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Abstract: The present work investigates the distribution of nanoclay particles at the interface
and their influence on the microstructure development and non-linear rheological properties of
reactively processed biodegradable polylactide/poly(butylene succinate) blend nanocomposites.
Two types of organoclays, one is more hydrophilic (Cloisite®30B (C30B)) and another one is more
hydrophobic (BetsopaTM (BET)), were used at different concentrations. Surface and transmission
electron microscopies were respectively used to study the blend morphology evolution and for probing
the dispersion and distribution of nanoclay platelets within the blend matrix and at the interface.
The results suggested that both organoclays tended to localize at the interface between the blend’s
two phases and encapsulate the dispersed poly(butylene succinate) phase, thereby suppressing
coalescence. Using small angle X-ray scattering the probability of finding neighboring nanoclay
particles in the blend matrix was calculated using the Generalized Indirect Fourier Transformation
technique. Fourier Transform-rheology was utilized for quantifying nonlinear rheological responses
and for correlating the extent of dispersion as well as the blend morphological evolution, for different
organoclay loadings. The rheological responses were in good agreement with the X-ray scattering and
electron microscopic results. It was revealed that C30B nanoparticles were more efficient in stabilizing
the morphologies by evenly distributing at the interface. Nonlinear coefficient from FT-rheology was
found to be more pronounced in case of blends filled with C30B, indicating better dispersion of C30B
compare with BET which was in agreement with the SAXS results.

Keywords: reactively compatibilized clay-containing PLA/PBS blends; morphology development;
non-linear rheological properties

1. Introduction

Bio-based polymers have attracted significant attention recently, owing to their biodegradability,
environmental concerns, and capabilities as new alternatives to fossil fuel-based polymers [1,2].
Polylactide (PLA) is known to be one of the most available biodegradable polymers all, owing
to its reasonable stiffness and thermal properties. However, it suffers from low toughness
(~5 kJ/m2) characteristics, which restrict the range of its potential applicability, from food
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packaging to load-bearing [3,4]. Blending with other, higher impact strength, polymers has been
previously suggested as a method for obtaining relatively tough nanocomposite materials [5].
To preserve the biodegradability of this nanocomposite material, other bio-based polymers, such
as poly(ε-caprolactone) (PCL) [6], poly (butylene adipate-co-therephtalate) (PBAT) [7], poly [(butylene
succinate)-co-adipate] (PBSA) [8] and poly(butylene succinate) (PBS) [9] have been blended with PLA
to render their impact strength to the resulting nanocomposite material. Although polymer blending
seems promising for broadening the range of material’s applicability, it should be noted that most
polymers are thermodynamically immiscible, yielding phase-separated structures due to their low
entropy of mixing (∆mixS). Various phase-separated structures have been observed (e.g., sea-islands,
lamellae, co-continuous structures, and salami) depending on different factors, such as processing
conditions (e.g., mixing time, temperature, and intensity) and blend ratios. Alternatively, different
morphologies can give rise to different characteristics. Therefore, morphology needs to be stabilized
for obtaining desired properties. It has been shown that the addition of reactive processing agent can
induce the compatibilization of the blends through branching and cross-linking interactions [10–12].
La Mantia et al. [10] revealed that styrene ethylene butylene styrene copolymer grafted with maleic
anhydride (SEBS-g-MA) can compatibilize the blend of polypropylene/poly(ethylene terephthalate)
PP/PET where finer morphologies obtained. Kumar et al. [11] studied the reactive compatibilization
effects of glycidyl methacrylate (GMA) on the morphology of PLA/PBAT blends. They found that
the formation of a random terpolymer at the interface could modify the interfacial properties and
consequently compatibilize the blends due to the formation of chemical bonds between GMA and
hydroxyl group of PLA and carboxyl group of PBAT. Al-Itry et al. [12] similarly found that Joncryl as a
chain extender that can be used in PLA/PBAT blend to induce the branching/cross-linking reactions
at the interface that led to the compatibilization of the corresponding blends.

Recently, inorganic solid nanoparticles as morphology stabilizers have received much attention,
owing to their large specific area per unit volume and lower cost compared with available co-polymer
compatbilizers [13–18]. Bhatia et al. [19] reported the compatibilization effects of Cloisite®30B (C30B)
nanoclays on the PLA/PBS blends when the average droplet sizes reduced significantly upon C30B
addition. Kumar et al. [11] found that Cloisite®20A (C20A) can intercalate and exfoliate into the
PLA/PBAT matrices when GMA was used; which indicates that GMA can facilitate the exfoliation of clay
particles into the blend. In another study, by Chen et al. [20] it was revealed that the compatibilization
efficiency of the functionalized Cloisite®25A depended on the location of the nanoclay particles in
a PLLA/PBS blend. When nanoclays were at PLLA phase, at low contents no size reduction was
observed, while at high content some of the nanoclays were located at the interface and hindered the
coalescence. This suggests that nanoclay localization can play an important role in controlling the
morphology of the immiscible polymer blends.

In addition, the structure of the polymers including polymer blends and nanocomposites has been
reported to significantly affect their rheological and mechanical properties [21,22]. There have been
many attempts to develop rheological methodologies and model viscoelastic behavior for obtaining
the best structure-property correlation in polymer blends [23–26]. Over the last few years, rheological
analysis based on large amplitude oscillatory shear (LAOS) flow has attracted significant attention
owing to its high precision for predicting blends structure-property correlations [27–29]. A new
technique, adapted to LAOS flows, is the Fourier transform (FT) rheology method, which allows
to quantitatively probe non-linear rheological responses [30,31]. A correlation between the rates of
droplet size reductions in polymer blends and the non-linear parameters from FT-rheology was found
in previous studies [15,16,32,33]. For example, in the case of a (80/20) polypropylene/polystyrene
(PP/PS) blend, it was found that hydrophobic nanoparticles (C20A; Cloisite®10A, C10A; fumed silica
R202; SIPERNAT silica D17) trapped at the interface induce finer morphologies (stronger nonlinearity),
while relatively hydrophilic nanoparticles (C30B; pristine Cloisite®Na+, CNa; fumed silica OX50)
in the PS dispersed phase did not yield morphological improvements (weaker nonlinearity) [15,16].
In conclusion, while the effects of nanoparticles on the blend morphology have been studied, there
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has been no quantification of the distribution and dispersion of nanoclay particles at the interface
and their influence on morphology development and rheological properties of immiscible polymer
blend nanocomposites.

The main objective of this work was to extensively investigate the extent of dispersion of two
different organoclays and to quantify their effect on the microstructure development and rheology of
reactively compatibilized PLA/PBS blends. Fourier Transform rheology was utilized for quantifying
nonlinear rheological responses and for correlating the extent of dispersion as well as the blend
morphological evolution, for different organoclay loadings. Small angle X-ray scattering (SAXS) and
transmission electron microscopy (TEM) were used for probing the dispersion and distribution of
nanoclay platelets within the blend matrix. The observations obtained using these methods supported
the conclusions of rheological analysis.

2. Materials and Methods

2.1. Materials

The PLA used in the study was of an extrusion grade (commercially known as Terramac TE4000)
and was obtained from Unitika Ltd., Kyoto, Japan. According to the supplier, PLA had a D-isomer
content of approximately 1.2 to 2%, a density of 1.25 g/cm3, melting point of 170 ◦C, a glass transition
temperature of 60 ◦C, and a melt flow index (MFI) in the 3–5 g/10 min range at 190 ◦C and 2.16 kg load.
On the other hand, PBS (Bionolle 1001MD) was obtained from Showa Denko, Tokyo, Japan. It had
a density of 1.26 g/cm3, glass transition temperature of −32 ◦C, MFI of approximately 3 g/10 min
(at 190 ◦C and 2.16 kg load), and a melting temperature of 114 ◦C. The multi-functional oligomeric
chain extender used in the study, Joncryl® ADR 4368 CS, was kindly donated by BASF, Johannesburg,
South Africa. The typical characteristics of this tailored styrene-acrylic oligomer with epoxy functions
are listed in Table 1. Its chemical structure is shown in Figure 1a. It had a high number average
functionality, f n > 4.

Table 1. Typical physical characteristics of Joncryl® ADR 4368 CS.

Parameter Value

Specific gravity, 25 ◦C 1.08
Molecular weight, Mw ~6800 g/mol
Number average molecular weight, Mn 3000
Glass transition temperature, ◦C 54
Epoxy equivalent weight 285 g/mol
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Figure 1. Chemical structure of (a) Joncryl® ADR 4368, where x, y and z are between 1 and 20 R1, R2, 
R3, R4 and R5 are H, CH3, a higher alkyl group, or a combination of them; R6 is an alkyl group [5],  
(b) dimethyl dihydrogenated-tallow quaternary ammonium and (c) methyl tallow bis-2-
hydroxyethyl quaternary ammonium, used in the modifications of South African bentonite and 
modified montmorillonite (MMT), respectively. T is tallow and it is a mixture of homologs C18, C16 
and C14. HT is hydrogenated tallow. 

The more hydrophobic organoclay used was BetsopaTM (abbreviated as BET throughout 
manuscript), a commercially available organically modified montmorillonite (MMT) from our 
laboratory. BET is a South African calcium MMT modified with dimethyl dehydrogenated tallow 
quaternary ammonium surfactant (chemical structure, Figure 1b). Tallow is a mixture of homologs 

Figure 1. Chemical structure of (a) Joncryl® ADR 4368, where x, y and z are between 1 and 20 R1, R2, R3, R4

and R5 are H, CH3, a higher alkyl group, or a combination of them; R6 is an alkyl group [5], (b) dimethyl
dihydrogenated-tallow quaternary ammonium and (c) methyl tallow bis-2-hydroxyethyl quaternary
ammonium, used in the modifications of South African bentonite and modified montmorillonite (MMT),
respectively. T is tallow and it is a mixture of homologs C18, C16 and C14. HT is hydrogenated tallow.
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The more hydrophobic organoclay used was BetsopaTM (abbreviated as BET throughout manuscript),
a commercially available organically modified montmorillonite (MMT) from our laboratory. BET is a
South African calcium MMT modified with dimethyl dehydrogenated tallow quaternary ammonium
surfactant (chemical structure, Figure 1b). Tallow is a mixture of homologs C18, C16 and C14.
The amount of organic content in BET was measured using a thermogravimetric analyzer (TGA,
Q500 TA Instrument, New Castle, DE, USA) and the surfactant content was found to be 28.6 wt %
(data not presented here). On the other hand, C30B was used as a more hydrophilic organoclay,
a commercial MMT (CNa) modified with methyl tallow bis-2-hydroxyethyl quaternary ammonium
(chemical structure, Figure 1c). It was obtained from Southern Clay Products, Gonzales, TX, USA.
According to the supplier (Southern Clay Products data sheet and our own TGA analysis, data not
presented here), the C30B contained approximately 28 wt % surfactant. The quantity of surfactant in
both organoclays was almost identical, and therefore, the surfactant content should not be considered
as a significant independent variable in this work.

The interlayer spacing measured using X-ray scattering was 3.8 and 1.81 nm for BET and C30B,
respectively. The solubility factors (δ) of surfactants used for the modification of MMTs, PLA, and PBS
were roughly calculated on the basis of group contribution method of Fedors [34] and calculated values
were 16.8, 21.5, 21.4, and 22.8 J1/2·cm−3/2 for surfactant used for BET, surfactant used for C30B, PLA,
and PBS, respectively. The closure values of the polar solubility parameters for C30B, PLA, and PBS
indicate that PLA and PBS matrices will have favorable enthalpic interaction with C30B than BET.
In such scenario, we may expect that C30B will be localized mostly at the interface region, which
lead to the finer morphology and improved properties of C30B-modified PLA/PBS blends. However,
in the case of various organoclay modified immiscible blend nanocomposites, the results showed that
a minimum interlayer spacing of organoclay was needed in order to have common intercalation of
both polymer chains at the interface, and hence, improved thermal and mechanical properties of the
blend nanocomposite [35].

2.2. Reactive Processing of Blends and Nanocomposites

Before melt-extrusion, both PLA and PBS were dried overnight (15h) at 80 ◦C and 60 ◦C under
vacuum, respectively. For this study, an optimized method of nanocomposite processing involved a
two-step extrusion process. In the first step, PLA/PBS-Joncryl was processed in a co-rotating twin
screw extruder (TE-30 Co-Rotating Twin Screw Extruder, Nanjing ONLY Extrusion Machinery Co. Ltd.,
Nanjing, China) at a screw speed of 120 rpm, and a feed rate of 4 kg/h. The temperature profile ranged
from 160 ◦C to 190 ◦C along the 40 L/D screw profile (Diameter of the screw was 30 mm). The PLA/PBS
ratio was maintained at 60:40, while 0.6% of the chain extender was used. This model composition
was chosen based on our study on fractured-surface morphology and tensile property measurement.
The results showed a substantial toughening of PLA with balance of modulus and strength when
PLA reactively blended with 40 wt % PBS and 0.6 wt % Joncryl chain extender. The concentrations of
Joncryl of <1 wt % were found to be below the threshold required for gelation in the PLA/PBS system,
and therefore, it is expected that the 0.6 wt % Joncryl content used in the current study does not lead
to network formation but rather just a long chain branched structures [5]. The second step involved
incorporating the organoclays into the PLA/PBS/Joncryl blend, through the same twin screw extrusion.
The screw speed was maintained at 150 rpm, while the feed rate was 4.4 kg/h. The temperature profile
ranged from 120 ◦C to 185 ◦C along the screw profile. The organoclay concentration was such that
the inorganic content was 1.5, 3, and 5 wt % in the final nanocomposites. The samples were coded:
PLA/PBS/J/x%/BET or C30B, where x represented the percentage inorganic content in the sample,
while J represented Joncryl (0.6 wt %). The processed samples were compression-molded, using a
Carver laboratory press at 190 ◦C for 10 min, into test specimens, for further characterization.
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2.3. Rheological Measurements

Melt-rheological measurements were performed using a Physica MCR501 rheometer (Anton Paar,
Austria) with 25-mm-diameter parallel plates under nitrogen environment. Small amplitude oscillatory
shear (SAOS) tests were conducted, for frequencies ranging from low (0.1 rad/s) to high (100 rad/s), at
a fixed strain of 0.5% (linear region) and temperature of 190 ◦C. Nonlinear rheological responses were
acquired under LAOS flows combined with the Fourier Transform (FT)-rheology method, at a fixed
frequency of 6.28 rad/s and strain amplitudes varying from 0.01 to 500% at 190 ◦C.

2.4. Morphological Analysis

The surface morphologies of the matrices of various samples were studied using a scanning
electron microscope (SEM; JEOL JSM 7500F, Tokyo, Japan). Compression-molded samples were
cryogenically fractured, and the resulting surfaces were coated with gold/palladium alloy and imaged
at an accelerating voltage of 3 kV to minimize charging. The number average (Rn) and volume average
(Rv) droplet sizes were calculated according to Equations (1) and (2), respectively. The radii of over
100 droplets were calculated for each sample from 3 different images, using image analysis software
(ImageJ, National Institute of Health, Bethesda, MD, USA).

Rn =
∑ niRi

∑ ni
(1)

Rv =
∑ niR4

i

∑ niR3
i

(2)

where ni is the number of droplets with radius Ri.
Samples for TEM studies were prepared by removing a 1-mm3-volume sub-sample from the

center of compression-molded samples from PLA/PBS/J with 1.5 and 5 wt % loading of C30B or
BET, contrasted by immersion in 0.5% OsO4 overnight before trimming and sectioning using a Leica
FC6 cryo-ultramicrotome (Leica, Wetzlar, Germany) at −80 ◦C. The collected sections were imaged at
200 kV using a JEOL JEM 2100 HRTEM (JEOL, Tokyo, Japan). Images were captured using a Gatan
Ultrascan camera and Digital Micrograph software (Gatan, Pleasanton, CA, USA).

2.5. SAXS Studies

SAXS experiments were performed using an Anton Paar SAXSess instrument, operated at 40 kV
and 50 mA with point collimation geometry. The radiation used was a CuKα radiation with a
wavelength of 0.1542 nm (PAN analytical X-ray source, Almelo, The Netherlands). Intensity profiles
were obtained using a point-collimated SAXSess and recorded using a two-dimensional imaging plate.
The samples were tilted by 90◦ with respect to the incident X-ray beam. A variostage sample holder
with the tilt angle measurement set-up was used for this purpose. The sample-to-detector distance for
the tilt angle was 260.24 mm and the radius of the detector curvature was 260 mm. The read-out angles
were calculated from the pixel size, and the obtained q (scattering vector) scale was cross-checked by
measuring silver behenate whose equidistant peak positions are known. All samples were exposed to
X-rays for 30 min for determining the dispersion characteristics of silicate particles in the PLA/PBS/J
blends. The compression-molded discs, approximately 1.7-mm-thick, were examined. To determine the
dispersion/distribution characteristics of nanoclay platelets in the PLA/PBS blends, the corresponding
2D scattering patterns were analyzed using pi-profiles.

3. Results and Discussion

3.1. Phase Morphology

Freeze-fractured SEM images of the neat blend and nanocomposite samples are shown in Figure 2.
The number and volume average droplet radii are plotted in Figure 3a,b, respectively. Distinct droplet
morphology can be observed for PLA/PBS (Figure 2a) and PLA/PBS/J (Figure 2b) blends. It can be



Polymers 2017, 9, 350 6 of 21

seen that addition of Joncryl and the two types of organoclays (C30B and Betsopa™) has significantly
reduced the dispersed PBS size.
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blends. The scale bars are 1 µm in all images. The scale bar in the inset image in (a) is 10 µm. The inset 
images in (c,f) are magnified showing two individual droplets in 1.5 wt % BET and C30B filled blends. 
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Figure 2. SEM images of (a) PLA/PBS, (b) PLA/PBS/J, (c–e) PLA/PBS/J/BET, and (f–h)
PLA/PBS/J/C30B blends. The scale bars are 1 µm in all images. The scale bar in the inset image
in (a) is 10 µm. The inset images in (c,f) are magnified showing two individual droplets in 1.5 wt %
BET and C30B filled blends. BET is Betsopa™, C30B is Cloisite®30B, and J is Joncryl.
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Figure 3. (a) Number average and (b) volume average droplet radii of the PLA/PBS/J blends filled with
C30B and BET. The dashed and solid line plots represent the blends with BET and C30B, respectively.
The morphology of the 5 wt % C30B-filled blend was not quite distinct for calculating droplet sizes.
BET is Betsopa™, C30B is Cloisite®30B, and J is Joncryl.

A significant size reduction can be seen in Figure 2b (and Figure 3) where 0.6 wt % Joncryl was
added to the PLA/PBS blend. The efficiency of Joncryl in increasing the thermal stability and melt
strength of PLA has also been discussed previously [5]. On the basis of published information, addition
of Joncryl induces formation of long chain branched (LCB) (Figure 4) structures in PLA and PBS, which
explains increasing viscosity of PLA/Joncryl and PBS/Joncryl. Moreover, the researchers [5] revealed
that Joncryl could react with both PLA and PBS at the interphase and bring compatibility between
the two phases. Meng et al. [36] revealed that epoxy groups in Joncryl could react with hydroxyl and
carboxyl end groups of PLA, which led to a long chain branched structure. Chaiwutthinan et al. [37]
also stated that epoxy group of the Joncryl could react with both hydroxyl and carboxyl group of
the PLA and PBS in a PLA/PBS blend which resulted in a LCB structures. Similar phenomenon was
observed in the works of Kumar et al. [11] and Al-Itry et al. [12] when they used Joncryl as an in situ
reactive compatibilizer in PLA/PBAT blends.

Therefore, on the basis of above discussion, it can be concluded that when Joncryl is added
to PLA/PBS blends a copolymer is formed at the interface due to the chain linkages caused by the
interaction of epoxy groups of Joncryl and the hydroxyl/carboxyl groups of the polyesters and the
interface is immobilized and retards the film drainage between two approaching droplets, suppressing
the coalescence of the droplets [38]. This leads to the improvement in the thermal and mechanical
(particularly toughness) properties of compatibilized blends and these results are not reported here as
the theme of this work is different.

Later on, additional incorporation of organoclays reduces the droplet sizes; however, this size
reduction effect is more significant in the case of C30B-filled blends in as much as the morphology for
the 5 wt % C30B is no longer distinct sea-island morphology but behaves rather like a co-continuous
morphology (Figure 2h). The inset images in Figure 2c,f show individual droplets in the blend with m
BET and C30B, respectively. It is clear that the dispersed phases in the 1.5 wt % BET filled blend of
PLA/PBS/J/BET have rough surfaces, with polymer strands stretching at the interface. On the other
hand, blend with 1.5 wt % C30B exhibits a smooth surface. This implies that there might be weaker
adhesion between the PLA and PBS phases in the case of BET-filled blends, while C30B-filled blends
yield lower interfacial tensions owing to the smooth interface, which is consistent with interfacial
tension estimations discussed in Supplementary data. This is attributed to a better interaction of
C30B with the PLA/PBS/J matrix, compared with that of BET. As shown in Figure 1, in BET, MMT is
modified with a hydrophobic surfactant with no hydroxyl groups in its structure. On the other hand,
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the surfactant used in C30B contains hydroxyl groups in its structure, which enhances the enthalpic
interaction with the PLA/PBS/J matrix. This conclusion also supported by the estimated δ values of
various samples described in experimental section.
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Figure 4. Schematic presentation of possible chemical reaction and formation of linear chain branched
at the interface.

3.2. Dispersion and Localization of Nanoclay Platelets

The response of a blend to nanoclay incorporation relies on the nanoclay platelets localization
and on the quality of dispersion within the blend matrix. TEM images in Figures 5 and 6 elucidate
the C30B and BET particles localizations, respectively, at low and high concentrations, revealing the
stabilization mechanisms.

Overall from the TEM results, it can be seen that both types of organoclays mostly located at
the PLA/PBS interface and encapsulated the PBS dispersed phases, accordingly suppressing the
coalescence. For the C30B-filled system (Figure 5), the results show that C30B particles localized at
the interface between PLA and PBS phases. On the other hand, some random agglomerations are
clearly observed at PBS phase (see Figure 6) and at the interface in BET-filled blends, which is well
supported by the SAXS analysis, as will be discussed in next section. This in turn yields droplets that
are relatively larger than those in the C30B-filled blends. Random agglomerations in the dispersed
phase and at the interface increase the viscosity of the PBS dispersed phase, making the breakup of
the PBS droplets more difficult. Similar behavior has been reported for other systems [15,16,33,39,40].
Moreover, these findings are in accordance with the SEM results, which clearly indicate that 5 wt %
C30B-filled blend has a complex co-continuous-like morphology while its corresponding BET-filled
blend exhibits droplet morphology.
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3.3. SAXS Analysis

For determining the dispersion/distribution of nanoclay platelets in the PLA/PBS/J blend,
the scattering pattern of PLA/PBS/J was considered as a background and subtracted from the
nanoclay-filled blend nanocomposite patterns. After Porod extrapolation and subtraction of
constant background, the scattering patterns were presented with “ift” extension. Figure 7a,b
show the scattering curves for the blend nanocomposites containing C30B and BET, respectively.
In Figure 7, sharp peaks appear in the BET-filled nanocomposites, compared with the C30B-filled
nanocomposites. This indicates that parallel stacking of nanoclay platelets decreases significantly
in the C30B-filled nanocomposites. However, in both systems, the parallel stacking increases with
increasing nanoclay loading.
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Figure 7. Background (scattering pattern of the PLA/PBS/J blend) subtracted scattering profiles
of (a) PLA/PBS/J/C30B and (b) PLA/PBS/J/BET for different clay loadings. “ift” stands for the
experimental scattering curve after background subtraction and “app” stands for the approximate
scattering curves determined on the basis of GIFT analysis. BET is Betsopa™, C30B is Cloisite®30B,
and J is Joncryl.

The actual dispersion characteristics can be interpreted from the d-spacing, pair distance
distribution function and the electron density profiles. The d-spacing increases when the polymer
chains get intercalated in the clay galleries. To determine the d-spacing, the scattering angles were
determined from the scattering vector according to Equation (3), where θ, q, and λ represent the
scattering angle, the scattering vector and the wavelength of the incident X-ray, respectively.

q =
4π

λ
sin θ (3)

Now, according to Bragg’s law the d-spacing

d =
λ

2 sin θ
(for n = 1) (4)

The scattering angles and the d-spacing values are listed in Table 2. It is noteworthy that the d-spacing
values of pure C30B and BET are 1.8 and 3.8 nm respectively. In the case of the PLA/PBS/J/1.5%C30B,
diffraction peaks appear at 1.2◦ and 2.4◦, which correspond to d-spacing of 7.4 and 3.7 nm, respectively.
The increase in the d-spacing indicates that polymer chains become intercalated in the C30B galleries.
In PLA/PBS/J/3%C30B and PLA/PBS/J/5%C30B, diffraction peaks appear at 2.3◦ and 5.5◦, which
correspond to the d-spacing of 3.8 and 1.6 nm, respectively. This indicates that, although some polymer
chains become intercalated in the nanoclay galleries, the d-spacing remains unaltered for certain stacks
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of C30B. This might be owing to the fact that certain C30B platelets disperse in PLA or PBS matrices
and certain fraction is immobilized between the PLA and PBS interphases. On the other hand, in the
case of BET-filled nanocomposites, a first order diffraction peak appears at 2.3◦, which corresponds to
the d-spacing of 3.8 nm. Since the d-spacing of BET remains unaltered in all of the nanocomposites,
it is expected that BET platelets will remain stacked at the interfaces of the PLA/PBS blend.

Table 2. Results from SAXS analysis for various blend nanocomposite samples.

Sample 2θ/Degree d-Spacing/nm
rmax/nm

Distance (r/nm, Calculated from
*.PDC Plots) to Find Neighbours2θ1 2θ2 2θ3 d1 d2 d3

PLA/PBS/J/1.5%C30B 1.2 2.4 7.36 3.68 8.6 1.5 3.2 4.6 6.3
PLA/PBS/J/3%C30B 2.3 5.5 3.84 1.61 13 1.5 3.2 6.7
PLA/PBS/J/5%C30B 2.4 5.5 3.68 1.61 13 1.5 3.2 6.9
PLA/PBS/J/1.5%BET 2.3 4.6 3.84 16.2 3.7 7.5 11.0
PLA/PBS/J/3%/BET 2.3 4.6 3.84 16 3.7 7.5 11.0
PLA/PBS/J/5%BET 2.3 4.6 3.84 16 3.7 7.5 11.0

The d-spacing values for C30B and BET are 1.84 nm and 3.84 nm, respectively, and the scattering patterns are not
reported here. BET is Betsopa™, C30B is Cloisite®30B, and J is Joncryl.

For more detailed understanding of the dispersion characteristics of the nanoclay platelets in the
PLA/PBS/J matrix, the scattering patterns (presented in Figure 7) were analyzed using the Generalized
Indirect Fourier Transformation (GIFT) technique (details can be found elsewhere [41]). According to
this technique, the sum of the Fourier-transformed spline functions whose oscillations are restricted by
Lagrange multipliers (λL) yield an approximate scattering curve. This analysis yields the pair distance
distribution function, p(r). It directly yields the probability of finding a pair of electron densities
at a particular distance r. The GIFT technique requires to specify the number of spline functions
and the upper limit of the largest particle dimension (rmax). Initially, 40 spline functions were used,
and then a particular λL was chosen for which the approximate scattering curve was similar to the
experimental one. The values of rmax used for the GIFT analysis of different systems are listed in Table 2.
The lowest rmax was obtained for PLA/PBS/J/1.5%C30B; rmax was higher for PLA/PBS/J/3%C30B
and remained unaltered for PLA/PBS/J/5%C30B. The value of rmax remained almost the same for
all BET-filled blend nanocomposites. In Figure 7, “app” denotes the approximate scattering curves.
Figure 7 also shows that the approximate scattering curve matches well the experimental scattering
curves (ift-patterns in Figure 7). Therefore, the p(r) function for electrons, from which the scattering
curve was estimated, should be similar to the p(r) function that represents the experimental scattering
patterns. The p(r) functions for different nanocomposites are presented as “POR” plots in Figure 8.
The regions with opposite signs of different electron density yield negative contributions to p(r) and
the correlation maxima (peak positions) represent the average radial distance to the next neighbour
domains. Using a technique similar to the GIFT technique, it is possible to determine the electron
density profiles for dispersed nanoclay platelets. The deconvolution of the approximate electron
density distribution function yields the p(r) function, denoted by “PDC” in Figure 8. The similar trends
of “POR” and “PDC” indicate that the approximate electron density profile captures the experimental
scattering result. The locations of the correlation maxima for the nanocomposites are also listed in
Table 2. It is evident from Figure 8 and Table 2, that in C30B-filled nanocomposites adjacent nanoclay
platelets are at a shorter distance than those in BET-filled nanocomposites. It is noteworthy that the
probability of finding a nanoclay platelet at a certain distance from another nanoclay platelet remains
unaltered with increasing the organolay loading and is independent of the choice of organoclay.
Therefore, the distribution of nanoclay platelet does not depend on the organoclay loading. However,
the intensity of the scattering peak increases with increasing in organoclay loading. Therefore, it can
be inferred that parallel stacking of nanoclay platelets increases with increasing organoclay loading.
This effect is more prominent in BET-filled nanocomposites. The p(r) functions for the C30B-filled
nanocomposites are quite different from those for the BET-filled nanocomposites. Four correlation
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maxima appear for PLA/PBS/J/1.5%C30B, while PLA/PBS/J/3%C30B and PLA/PBS/J/5%C30B
exhibit three distinct correlation maxima. The trend of correlation maxima with increasing rmax

indicates that the dispersion/distribution of C30B platelets changes as organoclay loading increases
from 1.5 wt % to 3 wt %. Further increase in organoclay loading does not significantly affect the
distribution of C30B platelets. This is in a good agreement with FT-rheology results, as will be
discussed in the next section. The first correlation maximum presented in Figure 8a might be owing
to the dispersed C30B platelets in the PLA matrix, while other correlation maxima likely represent
the presence of overlapping nanoclay platelets at the PLA/PBS interface. On the contrary, stacked
nanoclay platelets are uniformly distributed in BET-filled nanocomposites (Figure 8b).

The electron density profiles for C30B- and BET-filled nanocomposites presented in Figure 9a,b,
respectively. The figure shows the nanoclay platelets distribution along the thickness profile. According
to Figure 9a smaller stacks of nanoclay platelets are present in PLA/PBS/J/1.5%C30B and co-continuity
in dispersion and distribution of C30B platelets can be expected in PLA/PBS/J/3%C30B and
PLA/PBS/J/5%C30B. This feature is absent in BET-filled nanocomposites (Figure 9b), where the
stacked BET layers are slightly separated from each other, as observed in TEM images.
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Figure 8. The pair-distance-distribution functions [p(r)] for (a) PLA/PBS/J/C30B and (b)
PLA/PBS/J/BET for different clay loadings. “POR” denotes p(r) determined using the GIFT technique.
The deconvolution of the approximate electron density distribution function provides a p(r) function,
as denoted by “PDC”. BET is Betsopa™, C30B is Cloisite®30B, and J is Joncryl.
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Figure 9. Electron density profiles for (a) PLA/PBS/J/C30B and (b) PLA/PBS/J/BET, for different clay
loadings. BET is Betsopa™, C30B is Cloisite®30B, and J is Joncryl.



Polymers 2017, 9, 350 13 of 21

3.4. Linear Rheological Analysis

Linear viscoelastic responses of the neat and nanoclay-filled blends were investigated by
performing SAOS tests at 190 ◦C. Storage (elastic) moduli of the PLA/PBS and PLA/PBS/J blends and
PLA/PBS/J blend filled with C30B and BET are shown in Figure 10.
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Figure 10. Storage (elastic) moduli of the PLA/PBS and PLA/PBS/J blends at various concentration of
(a) C30B and (b) BET, at 190 ◦C. Strain amplitudes were small (0.5−1%) to ensure linear response. BET
is Betsopa™, C30B is Cloisite®30B, and J is Joncryl.

From Figures 10 and 11, it can be seen that PLA/PBS/J blend and blend nanocomposites exhibit
non-terminal behavior at low frequencies. That is, all of blends disobey the classical behavior
of homopolymers (G′ ∝ ω2) by exhibiting pseudo solid-like responses at low frequencies. This
non-terminal behavior gradually becomes more prominent, whereas the slopes of the elastic moduli
decrease with increasing organoclay loading. For high organoclay loadings, a plateau is reached,
which is a strong indication of a highly elastic response (solid-like behavior). Enhancement of
solid-like (non-terminal) behavior has been attributed to the emergence of filler networks [33] and
compatibilization effects [42,43] in polymer nanocomposites and immiscible blends, respectively,
where both are associated with the relaxation process of the polymer chains in nanocomposites and
form (shape) relaxation process of the dispersed phase in immiscible blends. Compatibilization process
in immiscible polymer blends promotes the terminal regions toward the plateau-like responses at
low frequencies; this increases the longest relaxation time of the compatibilized blends and reduces
dispersed phase size [15,44,45]. Furthermore, it demonstrates that Joncryl itself as a chain extender
acts as a reactive compatibilizer for PLA/PBS blends when the blend’s elastic modulus G’(ω) increases
following the introduction of Joncryl. As discussed earlier the addition of Joncryl could have introduced
a LCB structure which alone can bring pseudo-solid-like behavior, and consequently, the non-terminal
behavior. This is in a good agreement with morphological analysis observations (Figures 2 and 3) of
reduced droplet size following addition of Joncryl. These findings suggest that the blend morphology
can be further stabilized by adding organoclays. However, this effect is more evident in the case of
the C30B-filled blends, because as much as 1.5 wt % of C30B yields behavior similar to that obtained
for 5 wt % BET-filled blend. Figure 11a,b clearly show that adding 1.5 wt % C30B to the PLA/PBS/J
blend yields a crossover point, with both G’(ω) and G”(ω) intersecting at low frequencies ωc and this
crossover point shifts to higher frequencies as the C30B loading increases, wherein G’(ω) dominated
throughout the entire frequency range. On the other hand, incorporating 5 wt % BET into the blend
introduces a crossover point at intermediate frequencies. Thus, C30B is expected to be more efficient
in stabilizing the morphology of the blends, as was shown in previous sections for a more dramatic
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size reduction in case of the C30B-filled PLA/PBS/J blend. This is consistent with interfacial tension
predictions from fitting results based on Palierne’s model (Figure S1a,b, Supporting data) where it
was found that blends filled with C30B happened to have smaller interfacial tensions than those of
BET-filled blends (See Table S1).
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The above discussion suggests that different mechanisms might have been responsible for
inducing solid-like behavior (increasing the blend elastic modulus) in the blends, in the following way:
(i) initial reactive compatibilization of the blends with Joncryl; (ii) hydrodynamic effects of nanoclay
particles; (iii) further morphological stabilization of the blends upon organoclay loadings.

3.5. Non-linear Rheological Analysis Based on LAOS Tests

Although linear rheological properties provide useful insights into the compatibilizer choice
and the extent of dispersion, previous studies revealed that analysis based on non-linear rheological
responses from LAOS tests could be more informative regarding the extent of stabilization and
dispersion [15,46,47]. Previous studies revealed that 10 phr hydrophobic particles (R202 [16] and
C20A [48]) exhibited higher G’(ω) at lower frequencies, compared with other hydrophobic particles
(D17 [16] and C10A [48]) in a (80/20) PP/PS blend, although the blend morphology at this particular
concentration was not consistent with linear rheological properties. This discrepancy was captured
by non-linear rheological responses based on LAOS. Figure 12 shows the non-linear responses of
the blends under a LAOS flow, where the strain amplitudes are swept from 0.01 to 500% at a fixed
frequency of 6.28 rad/s.

Figure 12 shows that the dependence of dynamic storage moduli G’(γ0) on deformation, known
as the Payne effect, increases with increasing organoclay loading. Loss moduli G”(γ0) demonstrated
the similar trend (not shown here). The increase is much more prominent in the case of blends filled
with C30B. Furthermore, Figure 12c,d reveal that adding organoclays enhances the strain-softening
behavior. In other words, a critical strain amplitude, for which the modulus deviates from linearity, is
shifted to lower amplitudes with increasing organoclay loading. Previous studies discussed the
relationship between the strain-softening behavior and droplet deformability, and it was found
that the higher the deformability of the droplets, the stronger the strain-softening and/or shear
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thinning behaviour [15,33,48,49]. On the other hand, this behavior in nanocomposites is owing to
de-agglomeration and breakdown of networks of dispersed particles [33].Polymers 2017, 9, 350  15 of 21 
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FT-Rheology

FT-rheology was coupled with LAOS experiments for quantifying non-linear responses and for
acquiring more information to interpret the morphology of the nanoclay-filled blends. FT-rheology
converts the stress signal into a series of odd-numbered higher harmonics of intensities, where
the third relative harmonic (I3/1) is usually the most informative [30,31]. The suitability of this
approach to investigating and quantifying internal structure of materials has been frequently
reported [47,50–52]. This method has been successfully utilized for detection of branching degrees of
different materials [53,54]. Hyun and Wilhelm [53] established a new coefficient Q ≡ I3/1/γ2

0 based
on FT-rheology and called the small-amplitude region of constant Q zero-strain non-linear coefficient
Q0(ω) ≡ lim

γ0→0
Q (ω, γ0).

Figure 13a–d show the normalized I3/1 and their corresponding Q ≡ I3/1/γ2
0 parameters for

the PLA/PBS/J/C30B and PLA/PBS/J/BET blend composites, for different organoclay loadings.
The figure reveals interesting results, which are different from the linear regime results obtained
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from SAOS tests. Unlike the frequency sweep results in which C30B loading dramatically increased
the moduli G’(ω) and G”(ω) of the PLA/PBS/J blend, the results of FT-rheology analysis show
that the addition of 5 wt % of C30B has no profound effect on I3/1 especially in the MAOS regions
corresponding to the Q0 values, whereas both the 3 wt % and 5 wt % C30B blends exhibit similar
Q0 values. As discussed before I3/1 is sensitive to microstructural changes in materials. Moreover,
previous results revealed that FT-rheology could be used to correlate the extent of dispersion and
compatibilization effects. Thus, it can be expected that 3 wt % is the optimized concentration for
C30B-filled blends, and further addition of organoclays does not improve the blend morphology. This
conclusion strongly agrees with the SAXS results, which indicate that dispersion for 3 wt % and 5 wt %
is nearly the same. The SEM analysis results also yielded nearly the same morphologies at these two
points. On the other hand, it can be seen that the intensities for the 1.5 wt % Betsopa™-filled blends are
larger than that for the PLA/PBS/J blend in MAOS Q0 regions, whereas SAOS results yield roughly
similar responses. This is in a good agreement with morphological results indicating that droplets
became smaller when 1.5 wt % BET is added to the system. Therefore, to put these observations
in the same context, a normalized non-linear/normalized linear viscoelastic ratio (NLR) was used
to correlate these internal structural changes to rheological properties of the structures. NLR is the
normalized non-linear viscoelastic response obtained from LAOS experiments (FT-rheology), divided
by the normalized linear viscoelastic response based on SAOS tests and is defined as follows [46].

NLR =
Q0(∅)/Q0(0)
|G∗(∅)/G∗(0)| (5)

whereϕ is the filler concentration and G∗ is the complex modulus of the blend from SAOS experiments,
acquired at a frequency of 6.28 rad/s. It has been reported that NLR is directly related to the extent
of dispersion in nanocomposites [47,55–57]. Further, previous studies revealed that NLR is inversely
proportional to the droplet size in immiscible polymer blends [15,16,32,48]. In a recent study on PP/PA
nanocomposite blends, Sangroniz et al. [33] also found an inverse proportionality between Q0 and
droplet diameter. The values of Q0 and their corresponding NLR values for the PLA/PBS/J blends
filled with C30B and BET are plotted in Figure 14a,b, respectively.

Current results imply that Q0 and NLR increase more rapidly in the C30B-filled blends up to 3 wt
% than in the BET-filled blends (NLRC30B−blends > NLRBET−blends), while at 5 wt % C30B the increase
is halted. Previous study revealed that NLR reflects phase morphology and extent of dispersion [16].
The present results can be attributed to both morphology and dispersion quality of the blends, at this
particular concentration. This is supported by the SAXS results, which indicate that the extent of
dispersion in the C30B-filled blends is rather higher than that in the BET-filled blends, manifested as
a larger inter-particle distance in the C30B-filled blends. In addition, the levelling off phenomenon
in Q0 is nicely captured by SAXS, demonstrating similar dispersion qualities and no morphological
improvements in TEM and SEM results. Thus, the results in Figure 14a (Q0 vs. clay concentration)
seem promising to discuss the differences in the extent of dispersion. Interestingly, Figure 14b
(NLR vs. clay concentration) shows that NLR for the 5 wt % BET-filled blend is slightly higher than
that for the 5 wt % C30B-filled blend, and this could be attributed to the different morphologies of the
blends. Inset in Figure 14b shows that the morphology of the 5 wt % C30B-filled blend nanocomposite
is no longer a sea-island morphology; rather, this blend exhibits a co-continuous structure. On the
other hand, as shown in the top-left inset image in Figure 14b, the morphology of the 5 wt % BET-filled
blend is still droplet morphology, although with large agglomerations. Thus, it appears that the
results in Figure 14b better reflect the morphological changes, with the BET-filled blends exhibiting
progressive improvement even at 5 wt %. However, overall the C30B-filled blends exhibit more
stabilized morphologies. In general, the NLR values were inversely proportional to the morphology
changes, especially in the case of C30B-filled blends.
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4. Conclusions

Effects of two different types of organoclays on the structure and properties of PLA/PBS/Joncryl
blends were studied for different nanoclay loadings. The obtained results indicated that Joncryl as
a chain extender acts as reactive compatibilizer to trigger some initial morphological stabilizers
by formation of a reactive copolymer at the interface, which hinders the film drainage at the
interface. In addition, further organoclay loadings caused secondary size reduction by dispersed phase
encapsulation at the interface, preventing excessive coalescence. Small amplitude oscillatory shear
measurements revealed that organoclay loadings induced solid-like behavior when low frequency
regions exhibited plateau moduli. C30B seemed to be more efficient by yielding remarkably larger
elastic moduli associated with the relaxation process of droplets, compared with those of BET nanoclay
platelets. It was found that both organoclays preferentially located mostly at the interface and PLA
matrix. However, random agglomerations were found, within the blends when BET was used,
which could explain smaller stabilization efficiency. This might be due to the less favorable enthalpic
interaction between surfactant in BET and blend matrix, compared with that between the surfactant
in C30B and blend matrix. SAXS results confirmed that C30B platelets dispersed better, compared
with BET platelets. Finally, nonlinear rheological analysis based on large amplitude oscillatory shear
measurements and FT-rheology results revealed that 3 wt % C30B is optimal for (60/40) PLA/PBS/0.6J
blends, with non-linear viscoelastic ratio and Q0 values levelling off above this loading. Interestingly,
non-linear viscoelastic ratio values of the 5 wt % BET-filled blend were slightly larger than those of the
5 wt % C30B-filled blend, indicating that BET-filled blends still exhibit progress toward morphological
improvement owing to droplet morphology at all concentrations. On the other hand, the 5 wt %
C30B-filled blend exhibited morphological disruption. In summary, the results indicated that the main
factor controlling the morphology of the blend is the favorable enthalpic interaction between polymer
matrices and the surfactants used in the modification pristine MMTs. Moreover, rheological analysis
based on large amplitude oscillatory shear and FT-rheology unveiled the role of organoclay as an
interfacial modifier for immiscible polymer blend that could not be revealed from small amplitude
oscillatory shear measurements.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/9/8/350/s1, Figure S1:
Palierne model fits for (a) PLA/PBS and PLA/PBS/J blends and PLA/PBS/J/C30B and (b) PLA/PBS/J/BET
blend nanocomposites. BET is Betsopa™, C30B is Cloisite®30B, and J is Joncryl, Table S1: Interfacial tension
predicted by the Palierne model. BET is Betsopa™, C30B is Cloisite®30B, and J is Joncryl. The Palierne model
might not be perfectly suitable for analysing these blends and blend nanocomposites; however, it could be used
for the sake of estimation.
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