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Key points

� Nausea is an adverse experience characterised by alterations in autonomic and cerebral
function.

� Susceptibility to nausea is difficult to predict, but machine learning has yet to be applied to this
field of study.

� The severity of nausea that individuals experience is related to the underlying morphology
(shape) of the subcortex, namely of the amygdala, caudate and putamen; a functional brain
network related to nausea severity was identified, which included the thalamus, cingulate
cortices (anterior, mid- and posterior), caudate nucleus and nucleus accumbens.

� Sympathetic nervous system function and sympathovagal balance, by heart rate variability,
was closely related to both this nausea-associated anatomical variation and the functional
connectivity network, and machine learning accurately predicted susceptibility or resistance
to nausea.

� These novel anatomical and functional brain biomarkers for nausea severity may
permit objective identification of individuals susceptible to nausea, using artificial
intelligence/machine learning; brain data may be useful to identify individuals more susceptible
to nausea.

Abstract Nausea is a highly individual and variable experience. The central processing of nausea
remains poorly understood, although numerous influential factors have been proposed, including
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brain structure and function, as well as autonomic nervous system (ANS) activity. We investigated
the role of these factors in nausea severity and if susceptibility to nausea could be predicted using
machine learning. Twenty-eight healthy participants (15 males; mean age 24 years) underwent
quantification of resting sympathetic and parasympathetic nervous system activity by heart rate
variability. All were exposed to a 10-min motion-sickness video during fMRI. Neuroanatomical
shape differences of the subcortex and functional brain networks associated with the severity
of nausea were investigated. A machine learning neural network was trained to predict nausea
susceptibility, or resistance, using resting ANS data and detected brain features. Increasing nausea
scores positively correlated with shape variation of the left amygdala, right caudate and bilateral
putamen (corrected P = 0.05). A functional brain network linked to increasing nausea severity
was identified implicating the thalamus, anterior, middle and posterior cingulate cortices, caudate
nucleus and nucleus accumbens (corrected P = 0.043). Both neuroanatomical differences and
the functional nausea-brain network were closely related to sympathetic nervous system activity.
Using these data, a machine learning model predicted susceptibility to nausea with an overall
accuracy of 82.1%. Nausea severity relates to underlying subcortical morphology and a functional
brain network; both measures are potential biomarkers in trials of anti-nausea therapies. The use
of machine learning should be further investigated as an objective means to develop models
predicting nausea susceptibility.

(Resubmitted 3 December 2018; accepted after revision 21 December 2018; first published online 10 January 2019)
Corresponding author Q. Aziz: The Wingate Institute of Neurogastroenterology, Barts and the London School of
Medicine and Dentistry, 26 Ashfield Street, Whitechapel, London E1 2AJ, UK. Email: q.aziz@qmul.ac.uk

Introduction

Nausea is an unpleasant experience that can pre-
cede vomiting and is amongst the most common
and distressing gastrointestinal (GI) symptoms. The
causes of nausea are diverse and include intrinsic
gastroenterological disorders (e.g. gastroparesis), motion
sickness and pregnancy, and it is a frequent side-effect of
medications including chemotherapeutic and anaesthetic
agents (Stern et al. 2011). Nausea has a population pre-
valence of 14% reported in a community based survey
(Haug et al. 2002). Although nausea is a common clinical
symptom, anti-emetics have limited efficacy against
nausea and treatments targeted specifically against nausea,
irrespective of cause, are lacking (Sanger & Andrews,
2018).

There is marked intra- and inter-individual variability
in both susceptibility to nausea and the severity that
individuals experience. Indeed, a number of factors have
been proposed to influence an individual’s experience
of nausea, including demographics, autonomic nervous
system (ANS) activity, and brain processing (Stern et al.
2011). Converging evidence suggests that the experience
of nausea involves bidirectional interactions within the
brain-gut axis involving the central nervous system (CNS),
autonomic nervous system, gastrointestinal physiology
(including gastric dysrhythmia) and endocrine pathways
(Muth, 2006; Napadow et al. 2013a,b; Andrews & Sanger,
2014; Angeli et al. 2015; Farmer et al. 2015).

The lack of understanding of the central mechanisms of
nausea is partially a consequence of the inherent challenges

of studying it, given that animal models are significantly
limited in their translational potential of a subjective and
interoceptive human experience (Andrews & Sanger, 2014;
Aziz & Ruffle, 2018). In human experimentation, nausea
can be physiologically induced as a consequence of motion
sickness, either by actual motion (Coriolis–cross-coupled
stimulus (Miller & Graybiel, 1970)) or through illusory
self-motion, an epiphenomenon referred to as ‘vection’
(Koch, 1999). Nausea stimulated by vection is a form of
visually induced motion sickness (VIMS), similar to true
motion sickness insofar as it induces nausea and, at its most
intense level, vomiting (Muth, 2006; Shupak & Gordon,
2006; Kennedy et al. 2010).

Current understanding of the CNS changes that
accompany the development and severity of nausea
that individuals experience remains limited. Although
functional neuroimaging techniques have been applied
to the study of nausea (Napadow et al. 2013b;
Farmer et al. 2015; Toschi et al. 2017), they remain
relatively scarce in comparison to those evaluating other
aspects of GI sensation, such as visceral pain (Ruffle
et al. 2017). In previous studies utilising functional
magnetic resonance imaging (fMRI), researchers variably
demonstrated nausea-related activation of a number of
brain areas salient to interoception such as the amygdala,
putamen, pons, locus coeruleus, and others associated
with fear conditioning, such as the anterior insula
and middle cingulate (Napadow et al. 2013b; Farmer
et al. 2015; Sclocco et al. 2016; Toschi et al. 2017).
Furthermore, neuroanatomical differences in white matter
tracts have also been associated with increased nausea
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susceptibility (Napadow et al. 2013a). However, whilst
certainly providing some insight into CNS mechanisms,
existing studies are limited and have largely focused on the
identification of singular brain regions involved in nausea
(Farmer et al. 2015), or pairwise connectivity between
two areas (Toschi et al. 2017). Given the complexity of
the sensation of nausea, it seems likely that the physio-
logical and interoceptive components of a nauseous
experience are a result of many brain areas interacting in
synchrony. To date, there remains minimal understanding
of such networks associated with nausea. In addition, it
is unknown whether patient stratification into those with
and without nausea susceptibility can be achieved using
machine learning based on these aforementioned brain
differences.

Thus, the aims of the present study were threefold.
Firstly, given that some individuals are significantly more
susceptible to nausea than others, we hypothesised that
this could be attributed to differences in the brain structure
engendering the central autonomic network (Critchley
& Harrison, 2013). We therefore investigated subcortical
brain morphological differences in individuals of varying
sensitivities to nausea induced by visually-induced motion
sickness. Secondly, we hypothesised that the complex
experience of nausea is processed by multiple brain
regions interacting synchronously as a functional network,
which we aimed to probe with network-based statistics.
Thirdly, as a proof of concept, we investigated whether
patient stratification into those susceptible and resistant
to nausea can be accurately predicted by artificial
intelligence/machine learning (see Russell & Norvig, 2009;
Dey, 2016; Ruffle et al. 2018d), using brain (neuro-
anatomical and functional connectomic) and ANS data
alone.

Methods

Ethical approval

All protocols were approved by King’s College London
Research Ethics Committee (ref: PNM/09/09-04). Written
informed consent was obtained from all participants, and
all studies conformed to the standards set by the latest
revision of the Declaration of Helsinki. All participants
were naı̈ve to the experimental protocols.

Study population

Twenty-eight healthy participants (15 male), aged
18–65 years (mean age 24 years), who had no known
past medical history and were not currently taking any
prescribed or over-the-counter medications, took part in
the study. All were non-smokers and were asked to avoid
caffeine and alcohol for 24 h prior to the study. Females
of child bearing potential were studied in the follicular

stage of their menstrual cycle. The validated Hospital
Anxiety and Depression Scale was used to screen for
sub-clinical anxiety and depression (Zigmond & Snaith,
1983). All participants were right handed, as screened by
the Edinburgh Handedness Inventory (Oldfield, 1971).
Participants were studied in the afternoon (between 14.00
and 16.00 h) in a temperature-controlled thermoneutral
(20–22°C) environment. Aspects of the experimental data
have been published previously by our group (Farmer
et al. 2015), though for entirely disparate analytical
investigations which are not reported in this manuscript.

Induction of nausea

We utilised a previously validated visual stimulus (Farmer
et al. 2015), a 10-min video of a landscape (London Eye,
Houses of Parliament) as seen from a point 2 m above
the centre of Westminster Bridge, London, UK. The video
was composed with a sequence of digital camera images
taken from the viewpoint of a tall subject standing on
the bridge. The point of view rotated, panning the scene
through 360 deg at a rate of 0.2 Hz about an axis tilted
18 deg from earth vertical. The tilted and rotated visual
display instigates the perception of spinning on the spot
about a tilted axis due to vection. Viewing a moving
tilted scene has been shown to enhance the onset of
visually induced motion sickness (Bubka & Bonato, 2003).
A similar stimulus has previously been used to induce
visually induced motion sickness (Golding et al. 2012), and
in our own laboratory produced an effective nauseogenic
stimulus with this same paradigm (Farmer et al. 2015). For
fMRI, participants wore a pair of MR-compatible goggles
(CinemaVision, Salvadorini Consulting LLC, Lexington,
NC, USA) and were positioned supine in the MRI
scanner. The goggles were used to project the motion
video to the participant during scanning, allowing an
unimpeded view of the stimulus. During the active
scanning phase, the 10 min motion video was projected
through the goggles. Throughout the study, participants
were instructed to remain still and to focus on the stimulus.
On a separate day of scanning, participants underwent a
second MRI wherein they viewed a static single image of
this 10 min video, which was used as a control for statistical
comparison. Whether a participant would view the control
or the motion video first was pseudorandomised.

During the motion video, experience of nausea was
assessed using a 4-point visual analogue scale (VAS),
where 1 represented no symptoms and a score of 4
represented severe nausea. The validated motion sickness
sensitivity score (MSSQ) (Golding, 1998) and motion
sickness assessment questionnaire (MSAQ) (Gianaros
et al. 2001) were used to assess susceptibility to and
symptoms associated with motion sickness, respectively.
The MSSQ questionnaire asks participants to rate their
previous experiences of nausea as a child, and over the last
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10 years, across 9 different situations, such as in a car, on a
bus, on a train etc, scored on a 5-point Likert scale ranging
from not applicable to frequently felt sick (Golding,
1998). The MSAQ evaluates the experience of motion
sickness across GI, central, peripheral and sopite-related
dimensions by asking participants to rate their sickness
using a 9-point scale across 16 items (Gianaros et al. 2001).

Assessment of autonomic activity by heart rate
variability

Resting autonomic parameters were derived from heart
rate variability (HRV) measures, in accordance with
international recommendations (European Society of
Cardiology, 1996). In a quiet thermoneutral laboratory
environment (to prevent MR scanner-related confounds),
ECG electrodes (Ambu Blue Sensor P, Denmark) were
placed at the cardiac apex, left and right sub-clavicular
areas of each participant for ECG signal acquisition.
ECG readings were digitally recorded using a bio-signals
acquisition system (Neuroscope, Medifit Instruments,
Enfield, Essex, UK) at 5 kHz. Resting autonomic activity
was derived by validated non-invasive HRV cardio-
metrics; parasympathetic nervous system (PNS) activity
by putative measure of efferent brainstem cardiac vagal
tone (CVT) and sympathetic nervous system (SNS)
activity by cardiac sympathetic index (CSI) (Julu, 1992;
Toichi et al. 1997). Sympathovagal balance was also
approximated by the ratio between CSI (sympathetic)
and CVT (parasympathetic). After attachment of all auto-
nomic recording apparatus, data were recorded for 5 min
with participants asked to relax (but not fall asleep), during
which resting autonomic tone was derived. We have pre-
viously used this same method of quantifying resting auto-
nomic measures for application to MRI data (see Ruffle
et al. 2018b,c).

Parasympathetic nervous system: derivation of
resting cardiac vagal tone. The derivation of resting
parasympathetic activity by CVT is described in detail
elsewhere (Farmer et al. 2014). In brief, the incoming
QRS complex is compared to a unique template,
generated from the initial acquisition of the ECG from
the individual. If the QRS complexes are sufficiently
comparable, voltage gated oscillators within the Neuro-
scope generate a 1 mV pulse, which feeds to a two-limb
circuit, consisting of a high-pass and low-pass limb. The
high-pass limb precisely follows the incoming QRS signal,
whilst the low-pass limb produces a damped rendition
(Little et al. 1999). Therefore, the lesser the delta change
of an incoming signal, that is to say the lower the HRV, the
more closely the low-pass limb will mimic the high-pass
limb, resulting in a lower value. In contrast, the greater
the HRV the more the low-pass limb will deviate from its

high-pass counterpart, resulting in a higher value. This
phenomenon is referred to as ‘phase shift demodulation’
and is uniquely based upon non-invasive measures of
PNS tone. CVT is measured on a linear vagal scale (LVS),
where a value of 0 is derived from fully atropinised healthy
human volunteers (Julu & Hondo, 1992; Farmer et al.
2014). Moreover, mathematically CVT correlates closely
to other putative ‘parasympathetic’ measures, including
both HRV and root mean square of successive differences
(RMSSD) (Brock et al. 2017).

Sympathetic nervous system: cardiac sympathetic index.
Resting sympathetic nervous system (SNS) activity was
quantified by means of the cardiac sympathetic index
(CSI). To determine CSI, R-R interval data were first
extracted from the ECG and manually reviewed to remove
any artefacts. Subsequently, R-R data were transferred to
the cardiac metric program, which yields a calculation
of the validated Toichi’s cardiac sympathetic index by
use of the Lorenz plot (Toichi et al. 1997). Notably,
CSI is disparate to low frequency (LF) band analysis of
HRV, and demonstrated as superior to LF in ascertaining
sympathetic function by Toichi et al. (1997). CSI is the
ratio of R-R intervals and thus has no units (Farmer et al.
2013).

MRI acquisition

MRI data were collected on a General Electric Signa Excite
II 1.5 Tesla HD scanner located at the Centre for Neuro-
imaging Sciences, Institute of Psychiatry, Psychology &
Neuroscience, King’s College London. Head movement
was minimised by application of foam padding within
the head coil and an eye movement tracker was mounted
onto the head coil. For each participant, structural brain
data were acquired via a high resolution T1-weighted
3D FSPGR structural scan, in sagittal orientation, using
the following parameters: repetition time (TR) 7.02 ms;
echo time (TE) 2.82 ms; inversion time (TI) 450 ms; slice
thickness 1.1 mm; field of view 280 mm; flip angle 208;
spatial positions 196; image matrix 256×256×196 voxels;
in plane voxel dimensions 1.1 × 1.1 × 1.1 mm. During
fMRI, 300 T2∗-weighted images per slice (40 × 3 mm
slices, 0.3 interslice gap, TE 25 ms, TR 3500 ms, flip
angle 90 deg, matrix 642), depicting blood oxygen level
dependent (BOLD) contrast, were collected as participants
viewed the motion video.

Pre-processing of structural MRI data

Raw structural MRI images were first carefully manually
reviewed to check for signal and image artefacts
that may otherwise confound findings. Subsequently,
subcortical structural pre-processing (for analysis of
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morphology/shape) was conducted using FSL-FIRST 5.0,
an algorithm that uses Bayesian statistics for automated
brain segmentation (Patenaude et al. 2011). This approach
identifies and segments each anatomical scan into 15 sub-
cortical regions: bilateral nucleus accumbens, amygdala,
caudate, hippocampus, pallidum, putamen and thalamus,
plus the brainstem. All scans were registered to 1 mm
standard space (Montreal Neurological Institute (MNI)
152), to account for overall differences in the shape and
size of each subject’s skull and brain. Both registrations
(whole scan and ROI) were manually checked for correct
template-scan alignment. Individual resultant subcortical
nuclei were concatenated to a single 4D structural file
(1 volume per subject) to permit statistical analysis.
Additionally, volumetric data (in mm3) were also extracted
from these regions for post hoc machine learning feature
synthesis (see later). All statistical analysis of structural
MR data was undertaken with general linear modelling
(GLM) against nausea VAS scores, wherein demeaned
demographical covariates, age and gender, were included
as nuisance regressors.

Pre-processing of functional MRI data

fMRI data pre-processing was undertaken using FMRI
Expert Analysis Tool (FEAT) version 5.98, part of
the FMRIB Software Library (FSL) software package
(www.fmrib.ox.ac.uk/fsl) (Smith et al. 2004). The
following pre-statistics processing was applied: Motion
Correction with FMRIB Linear Image Registration
Tool (MCFLIRT) (7 degrees of freedom); slice-timing
correction using Fourier-space time-series phase-shifting;
brain extraction (BET); spatial smoothing using a
Gaussian kernel of full-width-half-maximum (FWHM)
5 mm; grand-mean intensity normalisation of the
entire 4-dimensional dataset by a single multiplicative
factor; high pass temporal filtering (Gaussian-weighted
least-squares straight line fitting, with sigma = 50.0s).
Registration to high resolution structural and standard
space images was carried out using the FMRIB Linear
Image Registration Tool (FLIRT).

Network-based statistics

Using a priori selection of regions (Stern et al. 2011;
Critchley & Harrison, 2013), 22 regions of interest
(ROI) parcellation masks were generated using the
Harvard-Oxford Cortical Structural Probability Atlas
and FSLeyes (Smith et al. 2004), to identify regions
for extraction of functional activity data. Masks were
thresholded to a maximal region probability of �65%,
binarised, and aligned to their specific anatomical areas on
each individual’s scan. The 22 functional ROIs included
14 of the aforementioned structurally segmented sub-
cortical ROIs: bilateral nucleus accumbens, amygdala,

caudate, hippocampus, pallidum, putamen and thalamus.
Furthermore, the hypothalamus, bilateral insula, bilateral
orbitofrontal cortex and anterior (ACC), middle (MCC)
and posterior cingulate cortices (PCC) were added. Within
FSLeyes, the Talairach brain map was used to delineate the
hypothalamus, as presently no Harvard map exists for
this region (Talairach & Tournoux, 1988); this approach
is in keeping with previous fMRI studies investigating
this brain structure (Baroncini et al. 2012). Brainstem
sub-regions were omitted from the network-based analysis
as we felt it was questionable whether the resolution
of the scanner would permit stringent analysis of such
small brainstem nuclei (such as the nucleus tractus
solitarius). The inclusion of ROIs in investigating for
a role in the brain processing of nausea was also
cross-referenced with NeuroSynth to provide insight to
any possible confounds of the data (such as additional
roles of the brain regions, for example in visual processing)
(Yarkoni et al. 2011). Using MATLAB (version 2018a,
https://uk.mathworks.com), the BOLD signal from each
ROI, or ‘node’, was cross-correlated, producing correlation
matrices of 55 node-node connective correlation (r)
values, or ‘edges’ (resultant of binomial coefficient ( 22

2 ) =
231; or 22 “choose” 2). Our specific aim was to investigate
functional connectivity between these areas and thus we
did not statistically test activity of singular regions (such
as the ACC). The rationale for this is because previous
findings of brain activity to nauseogenic stimuli are already
reported elsewhere, including with this experimental
paradigm (Farmer et al. 2015).

The Network Based Statistics (NBS) connectome
toolbox (version 1.2, https://www.nitrc.org/projects/nbs/)
was used to investigate brain network differences
contingent on the severity of nausea experienced during
the motion video (Zalesky et al. 2010). The NBS is
a non-parametric statistical method which corrects for
multiple comparisons, and controls for the family-wise
error rate (FWER). The NBS is the graph analogue of
cluster-based statistical methods used in mass univariate
testing on all voxels in an image and produces clusters
in topological space (as opposed to physical space). NBS
relies on permutation testing (Freedman & Lane method:
Freedman & Lane, 1983) to determine significance within
GLM, which includes regression of nuisance predictors,
permuting resulting residuals and subsequently adding
permuted residuals back to nuisance signal to give
a realisation of data under the null hypothesis. This
approach recognizes that permuting raw data is not
desirable as it may engender some variability explained
by nuisance predictors. It is rather the error terms that
can be permuted and estimated under the null hypothesis
as a part of the data not explained by the nuisance
regressors; that is, the residuals (Anderson & Robinson,
2008). The method permits derivation of FWER-corrected
P values using permutation testing when investigating
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brain networks with fMRI (Sporns et al. 2005). The
performed NBS analyses were linear contrasts of nausea
VAS scores by GLM (with demeaned demographical
nuisance covariates added), using 10,000 permutations
and the criteria for significance set to FWER-corrected
P < 0.05. Motion video analyses were also statistically
compared to the control period to limit for an attention-
or gaze-driven confound. A primary edge parameter
threshold of 2.64 was used to accommodate for a Cohen’s
d medium-effect size of 0.5 (Zalesky et al. 2010). Results
were visualized using the BrainNet illustrative package
(http://www.nitrc.org/projects/bnv/) (Xia et al. 2013).

Analysis of demographic and psychophysiological
data

Normality distributions of autonomic, demographic
and psychophysiological data were tested using the
Shapiro-Wilk normality test. P < 0.05 was adopted as
the criterion to indicate statistical significance. Parametric
statistical analyses of autonomic, nausea VAS and
relationship to neuroimaging data found (including
network properties) were performed using MATLAB
(version 2018a, https://uk.mathworks.com), IBM SPSS
Statistics (IBM Corp. Released 2017, Version 25.0.
Armonk, NY: IBM Corp) and GraphPad Prism (version
6.00, GraphPad Software, La Jolla California, USA,
www.graphpad.com).

Machine learning – neural network development

A machine learning approach was used as a post hoc
proof of concept (Ruffle et al. 2018d). Our principal
aim was to establish if susceptibility or resistance to
nausea (by virtue of VIMS) could be accurately pre-
dicted from neuro-quantitative data. This was under-
taken using the MATLAB statistics and machine learning
toolbox, with a shallow neural network and scaled
conjugate gradient backpropagation learning. Predictive
features for the model were neuroanatomical, connectivity
and autonomic (both parasympathetic and sympathetic)
in nature, determined from aforementioned analyses
undertaken. Additional feature synthesis was undertaken
by determining subcortical volumetric symmetry ratios.
The response target to be predicted by the model was
susceptibility or resistance to nausea, which was binarised
so that a minimum VAS score of 1 was equivalent
to nausea-resistance (0) and VAS scores > 1 indicated
nausea-susceptibility (+1). Five neurons were allocated
to the hidden layer of the machine learning’s neural
network. Model hidden layer processing included sigmoid
positive transfer function and sigmoid symmetric transfer
function steps. Data were partitioned randomly to 70%
for model training, 15% for model validation and the

final 15% for model testing, as per conventional standard
(Russell & Norvig, 2009; Dey, 2016). Model validation
was undertaken with cross-entropy as per default toolbox
settings.

Results

MSSQ score is a poor predictor of nausea severity

MSSQ (susceptibility to motion sickness by recollection of
previous experiences) was not significantly correlated with
either VAS or MSAQ (MSSQ and VAS: r = 0.34, P = 0.08;
MSSQ and MSAQ: r = 0.25, P = 0.20) (Supporting
information, Supplementary Fig. S1), indicative that the
MSSQ is a poor predictive scoring system for determining
nausea severity; at least in this sample and in response to
this stimulus.

Resting sympathetic nervous system activity,
assessed by the cardiac sympathetic index, relates to
reported severity of nausea

Severity of nausea reported (VAS) during fMRI
was significantly positively correlated to resting CSI
(sympathetic tone) (r = 0.43, P = 0.023) (Fig. 1A). Resting
CVT (parasympathetic) did not significantly correlate to
the nausea VAS (r = −0.32 P = 0.095) (Fig. 1B). CSI/CVT
ratio (sympathovagal balance) at rest was significantly
positively correlated to severity of nausea experienced
(r = 0.42, P = 0.026) (Fig. 1C).

Subcortical shape, but not volume, differs according
to the severity of nausea experienced

Vertex (shape) analysis showed that morphological
differences of the left amygdala, right caudate and
bilateral putamen were significantly related to increasing
nausea severity (threshold free cluster enhancement
(TFCE)-corrected P = 0.05) (Fig. 2; Supporting
information, Supplementary Video S1). There were no
significant variations in morphology (shape) associated
with decreasing nausea severity. There were no significant
correlations between raw subcortical structure volumes
and nausea VAS.

Nausea-related shape of the subcortex is
sympathetically related by the cardiac sympathetic
index

In post hoc analyses, we sought to investigate if
these nausea-related morphological changes could be
partially related to the HRV measures of autonomic
nervous system (Ruffle et al. 2018b). In particular, we
repeated GLM with alternate regression control for CVT

C© 2019 The Authors. The Journal of Physiology C© 2019 The Physiological Society

http://www.nitrc.org/projects/bnv/
https://uk.mathworks.com
http://www.graphpad.com


J Physiol 597.6 Neuroimaging of nausea 1523

(parasympathetic) and CSI (sympathetic). Interestingly,
these aforementioned morphological changes of the sub-
cortex remained significant, despite nuisance covariate
regression for CVT. However, with regression for CSI,
the shape changes of the left amygdala, putamen and
right caudate became non-significant, while the right
putamen remained significant. This suggests that these
nausea-related neuroanatomical differences could closely
align to CSI (sympathetic) function.

A functional brain network relates to nausea severity

A significant functional brain network was identified
that positively correlated with nausea severity
(FWER-corrected P = 0.043) (Fig. 3). When thresholded
to a Cohen’s d of 0.5 (medium effect size), this network
comprised 7 nodes with 7 functional connections (‘edges’)
(Fig. 3A; Supporting information, Supplementary Video
S1). Brain regions implicated were: ACC, MCC,
PCC, left and right thalamus; right caudate and right
nucleus accumbens. Significant edges (functional
connections) of this network were the following:
PCC-MCC; left thalamus-MCC; right thalamus-MCC;
left thalamus-ACC; MCC-right caudate; MCC-nucleus

accumbens and ACC-right caudate. Edge strengths
defined as the degree of relationship in nausea severity
to functional connectivity are listed in Fig. 3B and C. In
comparison, there was no significant functional network
identified when viewing the control video (P = 1.00).

Brain networks of nausea severity relate to resting
autonomic measures of heart rate variability

Relationships between nausea network connectivity CSI
(sympathetic), CVT (parasympathetic) and CSI/CVT
ratio (sympathovagal balance) were investigated further.
We found a highly significant (albeit weak) positive
correlation between total network connectivity and resting
CSI (r = 0.24, P = 0.0008) as well as the CSI/CVT
ratio (r = 0.21, P = 0.003). A correlation between
network connectivity and resting CVT was not apparent
(r = −0.13, P = 0.07). In exploratory post hoc analyses,
a machine learning stepwise linear model built a weak,
albeit significant, linear model of resting CSI, using this
nausea-related network connectivity data (F4.60, P = 0.04).
Furthermore, individual functional connections of the
brain network and their relation to autonomic measures of

Z
-S

co
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Resting Parasympathetic Tone (CVT) Sympathovagal Balance (CSI / CVT)

r =0.43, p=0.023 r =0.42, p=0.026r =-0.32, p=0.095

Resting Sympathetic Tone (CSI)
A B C

Nausea Severity (VAS) Nausea Severity (VAS) Nausea Severity (VAS)

Figure 1. Severity of nausea and relationship to resting autonomic nervous system function
Both resting sympathetic tone (A) and sympathovagal balance (C) are significantly positively correlated to nausea
severity during scanning, whilst a non-significant negative correlative trend for resting parasympathetic tone was
apparent (B). Data Z-scored for illustrative purposes. n = 28. Line of best fit from linear regression with python
robust outlier fitting, shaded area represents 95% confidence interval. Abbreviations: CSI, cardiac sympathetic
index; CVT, cardiac vagal tone; VAS, visual analogue scale. [Colour figure can be viewed at wileyonlinelibrary.com]
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HRV are available in the Supporting information section
(Supplementary Figs S2–S4).

Machine learning predicts susceptibility to nausea
from brain and autonomic data: a proof of concept

A predictive model for binary susceptibly to nausea (i.e.
susceptible vs. resistant) was developed by virtue of a
shallow neural network (Ruffle et al. 2018d). Predictive
inputs to the neural network comprised aforementioned
functional connectivity, neuroanatomical data and resting
HRV measures of the ANS (Fig. 4A). The model was
trained on 70% of the data (partitioned by random data
division), which trained to an accuracy of 80% (area under
curve (AUC) 0.80) (Fig. 4B). When testing the model
with the remaining unseen data, it accurately allocated
an individual to the nausea-resistant or susceptible
category with an accuracy of 100% (AUC 1.00) (Fig. 4C).
The total accuracy for all data, irrespective of data
partition, was 82.1% (AUC 0.82) (Fig. 4D–E). Total
true positive (TPR) and false negative rate (FNR) for
nausea susceptibility was 100% and 0%, respectively.
TPR and FNR for nausea resistance were 58.3% and
41.7%, respectively. Total positive predictive value (PPV)
for nausea susceptibility was 76.2% (false discovery rate
(FDR) for nausea resistance = 23.8%), whilst negative pre-

dictive value (NPV) for nausea resistance was 100% (FDR
for nausea susceptibility = 0%).

Discussion

Nausea is a complex and troublesome symptom
and the central brain mechanisms responsible remain
incompletely characterised. This study builds upon
contemporaneous research and adds the following novel
findings: (i) identification of a relationship between under-
lying subcortical neuroanatomy and nausea severity, (ii)
delineation of a novel functional brain network relating to
the severity of nausea experienced, (iii) interrelationships
between nausea severity, autonomic neurophysiology,
brain structure and connectivity, and (iv) identifying
how coalescence of these findings can be used to pre-
dict susceptibility to nausea by artificial intelligence/
machine learning, as a proof of concept. We elaborate
on these four key findings below.

A neuroanatomical predisposition to nausea

An individual’s cross-sensitivity to differing nausea stimuli
exhibits similarity, meaning that if an individual was
sensitive to a given nauseogenic stimulus, such as motion
sickness, they are typically sensitive to other nauseogenic

L Amygdala

L Putamen

R Caudate

R Putamen

Nausea-related shape variance

L

Ax.

TFCE-corrected p<0.05

Figure 2. Nausea-related subcortical
shape variance
Vertex deformation (shape) variance which
positively related to increasing nausea
severity. Subcortical masks colour-coded as
per the given key, with overlaid aspects of
nausea-related morphology. Statistical
significance is TFCE-corrected and further
thresholded to display only vertices of
corrected P < 0.05. Abbreviations: Ax,
axial. L, left; R, right; TFCE, threshold free
cluster enhancement. [Colour figure can
be viewed at wileyonlinelibrary.com]
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stimuli, such as chemotherapy-induced nausea and
vomiting (Golding, 1998). We reason that this pre-
dictability in an individual’s sensitivity to nauseogenic
stimuli could be partially attributed to their under-
lying neuroanatomy. Here, we specifically focused on
the subcortex because of its relationship to the central
autonomic network (Critchley & Harrison, 2013; Aziz
& Ruffle, 2018). To that end, we identified four sub-
cortical nuclei displaying variation in their shape (or
‘morphology’) dependent on increasing nausea, i.e. the
left amygdala, right caudate and bilateral putamen.

Notably, the amygdala has a key role in the central auto-
nomic network (Benarroch, 1993), and the involvement
of basal ganglia regions in a sympathetic-related stress
response is in keeping with previous findings from
separate studies/datasets (Borsook et al. 2010; Ruffle et al.
2018b).

Nausea-related subcortical morphology may be
sympathetically related. The association of these
particular subcortical nuclei to nausea severity is
intriguing, given that in a separate group of individuals

Figure 3. A novel functional brain network related to nausea severity
A, network-based statistics identified a significant functional brain network implicating 7 nodes of our a priori
defined 22, all of which had edge strengths >2.64, equivalent to a medium effect size Cohen’s d of >0.5. Nodes
are sized according to their degree centrality (number of significant functional connections, or ‘edges’). Edges
are colour coded according to strength of effect size (see colour key i). B, edge-strength colour map of all nodes
tested with network-based statistics, wherein edges are colour coded according to strength of effect size (see
colour key ii, wherein a red line demarcates the critical edge strength for inclusion in the functional network).
Functional connections included in the network have been outlined in black. C, pairwise connectivity values (i.e.
between a given 2 nodes) of the functional network, scatter-plotted against nausea severity (VAS). n = 28. Line of
best fit from linear regression with python robust outlier fitting, shaded area represents 95% confidence interval.
Abbreviations: ACC, anterior cingulate cortex; Amyg, amygdala; Caud, caudate nucleus; FWER, family wise error
rate; GP, globus pallidus; Hi, hippocampus; Hy, hypothalamus; Ins, insula cortex; L, left; MCC, mid-cingulate cortex;
NAc, nucleus accumbens; OFC, orbitofrontal cortex; PCC, posterior cingulate cortex; Pu, putamen; R, right; Thal,
thalamus; VAS, visual analogue score. [Colour figure can be viewed at wileyonlinelibrary.com]
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we have previously shown that these nuclei vary in shape
or volume depending on either resting sympathetic
or parasympathetic tone (see Ruffle et al. 2018b).
Additionally, the notion that the basal ganglia and
amygdala have a regulatory function in ANS physiology
has been previously described (Pazo et al. 1981; Nalivaiko
& Blessing, 2001; Blessing, 2003). It is somewhat
expected therefore that in repeating this analysis with
controlled-regression of each participant’s sympathetic
tone, which we posit is pro-nauseogenic as described in
previous studies (Farmer et al. 2015; Kenward et al. 2015;
Singh et al. 2016; Kvale et al. 1991), these anatomical areas
became almost entirely non-significant.

A novel functional brain network relates to severity
of nausea experienced

We identified a novel network of functional connectivity,
which represents the extent of information transmission
and synchrony between multiple brain regions whilst
exposed to a nauseous stimulus. In the processing of
an inherently complex interoceptive phenomenon such
as nausea, it seems highly likely that this percept is a
result of multiple areas of the brain interacting at a given
time. As such, this study aims to build upon previous
studies of brain activity or connectivity between two brain
regions only (Farmer et al. 2015; Toschi et al. 2017).

Figure 4. Proof of concept: a machine learning neural network to predict susceptibility or resistance to
nausea
A, a machine learning neural network was trained to predict susceptibility to nausea in the form of a binary
classifier (i.e. susceptible or resistant). Eleven feature vectors were used in this model: 7 functional connections
of the identified nausea network (see Fig. 3), resting CVT, CSI, CSI/CVT ratio (see Fig. 1) and caudate volumetric
symmetry ratios, derived from further feature selection. Exponential box plots illustrate the relationship of one
feature to nausea resistance (purple) or susceptible (green), on a Z-scored x-axis. B, receiver operator characteristic
(ROC) curve of training state. The model was trained to an initial accuracy of 80% (AUC 0.80) with random data
division, utilizing 70% of total samples. C, ROC curve of testing state. Test subsample (15%) correctly identified
according to nausea susceptible at 100% accuracy. D, total ROC for all data partitions (AUC 0.82). E, confusion
matrix for total predictive network properties. Abbreviations: ACC, anterior cingulate cortex; AUC, area under the
curve; Caud, caudate nucleus; CSI, cardiac sympathetic index; CVT, cardiac vagal tone; FDR, false discovery rate;
FNR, false negative rate; L, left; MCC, mid-cingulate cortex; NAc, nucleus accumbens; PCC, posterior cingulate
cortex; PPV, positive predictive value; R, right; ROC, receiver operator characteristic; Sym, symmetry; Thal, thalamus;
TPR, true positive rate. [Colour figure can be viewed at wileyonlinelibrary.com]
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In particular, we identified a network which increased
in strength (functional connectivity/information trans-
fer) with increasing nausea severity, which encompassed
the anterior, mid- and posterior cingulate cortices,
both sides of the thalamus, right caudate nucleus and
nucleus accumbens. Some of these regions have known
associations to nausea (Napadow et al. 2013b; Farmer
et al. 2015; Sclocco et al. 2016; Toschi et al. 2017), although
their co-relationship to autonomic neurophysiology seems
salient and will be elaborated on below.

The identified brain network of nausea severity was
related to autonomic neurophysiology. Notably, the
connectivity of the identified nausea-severity network
correlated positively with both resting sympathetic
nervous system tone and sympathovagal balance. As
already stipulated above, given a presupposition of
increased/elevated sympathetic tone as pro-nauseogenic
(Farmer et al. 2015; reviewed in Kenward et al. 2015; Singh
et al. 2016), it is interesting to also find a concomitant
autonomic association to this network, wherein greater
connectivity corresponded both to greater nausea severity
and resting sympathetic tone. We have already discussed
some of these brain regions and their known role
in autonomic regulation, though in this network we
additionally implicate the thalamus, cingulate cortex and
nucleus accumbens, all of which are known to have a
role in sympathetic neuro-regulation, or a sympathetic
response to events meriting emotional arousal (such as
nausea or pain) (Critchley & Harrison, 2013; Ruffle
et al. 2018a,b). Hence, it is reasonable to suggest
that this neural network reflects SNS-related nausea
processing. Future work should investigate if a trilinear
relationship between this functional brain network, auto-
nomic measures and GI measures (such as with electro-
gastrogram or self-reported epigastric symptoms) exist
in real-time synchrony. It would be prudent to also
investigate additional nauseogenic stimuli in this context,
including non-visual, to ensure no confound from visual
processing/saccades (though our data here was compared
to a control visual stimulus). Furthermore, investigation
with measures of attention, and arousal and stress would
be useful for future study to examine their relationship to
these findings.

Artificial intelligence to predict nausea susceptibility

Lastly, as a proof of concept, we illustrate how complex
neurophysiological data, such as functional connectivity,
neuroanatomy and autonomic neurophysiology can be
coalesced with machine learning to build a model to pre-
dict sensitivity or resistance to nausea, induced by VIMS.
In the last few years, interest in machine learning has
increased exponentially, and its application to academia

and healthcare is rapidly developing (Ruffle et al. 2018d).
However, the use of this technology in predicting difficult
or ‘softer’ endpoints, such as subjective reporting of
nausea, presents an intriguing clinical opportunity. It
should be noted, however, that this model aimed to reflect a
proof of concept only and limitations do exist, namely that
a larger sample size and disparate nausea-inducing stimuli
would be required to further develop such a network
for either future academic work or for deployment in a
healthcare setting. That being said, this proof of concept
model alone led to a high level of accuracy, raising the
question of whether machine learning with such brain
data could be used to predict susceptibility to unpleasant
experiences, such as nausea and visceral pain.

Conclusions

In this study, we build on previous studies investigating
brain activity related to nausea and illustrate the brain
processing of nausea as a functional network. To our
knowledge, this is the first study using network analysis
to describe how multiple brain regions communicate
to give rise to the perception of nausea. The study is
also the first to investigate the interrelationship between
subcortical morphology and predisposition to nausea,
not least by demonstrating its close-knit relationship
to autonomic neurophysiology (Ruffle et al. 2018b).
Finally, as a proof of concept, we illustrated how a
given individual’s underlying neuroanatomy, functional
connectivity and autonomic neurophysiology can be
coalesced to predict susceptibility or resistance to nausea,
using a novel machine learning approach. Future work
should interrogate the use of machine learning to
predict nausea susceptibility (including from multiple
nauseogenic stimuli), be it from brain data, autonomic or
otherwise to determine if the described brain functional
connectivity parameters could act as biomarkers to study
the efficacy of novel nausea therapies.
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