Firmicutes, represent 98% of the bacteria in the gut.4,5

These gut microbes provide benefits to their host in many

ways, including, but not limited to, digestion, production

of nutrients, detoxification, protection against pathogens

and regulation of the immune system.1–3,6,7 As a result of

its collective metabolic activity, and necessity for human

health, the gut microbiota is often referred to as the ‘for-

gotten’ organ.8 Interestingly, many of the metabolites

derived from commensal bacteria have recently been found

to directly impact the immune system. Commensal-

mediated immunomodulation includes the promotion of T

helper cell subset differentiation and T helper cell plasticity,

the ability of a differentiated CD4+ T cell to take on char-

acteristics of other T-cell subsets simultaneously or at dif-

ferent times.9 Plasticity is an especially important subject

for mucosal immunity, as mucosal tissues are major sites

where T-cell plasticity has been observed.10–14 Therefore,

the mucosa harbors the frontline immune response to

commensal bacteria, and their interactions may subse-

quently control health versus disease status through T-cell

differentiation and plasticity.

An autoimmune condition develops when the

immune system mistakenly attacks our own self-tissues. A

long-standing question in the field of microbe–host com-

munication is how interaction of microbes with T cells
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promotes autoimmune development. Molecular mimicry

is one prominent hypothesis, theorizing that microbes

trigger autoimmunity by a shared immunogenic epitope

between microbes and a self-peptide, which leads to the

activation of autoreactive T cells.15,16 Another less well-

known theory is that expression of dual T-cell receptors

(TCRs) on T cells promotes autoimmunity by allowing

autoreactive T cells to escape thymic clonal deletion.17–19

Alterations in the composition of the gut microbiome,

known as dysbiosis, have been implicated in many dis-

eases and disease models, including those that show clear

association with the gut such as inflammatory bowel dis-

ease, colorectal cancer, enteric infections, and obesity.20–27

Dysbiosis has also been implicated in immune disorders

that occur outside the gut, such as asthma, eczema, aller-

gies, and gut-distal autoimmune diseases (autoimmune

arthritis, type 1 diabetes, experimental autoimmune

encephalomyelitis).20,28–37 Although it is easy to see how

the gut microbiota can influence immune responses

within the gut, over the last decade an appreciation for

the impact of the gut microbiome on gut-distal autoim-

munity disease has developed. For example, a strong

interest has emerged to characterize the impact of gut

microbiota on health and disease status in the lung and

brain, namely ‘gut–lung axis’ and ‘gut–brain axis’, respec-

tively.38,39

This article aims to review the influence of microbiota

on the immune system by producing key commensal-

derived metabolites as well as controlling T-cell subsets

and plasticity. Additionally, we discuss the recent findings

on how gut commensals affect autoimmunity by molecu-

lar mimicry and skewing the expression of dual TCRs.

Finally, we discuss the role of dysbiosis in the pathogene-

sis of common autoimmune diseases. As dysbiosis in

inflammatory bowel disease has been extensively reviewed

elsewhere (see ref. 40–42), this review will focus on the

impact of gut microbiota dysbiosis in the development of

gut-distal autoimmune diseases. Understanding the

mechanisms of how gut commensals affect the immune

system will be crucial for us to elucidate autoimmune

pathogenesis and to generate novel therapies. This is an

urgent subject, as dysbiosis-related diseases have emerged

as new epidemics in the industrialized world.43–45

Commensal bacteria-mediated metabolites and
immunity

Gut commensals are well-known for their function in

digestion, a process involving extraction and synthesis of

many metabolites, some of which are produced only by

commensal bacteria and are crucial for host health.46

Recently, several advancements have been made determin-

ing how the metabolites generated by commensal bacteria

can directly influence the development and function of

the immune system, directly impacting health and dis-

eases (Table 1). Here, we review the most recent reports

in this field.

Short-chain fatty acids

Short-chain fatty acids (SCFAs) including butyric acid,

propionic acid, and acetic acid are the main metabolic

products of undigested carbohydrates by gut commensal

bacteria and have broad effects on the host immune sys-

tem.47 Among the fatty acid receptors, two orphan G

protein-coupled receptors, GPR41 and GPR43, are acti-

vated by SCFAs.48,49 SCFAs are significantly reduced in

the colon of germ-free mice indicating that the gut

microbiota is essential for their production.50 Recently,

one group reported that long-chain fatty acids enhanced

Table 1. The impact of commensal-derived metabolites on immunomodulation and disease development

Commensal Metabolite Disease phenotype Immunomodulation References

Clusters IV and XIVa

of Clostridium

↑ IDO, enzyme involved in tryptophan

catabolism, on IEC

↓ Colitis ↑ Colon Treg

↓ Th1

63,66

Lactobacillus reuteri ↑ Indole derivatives by

metabolizing tryptophan

↑ Differentiation of DP IEL 69

Clostridium sporogenes ↑ IPA derivatives by metabolizing

tryptophan, phenylalanine, and tyrosine

↓ Permeable intestines ↓ Neutrophils, monocytes,

and memory T cells

72

General microbiota

signal through MyD88

↑ RALDH, enzyme able to catalyze

the synthesis of RA from Vitamin A

↓ EAE

↓ Autoimmune arthritis

↑ Treg

↓ Th17

↑ Gut-homing integrin a4b7
↑ Maintenance of peripheral

lymph nodes

78,79,92

Ruminococcaceae

eubacterium

↑ SCFAs signal through GPR43 ↓ EAE

↓ Type 1 diabetes

↑ Lamina propria Treg

↑ Antimicrobial peptides

57,53,55

Abbreviations: DP IEL, double-positive intraepithelial T lymphocytes; EAE, experimental autoimmune encephalomyelitis; IDO, indoleamine 2,3-

dioxygenase; IEC, intestinal epithelial cells; IPA, indolepropionic acid; RA, rheumatoid arthritis; RALDH, retinal dehydrogenase; SCFA, short-

chain fatty acids; Th1, T helper type 1; Treg, regulatory T.
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the differentiation and proliferation of T helper type 1

(Th1) and/or Th17 cells, whereas SCFAs expanded gut

regulatory T (Treg) cells.51,52 Using experimental autoim-

mune encephalomyelitis (EAE) as a model for multiple

sclerosis, Haghikia et al. showed that long-chain fatty

acids decreased SCFAs in the gut, leading to exacerbated

EAE by expanding pathogenic Th1 and/or Th17 cells in

the small intestine.51 Treatment with SCFAs ameliorated

EAE by inducing lamina-propria-derived Treg cells. Con-

sistent with the anti-inflammatory properties of SCFAs,

treatment of germ-free mice with acetate, a type of SCFA,

is sufficient to reduce intestinal inflammation in the dex-

tran sulfate sodium model of colitis.53 The protective

effect of acetate was lost in GPR43�/� mice, indicating

that signaling of acetate through GPR43 is necessary for

the anti-inflammatory effect of SCFAs. Remarkably,

administration of the SCFA butyrate ameliorates inflam-

mation in patients with ulcerative colitis.54 SCFAs also

indirectly control type 1 diabetes through the production

of antimicrobial peptides. Mechanistically, SCFAs pro-

duced by the gut microbiota have been shown to stimu-

late the production of antimicrobial peptides by

pancreatic beta cells.55 Furthermore, systemic administra-

tion of these antimicrobial peptides induce Treg cells in

the pancreatic islets of pre-diabetic mice, reducing the

incidence of autoimmune diabetes. Additionally, it has

been recently demonstrated that administration of the

SCFA propionate significantly attenuated HLA-B27-asso-

ciated intestinal inflammation in Fischer 344 HLA-B27/

b2m transgenic rats.56 Interestingly, this propionate-

mediated inhibition of inflammation is independent of its

role in regulating the Treg cell response.

Amino acids

An early study gives an indication that gut bacteria may

play an important role in host amino acid homeostasis

and health by showing that germ-free mice had an altered

distribution of free amino acids along the gastrointestinal

tract compared with conventionalized mice.58 More

recent reports suggest that the most abundant amino-

acid-fermenting bacteria in the human small intestine are

bacteria belonging to the Clostridia, the Bacillus–Lacto-
bacillus–Streptococcus groups, Proteobacteria, and Pep-

tostreptococcus.59–61 These bacteria are therefore likely to

be important for amino acid absorption in the gastroin-

testinal tract. Among the 20 amino acids, tryptophan

belongs to one of the nine ‘essential’ amino acids that

humans and higher vertebrates cannot synthesize, and

that must be supplied in their diet.62 Numerous studies

suggest that tryptophan metabolites generated by gut

commensal bacteria serve as important signaling mole-

cules in host–microbe cross-talk. For example, the colonic

intestinal epithelial cells from mice colonized with clusters

IV, XIVa, and XVIII of Clostridium express high levels of

indoleamine 2,3-dioxygenase,63 an enzyme involved in the

initial and rate-limiting step of tryptophan catabolism,

which has been implicated in Treg cell induction.64

Specifically, it has been demonstrated that kynurenine,

the first product in the indoleamine 2,3-dioxygenase-

dependent tryptophan degradation pathway, activates the

aryl hydrocarbon receptor, leading to aryl hydrocarbon

receptor-dependent Treg cell generation.65 Indeed, an

induction of colonic Treg cells was observed in mice col-

onized with Clostridium species.63

The small intestinal epithelium contains a unique pop-

ulation of CD4+ CD8aa+ double-positive intraepithelial T

lymphocytes (DP IELs) which exhibit anti-inflammatory

properties.67,54 It has been shown that upon migration to

the epithelium, Treg cells lose Foxp3 and convert to DP

IELs in a microbiota-dependent manner, as microbiota

depletion by treating mice with broad-spectrum antibi-

otics prevents Foxp3 loss.68 Whereas all Treg cells express

the CD4-lineage transcription factor T helper-inducing

POZ/Kr€uppel-like factor (ThPOK), CD8aa+ CD4+ and

> 50% of Foxp3– CD8a– CD4+ cells in the small intesti-

nal epithelium lack ThPOK expression. Later, it was

found that loss of ThPOK corresponds to an IEL-like

behavior in CD4+ T cells. Interestingly, supplement of

TCR stimulation can overcome the microbiota require-

ment for the DP IEL differentiation, as demonstrated by

the relatively normal DP IEL differentiation in antibi-

otics-treated Rag1�/� OT-II (ova-specific) mice exposed

to oral ovalbumin. By comparing the microbiota profile

between mice housed at two vivaria, with mice at one

vivarium displaying significant numbers and another dis-

playing negligible or absent DP IELs, Cervantes-Barragan

et al. discovered that the commensal Lactobacillus reuteri

was responsible for the differentiation of DP IELs.69 Lac-

tobacillus reuteri generated indole derivatives by metabo-

lizing tryptophan, which activated the aryl-hydrocarbon

receptor in CD4+ T cells, leading to their ThPOK down-

regulation and differentiation into DP IELs. Hence,

L. reuteri together with a tryptophan-rich diet can pro-

mote gut immune homeostasis by allowing the differenti-

ation of intraepithelial CD4+ T cells into anti-

inflammatory DP IELs.

Only a few species of gut commensals, including

Clostridium sporogenes, can break down tryptophan and

produce the metabolite indolepropionic acid (IPA), a

deamination product of tryptophan.70 Bacterial trypto-

phanase catalyzes the conversion of dietary tryptophan to

indole and subsequently to IPA.71 A recent study identi-

fied a total of 12 compounds that can be produced in this

process, nine of which can accumulate in the blood and

three of which are produced exclusively by bacteria.72

Specifically, the C. sporogenes-expressed gene fldC is nec-

essary for the production of IPA. In fact, fldC is essential

for the reductive metabolism of all three aromatic amino

acids (tryptophan, phenylalanine, and tyrosine). Germ-
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free mice receiving wild-type C. sporogenes exhibit high

levels (~80 lM) of serum IPA whereas germ-free mice

receiving the mutated version of C. sporogenes lacking

fldC, had undetectable serum IPA. Importantly, mice with

undetectable IPA had higher levels of immune cells,

including neutrophils, classical monocytes, and memory

T cells. In addition, the mice with the engineered version

of C. sporogenes had increased intestinal permeability, a

defect that is often seen in inflammatory bowel disease.

In addition to having a direct impact on the immune

system, undigested amino acids have the potential to

become supplemental precursors for SCFA generation by

the gut microbiota, in addition to indigestible carbohy-

drates.73 Therefore, amino acids could have indirect

impact on the immune system through SCFAs as we dis-

cussed earlier. Numerous amino acids including glycine,

threonine, glutamate, and ornithine can be metabolized

by anaerobic bacteria to generate acetate, whereas thre-

onine, lysine, and glutamate can be used for butyrate syn-

thesis.74 Moreover, at the molecular level, it has been

shown that intracellular leucine concentrations can be

sensed by the multiprotein complex leucyl-tRNA syn-

thetase,75,76 which activates the mechanistic target of

rapamycin kinase, proving to be a vital link between

immune function and metabolism.77

Retinoic acid

Retinoic acid, a metabolite of vitamin A, is one of the

most active physiological retinoid metabolites and has a

wide range of biological activity including regulating

immune responses.78 A major part of retinoic acid’s anti-

inflammatory effects depends on the inhibition of Th17

cells and promotion of Foxp3+ Treg cell responses.78,79 In

addition, retinoic acid has been shown to be important

for the expression of the gut homing receptor integrin

a4b7 on T cells.80–82 The a4b7 integrin receptors are

imprinted on lymphocytes by dendritic cells (DCs) from

Peyer’s patches (PPs), and mesenteric lymph nodes.82,83

In the absence of microbial toll-like receptor signaling in

Myd88�/� mice, gut DCs express low levels of retinal

dehydrogenase (RALDH) required for retinoic acid

biosynthesis, so these Myd88�/� mice are unable to gen-

erate gut-homing lymphocytes.84 AM80 is a synthetic reti-

noic acid that is characterized by higher stability and

fewer potential adverse effects compared with retinoic

acid.85,86 It has been reported that both retinoic acid and

AM80 ameliorate many autoimmune responses, including

experimental autoimmune myositis, experimental autoim-

mune encephalitis, and collagen-induced arthritis.87–90

We recently showed that oral administration of AM80

inhibits autoimmune disease in the joints as well as in

the lung.91 We elucidated a novel mechanism whereby

AM80 suppresses the autoimmune pathology in both the

lung and joints by inhibiting T follicular helper (Tfh)

cells in addition to inhibiting Th17 responses. Specifically,

AM80 increased the expression of the gut-homing inte-

grin a4b7 on Tfh cells, which diverted Tfh cells from sys-

temic (non-gut) inflamed sites such as the lung draining

lymph nodes into the gut (the non-immunopathological

site) and so reduced systemic autoantibody production.

Moreover, the impact of retinoic acid can go beyond

the cellular level and impact the development of whole

lymphoid tissues.92 It has been reported that cellular

expansion in peripheral lymphoid tissues is controlled by

gut microbiota in a retinoic acid-dependent manner.93

The mucosal addressin MAdCAM-1 is the receptor for

the gut-homing integrin a4b7, and peripheral node

addressin PNAd is the receptor for CD62L.94 In neonatal

mice, MAdCAM-1 expression in lymph nodes is elevated

shortly after birth,95 followed by a switch to a PNAd over

a course of 2–3 weeks.93 Zhang et al. demonstrated that

commensal fungi drive a wave of RALDH+ DCs to

migrate to the peripheral lymph nodes after birth.92 The

arrival of these cells increases the amounts of retinoic

acid in situ, mediates the neonatal MAdCAM-1 to adult

PNAd addressin switch on endothelial cells, and directs

the homing of lymphocytes to gut-associated lymphoid

tissues. Finally, the authors found that a diet deficient in

vitamin A causes reduced homing of RALDH+ DCs into

peripheral lymph nodes and a lack of maintenance of

peripheral lymph node structures, suggesting a depen-

dence on retinoic acid signaling for structural and func-

tional maintenance of peripheral immune tissues.

Microbiota and T-cell subset determination

Understanding the role of microbiota in T-cell subset

commitment and plasticity holds the key for unveiling

the pathogenesis and therapeutic options for autoimmune

diseases, as well as diseases associated with unbalanced

immune responses such as cancers and infections. Not

surprisingly, addressing this question has become a

focused area of research in recent years. One study using

transgenic mice expressing a limited but diverse TCR

repertoire, through fixed TCR-b expression, showed that

the TCR repertoire of colonic Treg cells is unique com-

pared with thymically derived Treg cells.96 Furthermore,

these colonic Treg cells were shown to react with bacterial

isolates, suggesting that encountering gut microbes in the

intestines leads to peripheral Treg cell induction, and

hence to tolerance to the gut microbiota.96 A more recent

study, also using transgenic mice expressing a constrained

TCR repertoire, through fixed TCR-b expression and lim-

ited TCR-a rearrangement (TCRmini mice97) showed that

thymic and intestinal Treg cells expressed overlapping

TCR repertoires, many of which recognize microbial anti-

gens.98 Alteration of the gut microbiota through treat-

ment of TCRmini mice with a cocktail of antibiotics

concurrently altered the colonic and thymic Treg TCR
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repertoire.98 This suggests that the repertoire of thymi-

cally derived Treg cells is heavily influenced by the micro-

biota. Although these studies have differing results

regarding the initial site of gut microbiota influence, in

either case it is clear that direct recognition of microbial

antigens by T cells can promote Treg cell lineage commit-

ment. Beyond Treg cells, the gut microbiota can also

influence T helper subsets. In the presence of a normal

microbiota, CX3CR1
+ intestinal antigen-presenting cells

act to limit Th1 cell development and expansion.99 How-

ever, antibiotic-induced dysbiosis leads to a shift in the

function of CX3CR1
+ antigen-presenting cells, allowing

them to promote pathogenic Th1 cell development.99

Our laboratory and others have also demonstrated that

a single type of commensal bacteria, segmented filamen-

tous bacteria (SFB), can promote Th17 cell responses. In

C57BL/6 mice, SFB specifically induce intestinal Th17

cells.25 More recent studies, however, have demonstrated

that SFB can also influence T helper subsets outside the

gut. In 2011, Lee et al. discovered that SFB alone was able

to promote Th17 cells specifically in the spinal cord of

EAE mice.33 Similarly, we have shown that in the K/BxN

mouse model of autoimmune arthritis, SFB specifically

promotes Th17 cell responses in the lung.100 Additionally,

SFB can also drive the differentiation of Tfh cells and

promote their migration to systemic sites, leading to

exacerbated autoimmune arthritis in K/BxN mice.101

However, the exact molecule(s) employed by SFB to pro-

mote the differentiation of T helper cell subsets remain

elusive. Although many microbiome studies focus on the

microbes residing in the intestines, the entire digestive

tract is colonized with bacteria. Hence, the oral micro-

biome has recently become an area of interest with

regards to mucosal immunity. Data from Dutzan et al.

showed that oral homeostatic Th17 responses, unlike gut

Th17 responses, were unaffected by shifts in the oral or

gut microbiomes.25,102 This suggests that not all mucosal

T cells are influenced by the microbiome, and that other

environmental cues such as chewing activity in the oral

cavity and chewing-associated damage can maintain the

Th17 cell population. Interestingly, a more recent study

from this same group found that inflammatory Th17 cells

isolated directly from periodontal lesions were in fact

heavily influenced by oral microbiome dysbiosis.103 By

focusing on Th17 isolated from periodontal lesions of

both mice and humans, they found that increased abun-

dance of Th17 cells and enhanced production of inflam-

matory cytokine IL-17 was associated with shifts in the

oral microbiome. Specific outgrowth of Enterococcus and

Actinobacteria along with loss of Streptococcus was associ-

ated with periodontitis and enhanced Th17 cell responses

in the ligature-induced periodontitis mouse model.

Together the studies suggest that only pathogenic but not

homeostatic Th17 cell responses are influenced by dysbio-

sis. We recently addressed how both age and gut

microbiota affect T-cell subsets in the context of autoim-

munity.104 Our results show an augmented autoimmune

disease phenotype in both the joints and the lung of mid-

dle-aged compared with young mice. Mechanistically, we

saw a soaring accumulation of Tfh, but surprisingly not

Th17 cells with age. Our data suggest exposure to

immunomodulatory commensals such as SFB may allow

the young host to develop an overactive immune system

similar to that found in middle-aged hosts. Our study

also shows that age can independently increase the Tfh

cell response without the help of immunomodulatory

commensals.

CD4 T helper cell plasticity and the microbiota

The development of specific transcription factor reporter

mice has proven to be an invaluable tool in dissecting the

plasticity of T-cell subsets. An early study using adoptive

transfer of cells from Foxp3eGFP reporter mice showed

that 80% of Treg cells lost GFP expression in the PPs

compared with 50% in spleen.12 Within the GFP-negative

PP population, > 60% of the cells expressed CXCR5, con-

sistent with a Tfh phenotype,12 suggesting that PP, but

not spleen, is the preferred site for a Treg to Tfh repro-

gramming. Two other studies found that retinoic-acid-

receptor-related orphan receptor c t (Rorct), the hallmark

Th17 transcription factor, was preferentially expressed by

colonic Treg cells, and furthermore, that in the absence

of gut bacteria, the Rorct+ Treg cell population was sub-

stantially diminished.10,14 Interestingly, several bacterial

species were able to induce Rorct+ Treg cells, which were

indispensable for maintaining gut homeostasis as deter-

mined by enhanced IL-17, interferon-c (IFN-c), and coli-

tis in their absence.10 Another study showed that the

pathogenic bacterium Helicobacter hepaticus promoted

expansion of Rorct+ Treg cells in a c-MAF-dependent

manner, which selectively suppressed pro-inflammatory

Th17 cells in the intestines.105 However, in the absence of

Treg cells (in Il10�/� mice), H. hepaticus predominantly

induced Th17 cells, suggesting that pathobionts can have

an impact on T-cell plasticity by expanding potent sup-

pressive T cells, which in turn, inhibit the inflammatory

T helper cells necessary for pathogen elimination. Plastic-

ity among T helper subsets has also been observed. Using

cell fate reporter mice in which Th17 cells are perma-

nently marked by YFP (Il17creR26eYFP), Hirota et al.

found that selectively in the PP, but not spleen, Th17

cells were reprogramed to a Tfh (PD-1hi CXCR5hi) phe-

notype.13 Furthermore, these ex-Th17-Tfh cells localized

in germinal centers where they assisted in T-cell-depen-

dent IgA production. In a Th17 adoptive transfer model

of colitis, it was demonstrated that Th17 cell conversion

to a Th1 phenotype was necessary for colitis development

as Th17 cells unable to produce IFN-c (Ifng�/�) were

incapable of inducing colitis.106 Interestingly, not only
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did Th17 cells convert to Th1 and contribute to colitis

development directly, but also Th17 were capable of pro-

viding help to naive T cells for Th1 lineage commitment.

Together these studies suggest that gut microbiota is able

to influence T-cell plasticity within the gut microenviron-

ment and influence the development of autoimmunity

and other inflammatory diseases.

Gut microbiota induces autoimmunity by
TCR-mediated mechanisms

Central to T-cell function is the TCR, through which T

cells recognize their cognate antigen and become acti-

vated. An important feature of the TCR is its ability to

recognize multiple antigens, known as TCR cross-reactiv-

ity. Sequencing-based methods estimate that humans and

mice express 107 and 106 productive unique ab TCRs,

respectively, yet this is insufficient to cover the possible

foreign antigen repertoire.107,108 Therefore, TCRs possess

the ability to recognize multiple antigens in order to rec-

ognize the plethora of possible foreign antigens (see ref.

109). One potential mechanism through which patho-

genic autoreactive T cells may become activated is

through weak recognition of a microbial antigen for

which their TCR is cross-reactive. This is also known as

molecular mimicry, a phenomenon in which a foreign

antigen shares significant structural or sequence similari-

ties with a self-antigen.15,16 Later, this now activated

autoreactive T cell can home to the tissue where its cog-

nate self-antigen is expressed and elicit autoimmune

pathology. In fact, cross-reactive TCR recognition of

microbial peptides by autoreactive T cells has been seen

in several autoimmune settings (Fig. 1). In 2015, Horai

et al. showed that T cells restricted to expressing only the

retina-specific TCR (R161H), became activated in the

intestines in response to an unidentified microbial anti-

gen.110 T-cell activation was in response to TCR-signaling

to a non-cognate microbial antigen, as T cells in the small

intestines of R161H-Tcra�/� mice had clear co-localiza-

tion of phosphorylated Zap-70 with CD4, known to be

downstream of TCR signaling.110–112 Later, it was shown

that Islet-specific glucose-6-phosphate catalytic subunit-

related protein (IGRP)-specific CD8+ T cells in non-obese

diabetic (NOD) mice were activated through recognition

of a peptide from Fusobacteria and elicited autoimmune

diabetes.113 Interestingly, the Fusobacteria peptide shared

significant homology with the IGRP peptide targeted by

the IGRP-specific transgenic TCR,113 suggesting that

molecular mimicry in microbial peptides may pose a

threat because they can activate pathogenic autoreactive T

cells. Most recently, it was shown that gut commensal

bacteria expressing an ortholog to human Ro60, a nuclear

RNA-binding protein and primary targeted self-antigen in

lupus, were able to activate human Ro60-specific CD4+ T

cells through cross-reactive TCR recognition.114

Furthermore, germ-free mice monocolonized with Ro60-

ortholog-expressing commensal bacteria spontaneously

developed lupus-like disease, as indicated by glomerular

immune complex deposits. Together, these studies suggest

that molecular mimicry is a mechanism through which

the intestinal microbiota is able to propagate autoim-

mune responses leading to disease.

In addition to molecular mimicry, it has long been

thought that pathogenic autoreactive T cells may arise

from a subset of thymocytes expressing two unique

TCRs, one of which allows them to evade negative

selection along with one that has a high affinity for a

self-antigen.115–117 Approaching from a different angle,

outside the central immune system, we found that in

peripheral tissues, SFB selectively expand dual TCR-

expressing T cells, leading to the augmentation of lung

autoimmune pathology (Fig. 1).100 This is the first

RNA

Eye

Pancreas

Lungs

Ro60

Self-reactive
TCR

Self-reactive

TCR

SFB-reactive
TCR

Activated
T cell

ActivatedT cell

(a)
(b)

Figure 1. Mechanism leads to autoimmunity: recognition of com-

mensal bacteria by T-cell receptor (TCR). (a) Molecular mimicry. Sev-

eral studies have demonstrated, as a result of the cross-reactive nature

of TCRs, that autoreactive T cells can recognize both a self-antigen

and a gut commensal-antigen. Recognition of a microbial antigen is

able to activate autoreactive T cells, which in turn migrate to the tissue

where their cognate self-antigen is expressed and elicit autoimmune

diabetes,113 autoimmune uveitis,110 and lupus.114 (b) Dual TCRs.

Another mechanism involves autoreactive T cells that are able to rec-

ognize gut commensal-antigens through expression of a secondary

TCR in addition to self-antigen recognizing TCR and differentiate into

T helper type 17 (Th17) cells.100 These T cells differentiate into Th17

cells through TCR recognition of segmented filamentous bacteria

(SFB), then traffic to the lung where they mediate lung pathology.
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study to show that dual TCR T cells can be activated

through the recognition of the cognate commensal-

derived antigen and migrate to elicit autoimmune

pathology in the lung, a gut-distal site. At the molecu-

lar level, we demonstrate that SFB selectively expand

autoimmune T cells co-expressing SFB-specific TCRs in

addition to their self-reactive TCRs. This additional

SFB-specific TCR provides a proliferative advantage for

autoreactive Th17 cells in SFB(+) hosts. Our data sug-

gest that the induction of robust SFB-specific Th17

response by transferring SFB(+) recipients with SFB-

specific 7B8 T cells could not rescue the autoimmune

activity of Rag�/�.KRN T cells through bystander acti-

vation. Instead, our data suggest that the same T cells

need to specifically recognize self- as well as SFB-anti-

gen to induce IL-17-expressing pathogenic T cells to

cause autoimmunity. This is supported by previous data

showing that in healthy mice, cognate TCR recognition

of SFB-antigen is crucial for SFB-mediated Th17 induc-

tion.118,119 Taken together, our study suggests that the

same T cell needs to recognize both self-antigen and be

activated by SFB to undergo preferential Th17 cell

expansion and so enhance autoimmunity in an SFB-

dependent manner. Beyond molecular mimicry, our

study suggests an alternative, dual TCR-based mecha-

nism for commensal-mediated autoimmunity.

Role of gut microbiota in human and murine
gut-distal autoimmunity

Autoimmune disorders have been sharply increasing

worldwide in recent decades.26 The dramatic changes in

the disease onset rate cannot be explained by genetic basis

as it occurs in such a short period of time. On the con-

trary, these data suggest that environmental factors play a

key role in the recent surge of autoimmune diseases. In

recent years, we have begun to appreciate that the gut

microbiota provides environmental cues controlling

human health and disease, including its potential impact

on autoimmune responses. Under healthy conditions, the

human intestinal microbiota is composed primarily of

bacteria of the phylum Firmicutes, with Bacteroidetes and

Actinobacteria also represented.120 On the family and spe-

cies level, the gut microbiota varies widely among indi-

viduals, although it remains largely stable within an

individual over the course of several years.121 Studies

using mouse models or samples from human subjects

transplanted into mice have shown that age, gender, diet,

smoking, autoimmunity, and other factors can alter the

microbiota, and that the altered microbiota can be trans-

ferred and exert influence over the metabolism and

immune system of the recipient.122 These studies demon-

strate that the host–microbiota relationship is not a one-

way street, but rather a dynamic conversation that can

have long-lasting impacts.

Many studies have investigated a correlation between

gut microbiome composition and autoimmune disease in

humans, but these studies are limited in their ability to

determine causality. Exploring this field using animal

models allows for perturbation of the gut microbiome to

better distinguish cause from effect, permit mechanistic

dissection and allow pre-clinical evaluation of suggested

therapeutic strategies. Throughout this section, we will

highlight the important observations made in both

human patients and mouse models.

Multiple sclerosis (MS) is an autoimmune disease in

which pathogenic CD4+ T cells penetrate the blood–brain
barrier and cause damage to the central nervous sys-

tem.123 Numerous studies have shown that patients with

MS display intestinal microbiome dysbiosis.124–126 Two

independent studies comparing patients with relapsing–
remitting MS and healthy controls found significant alter-

ations in the composition of the microbiome from

patients with MS.124,127 Perhaps even more intriguing,

when compared with treatment-naive patients, those

receiving treatment displayed some restoration in their

microbiome composition.127 Untreated MS patients dis-

played increased relative abundance of Methanobrevibacter

and Akkermansia, which were lower in healthy controls

and treated MS patients. MS patients receiving treatment

had increased Sutterella, which has been previously

observed to be increased in healthy controls compared

with treatment-naive patients with inflammatory bowel

disease (Fig. 2).128 This suggests that although dysbiosis

may contribute to a predisposition for developing MS,

perhaps treatment may act to normalize pro-inflamma-

tory microbiota. A recent study by Cekanaviciute et al.

showed that intestinal microbiome samples from MS

patients displayed specific outgrowth of Acinetobacter and

Akkermansia.129 Importantly, they further demonstrated

that in the presence of Acinetobacter calcoaceticus, human

peripheral blood mononuclear cells preferentially shifted

towards an inflammatory phenotype (IFN-c) and away

from a regulatory phenotype (Foxp3+ CD25+). This sug-

gests that the specific dysbiosis observed in patients with

MS favors an inflammatory T-cell response. More defini-

tive studies using the EAE mouse model of MS have

shown that in germ-free mice lacking gut microflora,

EAE disease severity is reduced to an almost undetectable

level, due to a more than twofold reduction in IFN-c and

IL-17 production from CD4+ T cells.33 Importantly, if

CD4+ T cells from germ-free mice were transferred to

specific pathogen-free mice harboring a diverse intestinal

microflora, these cells gained the ability to mediate EAE

disease development, suggesting that the gut microbiota

is necessary to elicit the pathogenic Th1 and Th17

responses seen in EAE and perhaps MS.33 Importantly, it

was recently demonstrated that colonization of germ-free

Myelin oliodendrocyte glycoprotein (MOG)-specific TCR

transgenic mice (RR mice) with gut microbiota from
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patients with MS resulted in increased incidence of spon-

taneous EAE development.130 This suggests that the

microbiota of patients is sufficient to precipitate autoim-

mune disease. Together these studies suggest a gut–brain
axis of communication that allows gut microbes to elicit

autoimmune responses in the brain.

Rheumatoid arthritis (RA) is an autoimmune disease

that primarily affects joints but may also affect other

parts of the body including the lungs and heart.131–133

Several studies have suggested that many patients with

RA display antigen–antibody complexes with complement

fixation in joints that can cause tissue damage and tumor

necrosis factor-a production.134–139 Recent studies also

suggest that anti-citrullinated protein antibodies are

involved in RA pathogenesis.140,141 Tfh cells are a T effec-

tor cell type specialized in helping B cells.142–144 Over-

reactive Tfh responses pose a threat of triggering excessive

autoantibody production and autoimmune disease.145–149

In that regard, the presence of circulating CXCR5+ Tfh

(cTfh) cells in the blood has been observed in patients

with different autoimmune diseases, including RA.20 In a

recent study assessing 77 treatment-naive patients with

RA, 21 treated patients with RA, and 80 healthy controls,

the gut microbiome was found to be altered in patients

with RA.150 In particular, Haemophilus spp. were depleted

in individuals with RA and negatively correlated with

serum autoantibodies titers, whereas Lactobacillus salivar-

ius was over-represented in individuals with RA and

abundance correlated with disease severity (Fig. 2). Inter-

estingly, similar to what has been observed in patients

with MS, patients with RA undergoing treatment dis-

played partial normalization of their intestinal microflora

compared with treatment-naive patients.

By using a photo-labeling mouse model to track cell

migration, our laboratory has demonstrated that a com-

mensal bacterium, SFB, is able to promote the differentia-

tion and migration Tfh cells from the PPs in the small

intestine to systemic sites where they elicit autoimmune

arthritis development.101 At the molecular level, SFB

induce PP Tfh cell differentiation by limiting the access

of IL-2 to PP CD4+ T cells and DCs are required for

SFB-mediated IL-2Ra suppression and up-regulation of

Bcl-6, a master regulator of Tfh cells, in PPs. Further-

more, we have recently shown that SFB can also promote

RA-associated autoimmune lung disease through propa-

gation and mobilization of gut-derived Th17 cells.100

Importantly, this highlights a gut-lung axis of communi-

cation through which specific gut commensal bacteria are

able to promote pathogenic T-cell responses leading to

gut-distal autoimmune pathology. In the collagen-induced

arthritis model of RA, dysbiosis characterized by out-

growth of Lachnospiraceae and Lactobacillaceae was

detected before arthritis development.151 Furthermore,

antibiotic-induced depletion of the microbiota before

induction of collagen-induced arthritis reduced disease

severity by 40% and was accompanied by reduction in

the inflammatory cytokines IL-17, IL-22, and IL-23 in the

intestines along with reduced anti-collagen antibodies.

This suggests that the gut microbiota is necessary for

autoimmune disease development and that alterations in

the composition of the gut microbiota precipitate

autoimmune disease.

Systemic lupus erythematosus (SLE) is an autoim-

mune disease affecting almost all organs of the body, in

which both autoreactive T cells and autoantibody-produ-

cing B cells contribute to the pathogenesis of SLE.152

Like many gut-distal autoimmune diseases, recent stud-

ies have linked gut microbiota dysbiosis with SLE.153 In
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Lung: autoimmune

Th17
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Th1

Joint: rheumatoid
arthritis Tfh and Th17
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Th17
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glomerulonephritis
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lactobacillaceae,
segmented filamentous
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Figure 2. Dysbiosis leads to gut-distal autoimmunity. Several studies

have demonstrated a link between alterations in the composition of

the gut microbiota and the development of autoimmune disease.

Multiple sclerosis (MS) and the C57BL/6 proteolipid protein-

induced experimental autoimmune encephalomyelitis mouse model,

which have autoimmune manifestations mediated by T helper type 1

(Th1) and Th17 cells in the central nervous system (brain and spinal

cord).33,123,124,127–130 Autoimmune uveitis and the R161H-TCR

transgenic mouse model display autoimmune manifestations medi-

ated by Th1 and Th17 cells in the retina of the eye.110 Rheumatoid

arthritis (RA) and the RA-associated lung pathology in the K/BxN

mouse model have autoimmune manifestations mediated by follicu-

lar helper T (Tfh) and Th17 cells in the joints and by Th17 cells in

the lung.131,145–149 Hidradenitis suppurativa (HS) is an autoimmune

skin condition associated with an increase of Th17 cells.157 Cur-

rently, there is no good mouse model for HS, so the role of gut

microbiota in this disease remains elusive. Systemic lupus erythe-

matosus (SLE) and the NZB/W F1 mouse model develop autoim-

mune manifestations mediated by Th17 cells and immune complex

deposition specifically in the kidneys.152,155,156 Type 1 diabetes and

the various mouse models (C57BL/6 streptozotocin-induced model

and IGRP-specific TCR transgenic model) develop autoreactive Th1

responses in the pancreatic islets.113,160,161,163
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a 2016 study from Lopez et al., it was shown that

intestinal microbiota isolates from patients with SLE

promoted naive T-cell differentiation into Th17 cells.154

Furthermore, peripheral blood mononuclear cells from

patients with SLE were enriched for both Th17 and Fox-

p3+ IL-17+ cells compared with healthy controls. As

described earlier, due to T cell plasticity, Treg cells are

able to shift between regulatory and potentially patho-

genic phenotypes. Hence, the presence of Foxp3+ IL-17+

cells in the peripheral blood of patients with SLE sug-

gests that the shift observed in the gut microbiome of

these patients may promote inflammatory T-cell

responses and may negatively impact Treg cell stability.

More recently, in a study by Luo et al. which assessed

the intestinal microbiota dynamics of both SLE patients

and the NZB/W F1 mouse model of SLE, it was shown

that alteration in the gut microbiota resulted in

decreased diversity with increased representation of

Gram-negative bacteria (Fig. 2).155 Interestingly, as NZB/

W F1 mice progressed to overt disease, the relative

abundance of Lactobacillaceae increased from 0�1% to

10%. Furthermore, there was a positive correlation

between Lactobacillaceae abundance and disease severity

in female NZB/W F1 mice. This suggests that reduction

in a diversity, a measure of the number of different spe-

cies present in a given site, and outgrowth of specific

commensal microbes may promote autoreactive immune

responses in susceptible individuals. Another report

found a high frequency of Th17 cells in the kidneys of

patients with glomerulonephritis, a form of SLE.156 By

using Kaede mice to track intestinal T-cell migration

during glomerulonephritis induction, they observed that

Th17 cells egress from the intestine and subsequently

migrate to the kidney through CCR6 recognition of

CCL20. Furthermore, depletion of gut Th17 cells in

germ-free and antibiotics-treated mice ameliorated the

autoimmune glomerulonephritis, suggesting that target-

ing the intestinal Th17 cells may offer a therapeutic

strategy for autoimmune diseases.

Hidradenitis suppurativa (HS) is a chronic inflamma-

tory skin condition of the hair follicles thought to be

mediated in large part by Th17 cells (Fig. 2).157 With

respect to perturbations in the microbiota, most studies

assess changes in the cutaneous microbiota as this is the

site of the disease manifestation. Recently, HS has been

identified to have a strong concurrence rate with inflam-

matory bowel disease, with over 17% of Crohn’s

patients also having HS.158 Hence, while there are defi-

nite changes in the cutaneous microbiome of patients

with HS,159 taking a closer look at the gut microbiome

may prove fruitful in the quest for identifying a causal

mechanism.

Type 1 diabetes (T1D) is a T-cell-mediated autoim-

mune disease characterized by the selective destruction of

insulin secreting b-cells in the pancreatic islets.160 Many

patients with T1D present with increased intestinal per-

meability or ‘leaky gut’, which has been shown to precede

the onset of clinical disease.161 In addition, patients with

T1D also display an altered intestinal microbiome charac-

terized by decreased a diversity and increased abundance

of inflammatory species compared with healthy controls

(Fig. 2).162 Hence, it is tempting to assume that in com-

bination with increased intestinal permeability, dysbiosis

could promote an inflammatory environment in the gut–
proximal pancreatic tissue leading to activation of an

autoimmune response. In a 2016 study from Costa et al.,

it was determined that autoimmune diabetes development

in the streptozotocin-induced model of T1D is dependent

on translocation of gut microbiota to the pancreatic

lymph node.163 Interestingly, islet-infiltrating T cells

seem to be of gut origin as they often express a4b7
integrin.83,164,165

We now know that the effect of commensal bacteria

on autoimmune disease can be model dependent. For

example, SFB is pathogenic in animal models of arthri-

tis and multiple sclerosis32,33 but protective in the NOD

mouse model of type1 diabetes.166,167 The beneficial

and detrimental effects of SFB could depend on

whether commensal-mediated immunomodulation is

enhancing or inhibiting the pathogenesis of each dis-

ease. For example, autoantibodies are a key pathogenic

factor and diseases can be induced by passive transfer

of autoantibodies in the K/BxN and EAE models.168–170

In contrast, type 1 diabetes in NOD mice is a T-cell-

mediated autoimmune disease, and although B cells of

NOD mice produce autoantibodies, these are not

thought to play a diabetogenic role.171,172 Hence, SFB,

with their Tfh and autoantibody boosting effect, are

more likely to play a pathogenic role in the K/BxN

model and other antibody-mediated autoimmune dis-

eases than in T-cell-mediated autoimmune diseases such

as in NOD mice. One feature that many of the autoim-

mune diseases have in common is evidence of gut-

derived T cells participating in the autoimmune

response.83,101,156,164,165 This would suggest that perhaps

one mechanism through which the gut microbiota

modulates autoimmune responses is through mobiliza-

tion of T cells from the tolerogenic environment of the

gut to systemic sites where alleviated tolerogenic pres-

sure allows these cells to become active and initiate

autoimmune disease development.173–175 However, more

studies are required to determine whether the altered

microbiome drives changes in immunity or conversely

the onset of immunological disease induces changes in

the gut microflora in human patients. It is likely a

combination, as changes in the gut microbiota precede

onset of clinical autoimmune manifestations,162 yet

some evidence suggests that perhaps T cells, Foxp3+

Treg cells in particular, regulate gut microbiota diver-

sity.176
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Conclusions and future directions

There is a surge of recent studies investigating the molec-

ular mechanisms of dysbiosis-related autoimmune dis-

eases. In both molecular mimicry and dual TCR theories,

until recently, only infectious pathogens including viruses

and bacteria have been implicated as the primary cul-

prits,15–17 and little is known about the molecular mecha-

nism by which asymptomatic commensal colonization

could trigger autoimmunity. Our recent study along with

others demonstrates a previously unknown condition that

asymptomatic colonization by commensal bacteria in the

gut is capable of triggering systemic autoimmune disease

by molecular mimicking self-antigen and skewing the

dual TCR expression in the host. Notably, dual TCR

expression is not limited to transgenic mouse models. In

wild-type mice and in humans, up to 15% and 33%,

respectively, of peripheral T cells have been reported to

express dual TCRs, due to incomplete allelic exclusion at

the Tcra locus.177,178 Future investigation is required to

determine whether dual TCR expression is involved in

dysbiosis-related immune disorders in human patients.

Another important, but poorly understood, aspect of

microbiota–T-cell interaction is how different microbial

signals impact T-cell stability and plasticity at the muco-

sal frontline. Understanding the plasticity and stability of

T-cell subsets in mucosal tissues is highly relevant for

future therapeutic strategies as we will not be able to

manipulate T cells for therapeutic purposes without

understanding the mechanisms by which T cells shift

between alternative programs because of exposure to gut

microbes.

As illustrated in this review, the use of animal models

provides a powerful tool for mechanistic studies as it

allows us to establish the causative effect of microbiota

in disease development. By using germ-free and specific

pathogen-free mouse models, numerous studies unravel

the crucial roles of gut commensals in immune regula-

tion in the context of health and disease. Although these

studies provide promising clinical implications, various

challenges need to be overcome by the field to harness

these findings for future diagnostic and therapeutic

approaches. One of the challenges is that the reduction-

ist experiments in mice often do not reflect important

features of the immune system in the adult human. In

this regard, Beura et al. demonstrated that laboratory

mice – like neonates, but not adult humans – lack effec-

tor-differentiated and mucosal memory T cells.179 These

cell populations are present in feral mice and pet store

mice with constant and diverse microbial exposure. Fur-

thermore, laboratory mice co-housed with pet store mice

display profound changes in immune systems, resulting

in an immune signature that is more closely reflected by

adult humans than by neonates. Hence, the ‘dirty’

mouse model may provide a unique advantage over the

current reductionist mouse models and should be con-

sidered for studies with translational purposes in human

disease.

One of the biggest dilemmas facing the field of gut

microbiota research is how to apply laboratory findings

to clinical therapies. Currently, microbiota-based therapy

relies on three major strategies: complete fecal microbiota

transplants (FMTs), administering one or more species of

bacteria orally (probiotics), or administering substrates to

favor the expansion of certain kinds of bacteria or a shift

in metabolite production, a strategy known as prebi-

otics.180 Each of these approaches has limitations; for

example, probiotics often colonize only transiently

because of ineffective competition with the existing

microbiota.181 Additionally, despite the focus on taxo-

nomic composition analyzed by 16S rRNA sequencing of

microbial communities in many studies, the functional

relevance of microbial communities is more likely to be

revealed by their metagenomic gene expression and meta-

bolomics profiles. This is further proved by the fact that

bacterial isolates of the same strain can display very dif-

ferent immunoregulatory capabilities.182 FMTs depend on

severe depletion of the constituent microbiota through

antibiotics and bowel flushing before administration of

the transfer.183,184 Other researchers are working to find

alternative methods to circumvent the difficulties of

FMTs, such as filtering donor material to the point of

removing intact cells, leaving only bacterial byproducts

such as metabolites.185 An additional approach is to iden-

tify bacterial metabolites able to modulate human

immune responses and artificially administer the identi-

fied metabolites as novel therapeutics.186 This approach

would be appealing from a pharmaceutical perspective,

because it would allow the development of drugs that

would need to be taken regularly. It would also minimize

the factors that need to be controlled, since administering

metabolites would not depend on the engraftment of a

foreign bacterial species. However, a careful determina-

tion on how to achieve a comparable delivery of the

metabolite that mimics the one produced by the intestinal

microbiota will be crucial for the effectiveness of the

treatment. In conclusion, the gut microbiota is a complex

community that engages in significant cross-talk with the

host. A better understanding of host–microbe interaction

and the underlying microbiota-derived molecules that

modulate the immune system and disease development

may help to pave the way for better patient-tailored inter-

ventions and microbial molecule-based therapies for

immune disorders.
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