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Abstract

Background: Family health history (FHH) inherently involves collecting proxy reports of health statuses of related
family members. Traditionally, such information has been collected from a single informant. More recently, research
has suggested that a multiple informant approach to collecting FHH results in improved individual risk assessments.
Likewise, recent work has emphasized the importance of incorporating health-related behaviors into FHH-based risk
calculations. Integrating both multiple accounts of FHH with behavioral information on family members represents
a significant methodological challenge as such FHH data is hierarchical in nature and arises from potentially error-
prone processes.

Methods: In this paper, we introduce a statistical model that addresses these challenges using informative priors
for background variation in disease prevalence and the effect of other, potentially correlated, variables while
accounting for the nested structure of these data. Our empirical example is drawn from previously published data
on families with a history of diabetes.

Results: The results of the comparative model assessment suggest that simply accounting for the structured nature

prediction purposes.

of multiple informant FHH data improves classification accuracy over the baseline and that incorporating family
member health-related behavioral information into the model is preferred over alternative specifications.

Conclusions: The proposed modelling framework is a flexible solution to integrate multiple informant FHH for risk

Keywords: Family health history, Multiple informants, Bayesian statistics, Reconciliation

Background

Many complex diseases are believed to result from the
joint influence of genetic, socio-environmental, and life-
style risk factors that are clustered within families [1],
thereby making family health history (FHH) a powerful
predictor of varied health outcomes, such as heart dis-
ease [2, 3], type 2 diabetes [4—6], and colorectal cancer
[7]. To help identify asymptomatic patients who are at
increased risk for disease and require additional surveil-
lance and preventive measures, many risk-assessment
tools weigh FHH heavily in their algorithms [8-12].
Quantitative risk scores based on an individual’s FHH
could even play a deterministic role in diagnosis and
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treatment decisions [13, 14] and have been the basis for
interventions in research [15, 16].

However, much of the enthusiasm of using FHH to en-
hance preventive screening and care has been dampened
by the realization that FHH data, especially those col-
lected from patients’ self-reports, are often incomplete
and inaccurate [17-21]. Typically, a patient or research
subject reports on their FHH independently and autono-
mously by informing on the health and disease status of
their biological first- and second-degree relatives (e.g.,
children, siblings, parents, aunts/uncles, and grandpar-
ents). This single informant, however, may not have ac-
curate or complete knowledge about their relatives’
disease diagnoses, age at diagnosis, causes of death, and
health-related behaviors, leading to an inaccurate risk
assessment. This is particularly true for members of the
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younger generation who have yet to learn about the health
of their extended kin [22]. Based on a handful of studies
that empirically investigated accuracy of FHH reports [17,
19, 21, 23], sensitivity of self-reported FHH for type 2
diabetes, for example, ranged widely from 53% to 87%,
depending on the type and degree of relation between in-
formants and relatives, as well as on methods of external
validation (e.g., medical records, interview/questionnaire
from relatives).

Recognizing that the predictive value of FHH-based risk
scores is likely to be limited by data completeness and ac-
curacy, much effort has focused on improving FHH data
collection. One potential remedy for inaccuracies and
biases is to focus on the data collection process. It is antic-
ipated that new tools such as pedigree workbooks and on-
line interactive software will encourage individuals to seek
their FHH information, thereby improving the accuracy of
each individual data point [24, 25].

Since many of these data collection tools employ a
shared-model within families, FHH data from multiple
members of the same family are available to clinicians
and researchers, showing promise in improving risk as-
sessments without having to rely on improving the com-
pleteness and accuracy of each individual’s FHH report.
Essentially, because FHH reports from related individ-
uals will overlap, such an approach facilitates imputation
and cross-validation. It has been shown that incorporat-
ing new information from additional sources alone im-
proves risk prediction, yielding an accuracy similar to
validating with medical records [26]. While an important
step forward, the algorithm used in our previous study is
a simple weighted integration of multi-informant FHH
without the ability to address uncertainty from individ-
ual and/or dyadic characteristics embedded in these
data. For example, information provided by each inform-
ant may be error-prone and subject to both topical or
informant-based uncertainty. Informants may have dis-
similar tendencies to make false-positive, false-negative,
or missing reports. They may disagree with one another
regarding the statuses of the people about whom they
are reporting health information. Existing models can
address errors and biases arising at the individual level,
by including individual attributes as predictors in the
regression equation. Such models are not well-suited to
dealing with contradicting information at the dyadic
level. For example, younger informants tend to have
higher rates of missing FHH reports due to gener-
ational distance [22]. Women, as kinkeepers, tend to be
more knowledgeable about the family’s health informa-
tion [27-29]. Individuals’ health-related behaviors (e.g.,
weight, alcohol use) contribute directly to disease risk,
and may influence how proactively they seek FHH in-
formation [30]. These factors in themselves may not be
strong predictors of individual risk, but could signal
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possible differences in the level of accuracy of FHH
data from multiple informants in a family, which in
turn can be used to integrate multiple informant FHH
(MIFHH) in a meaningful way.

With this type of data, a statistical model used for risk
prediction has to not only account for informant-based er-
rors and uncertainty, but also discrepant information pro-
vided by different informants by explicitly modeling
dependence arising from within- and between-informants.
In what follows, we present a statistical model that im-
proves estimation for reconciling discrepant accounts of
multiple informant family health histories into a unified
FHH that can be used to calculate risk by adjusting for er-
rors arising from the informants, their family members,
and background noise. We apply this model to the estima-
tion of individual risk for type 2 diabetes using MIFHH
data recently collected from a sample of 45 families resid-
ing in the greater Cincinnati area [26]. Specifically, we
model the observed diabetes status as dependent on
informant-level and dyadic-level attributes and the under-
lying true diabetes risk as a latent variable that has been
observed in two or more informants’ accounts, with in-
formant- and dyadic-level effects.

Methods

Our goal is to incorporate information from multiple family
informants’ family health history observations into a com-
mon, integrated FHH. That is, we wish to predict family
members’ disease statuses from MIFHH observations and
use those estimates to calculate disease risk for unaffected
individuals in a family. In the simplest case, we can use
arithmetical methods that ignore sources of variation and
error in MIFHH data [26]. Alternatively, a statistical model
accounting for the process that gives rise to such variation
in disease status reports may be used to estimate the inte-
grated FHH. In this section, we introduce a Bayesian hier-
archical logistic regression model for improving the
precision of such estimation based on MIFHH data.

We begin by defining a common notation. Let each
realization of a pedigree containing family health history
from m informants on n family members be represented
by Y, an m x n-dimensional matrix. The values of the
cells in Yj; reflect the i informant’s report of the j*
family member’s disease status. Ideally, our integration
solution reduces the dimensionality of the FHH to a
simple n-dimensional vector y (yy,...7,).

Statistical model

We can treat the case of MIFHH integration as a classi-
fication problem. Classification models allow the re-
searcher to infer the state of a variable vis-a-vis model
parameters and data. We infer one of two states from a
set of possibly discrepant observations on a particular
individual: does individual j truly have a particular
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disease state (y =1 if yes, and y =0 if no)? Because we
do not observe the true disease state on typical FHH
data per se, we treat it as a latent variable. Here, we as-
sume informants’ accounts of disease statuses of their
family members represent evidence of the underlying
true disease state of the individual. While several candi-
date models for such classification tasks in clinical con-
texts exist (i.e., Item Response Theory, Naive Bayes,
Random Forests), the hierarchically structured and
dependent nature of MIFHH data make it particularly
challenging to model. Moreover, as disease contexts
within families are likely informed by population param-
eters, better models would incorporate informative
priors reflecting this information. As such, we propose
using a Bayesian hierarchical logistic regression model
that accounts for variability in outcome arising from
both informants and the family members they are
reporting on, together with informative priors.

Following the Bayesian hierarchical logistic regres-
sion models of [31, 32], we assume that individual re-
ports of disease statuses are distributed Bernoulli with
probability 6. As we have multiple observations from
informants on different family members (but not all m
informants report on all # family members), the re-
sponse vector for each j” family member is of length
k x 1, where k is the number of informants reporting
on j, and thus 1 <k <m < n. When the all family mem-
bers are informants, then m = n.

Specifically,

yy~Bern(65),Vie(1,2, ... k) (1)

and model 6; as a latent variable vis-a-vis the logit-link
function (¢ =In lf‘—ﬂ, where y is the predicted mean vec-

tor of the Bernoulli parameter 6):
¢(0,‘1‘) = ﬁO +Xij/)) —+ W,’bi + €ij- (2)

The first term on the right hand side of Eq. 2 reflects
the level-1 intercept () and the next two terms reflect
the matrix of level-1 covariates in X and the matrix of
level-2 W covariates, respectively. These matrices have di-
mensionality k x p (p being the number of level-1 covari-
ates) and k x g (g being the number of level-2 covariates),
respectively. The third term (¢) captures the errors, which
are optionally assumed to be over-dispersed following a
normal distribution:

€]’~N(O, 0'211‘]‘), (3)

where each I;; is indexed on identity matrix I. In prac-
tice, however, the over-dispersion of the errors can be
fixed to be 1.

The level-2 effects are also assumed to be distributed
normally with mean 0 and covariance D:
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bi"Nq(O’D)' (4)

The conjugate priors for this model as derived by [32]
assume that each level-1 effect j is distributed normally,

B-Ny(b,B™), (5)

where b is the mean vector and B~ ' is the variance of ,
which can optionally be modeled as Inverse-Wishart if
level-1 effects are assumed to be correlated but is here
set to be non-informative. Next, the residual error vari-
ance follows an Inverse-Gamma distribution,

0>~IG(v,1/8), (6)

where v and § are the shape and scale hyperparameters
of the Inverse-Gamma distribution. Finally, we assume
that the level-2 effects have an Inverse-Wishart precision
matrix prior:

DNIW(W?P)? (7)

where the scale and shape hyperparameters of the
Inverse-Wishart are defined such that y is a g x g posi-
tive definitive matrix and p is a scalar such that p > g, re-
spectively. A Kruschke-style diagram of this hierarchical
model [33] is depicted in Additional file 1.

Information can be incorporated into these priors by
specifying appropriate hyperparameter values. For in-
stance, one may incorporate prior information about the
population prevalence of a disease by setting the hyper-
parameter for the intercept equal to the logit transformed
parameter, which would have the result of mixing the ob-
served average reported disease rates in the data with the
prior and incorporating that information into the estimate
of the model intercept. We sample parameters directly
from the posterior of this model using Markov Chain
Monte Carlo (MCMC) with the MCMCpack package for
R as detailed in [32, 34], which implements Algorithm 2
from [35]. For each model we draw a sample of size
20,000 with a 5000 run burn-in, and sample every other
draw with an adaptive mean acceptance rate of about
45%. Thus, our final sample represents 10,000 draws from
the posterior of each set of model parameters.

The model described above draws from the posterior of
the parameters associated with the informant-informee
dyad reports of disease statuses (i.e., at the dyad level). To
approximate the equivalent of the individual level reports,
we simply average over each individual family member’s
vector of posterior predictives (6) as described below.

Empirical example

The data we use to illustrate our model include MIFHH
information collected in 2011-2013 from 128 informants
from 45 families residing in the greater Cincinnati area.
The number of informants per family ranges from 2 to 5,
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with an average of 2.8. Each informant independently pro-
vided family history of type 2 diabetes for their first- and
second-degree biological relatives and we also record
self-reports of disease status from the informants. Add-
itionally, each informant provided demographic and life-
style information such as tobacco and alcohol use and
weight status, about each biological relative and them-
selves. Details about design and data features of this study
can be found elsewhere [26]. The final analytic dataset
consists of 2159 FHH records contributed by informants
from all 45 families, almost two-thirds of which (# = 1337)
are multiple accounts from informants of the same family
with respect to common relatives.

The analysis proceeds in two stages. First, for each family
member enumerated we estimate diabetes status as a latent
variable with multiple observations provided by different
informants using the procedure detailed below. The num-
ber of informant based observations per individual family
member ranges from 1 to 5. In this model we are able to
systematically account for a) population-level prior preva-
lence of type 2 diabetes, b) family member characteristics
(at level-1), and c) informant or family-level variability (at
level-2). We assume that the hyperparameters for the mean
and variance of f3, (the level-1 intercept) are = -1.99 and
100, respectively. This specification models the population-
level prior prevalence of type 2 diabetes by a normal distri-
bution with a mean equivalent to just above observed
background probability in the United States (which is
roughly 12%, thus - 1.99 = In 212) and a wide, but finite,
variance. We additionally assume vague level-2 covariance
priors (with hyperparameters set to p =q and ¥ =1 xgq,
which assumes within-informant covariance in reports on
family members for the informant level-2 models and
within/between informant covariance in the family level-2
models. Finally, for the residual error variances (6%), we as-
sume hyperparameters that result in non-informative priors.

Second, we make use of the posterior predictions (6,
above) of the final model. These represent the distribu-
tion of marginalized model-adjusted probabilities that
diabetes status is indicated on the informant-family
member dyad. Following [26], we average these predic-
tions over the number of dyads each family member was
reported upon by an informant to obtain a weighted es-
timate of diabetes status.

Model selection

The primary measure used to compare and select com-
peting parameterizations of our proposed model is the
Deviance Information Criteria (DIC). This measure is
appropriate as it incorporates a first approximation to the
predictive accuracy of the model vis-a-vis the posterior
deviance while simultaneously discounting for model
complexity. We follow the DIC specification of [31]
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(pp. 180-3), which defines the DIC as the sum of the
average deviance of the posterior sample and one half
its variance. The latter term is proportional to the effective
number of parameters in the model and is a good estimate
of Bayesian model complexity. Like other deviance and
likelihood based model selection measures (AIC, BIC,
AICC, etc), models with comparatively lower values of
DIC are preferred.

We also evaluate classification accuracy for each of our
candidate models using the area under the receiver-operator
curve (AUC) for both dyadic and individual-level predic-
tions. Larger values of AUC represent better classification,
with clinically relevant values exceeding 70% [36]. Additional
model robustness checks are reported in Additional file 2.

Results

Table 1 reports the model fit and predictive power of
five candidate models (dyadic data, not aggregated a
posteriori to the individual-level). Results for models
with two different level-2 covariance structures are re-
ported: one modeling within and between informant co-
variance (called family level-2) and one modeling within
informant covariance (called informant level-2). The null
model is effectively an intercept-only logistic regression
model with no hierarchical structure and is a natural base-
line model by which to compare our candidate models.
No AUC is reported for this model as it is degenerate
(predictions do not exceed chance under this model). The
hierarchical Bayesian logistic regression baseline model
(model 1) incorporated only intercept terms for level 1
(dyadic level) and level 2 (informant level). Across all
models, the family level-2 was preferred by DIC due to
having fewer model parameters and less complexity than
the informant level-2 specifications. By contrast, however,
the informant level-2 models all exhibit better classifica-
tion with higher AUCs than the family level-2 models.

Table 1 Model fit and classification accuracy of five candidate
models from the Hierarchical Bayesian Logistic Regression of
MIFHH of Type 2 Diabetes

Terms Family Level-2 Informant Level-2
Pars DIC AUC  Pars DIC AUC

Null model 3 250833 - 3 250833 -

Level-1 and Level-2 47 24112 0636 130 246503 0.69%4

Intercepts Only

M1 + Degree of relation® 49 238891 0671 132 245772 0.708

+ Same gender®

M2 + Informant genderb 147 239401 0686 396 2400.52 0.714

+Informant is obese®

M2 + Smokes® + Uses 52 222754 0747 135 226368 0.77

alcohol® + Healthy weight®

M3 + M4 150 222439 0762 399 22377 078

Note: dyadic (level 1) attribute; Pinformant (level 2) attribute
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Simply accounting for level-2 heterogeneity improves
model fit over the null and results in moderate classifi-
cation accuracy with an AUC of about 63% for family-
level and about 69% for informant-level. In model 2, we
add generational distance between the informant and
the family member being informed on as well as gender
homophily (1 =same gender, 0= otherwise) to level 1
and observe a slight improvement in both DIC and AUC
over model 1. In model 3, we add the informant’s gender
(1 =female) and informant’s obesity status (1 =obese,
BMI > 25) to level 2. This model improves slightly over
the previous models by DIC and yet is about as good as a
classifier as model 2, with an AUC of about 70% in both
cases. Model 3 is also a relatively complex model with a
larger number of parameters. In model 4 we add infor-
mant’s perspective on the family member’s health-related
behavioral risk factors to model 2. This model yielded an
improved fit by DIC and had a very good classification ac-
curacy with an AUC around 0.75% for family level-2 and
77% for informant level-2 specifications. Finally, in model
5, we combine the terms from models 3 and 4, which
slightly improves DIC by decreases of 3.147 and 25.981,
for family and informant level-2 models, respectively. The
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AUCs for model 5 also improve to about 76% for family
level-2 and 78% for informant level-2 models. Despite be-
ing a relatively complex model, we prefer model 5 with
the informant level-2 covariance structure for the balance
of our analyses as it has the best classification accuracy of
all models.

Figure 1 plots the receiver-operator curves (ROCs) for
model 5 with the informant level-2. To illustrate the
family-level variability around the model fit with the full
dataset (indicated by the thick black line) we also stratified
the dataset by family and plot separate ROCs for each
family model (indicated by the thin gray lines). As the fig-
ure demonstrates, model 5 is a good fit in nearly every
family separately as well as in the full pooled dataset.

After marginalizing over the data and averaging to the
individual family member level, we observe very good
classification accuracy. For instance, Fig. 2 is a compari-
son of the ROCs after averaging to the individual level
for model 1 (solid line, AUC =0.724) and model 5 (dot-
ted line, AUC = 0.829), which demonstrates the superior
classification accuracy of our final model predicting dia-
betes status for individual family members as a function
of background prevalence, multiple informant accounts,

Proportion of 0's Correctly Predicted

0.0

T
0.0 0.2 0.4

Proportion of 1's Correctly Predicted

Fig. 1 Receiver-Operator Curves (ROC) for Type 2 Diabetes Dyadic Classification from informant level-2 model 5. The thick black line represents
the ROC for a model fit with the entire dataset and the thin gray lines represent individual ROCs for each family fit separately

T T 1
0.6 0.8 1.0
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Fig. 2 Receiver-Operator Curves (ROC) for Individual Classification. The solid line represents informant level-2 model 1 and the dotted line represents
the ROC from model 5, averaging across all informants. These curves represent an AUC of 0.724 for model 1 and an AUC of 0.829 for model 5

T T
0.6 0.8

and dyadic covariates. Fig. 3 recapitulates these results in
terms of the posterior predictive values (ie., individual
predicted probabilities averaged across all informants
under the model). The light red histogram represents the
posterior predictive values marginalized over the data
from model 1 and the light blue histogram represents
such from model 5. The vertical dotted line represents the
informative prior mean hyperparameter (here P (0.12))
used to model the background prevalence of diabetes in
the population. While model 1, consisting of parameters
for only level-1 (family member) and level-2 (informant)
intercepts, pools probability mass around the mean of y;
in the data (x = 0.22), model 5 which includes covariates,
is centered closer to the population prevalence and is
more diffuse across the parameter space. In other words,
the improvement in the classification accuracy of model 5
over model 1 appears to be the result of its greater repre-
sentation of heterogeneity in the data.

Discussion

Increasingly, researchers acknowledge the clustered nature
of FHH data and have taken the first steps addressing the
problem of FHH data reconciliation using arithmetical

methods [26]. While an arithmetical method would be a
convenient, straightforward metric for integrating MIFHH
into a single FHH, this type of method lacks the ability to
incorporate sources of error. In this paper we have de-
scribed a statistical model for integrating MIFHH into a
unified FHH that can be used to calculate individual
disease risk scores. The Bayesian hierarchical logistic
regression model that we proposed has the advantage
of integrating FHH from multiple informants in a more
meaningful way, accounting for the processes that gives
rise to reporting error and bias in typical FHH data.
Our results reveal two important insights about the
nature of FHH data, in general. First, simply accounting
for the hierarchical structure of these clustered data in
the absence of any covariates improves classification ac-
curacy over the null model (e.g., an improvement from
50 to 70%). This suggests models of FHH are better spe-
cified when clustering of family members is incorporated
into their estimation. Given that informant error is inher-
ent in any FHH assessment, our findings imply that
accounting for such error is an important first step in any
FHH-based risk assessment. As such, a latent class ap-
proach to estimating the disease status of family members
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Fig. 3 Posterior Predictive Distributions for Models 1 and 5 by averaging the set of each family member's marginalized latent variables (6) across

6

that incorporates clustering of family members into esti-
mation is, at a minimum, necessary for optimal risk evalu-
ation. This is true, whether using FHH information
obtained from a single informant or multiple informants.

Second, our best fitting model included informant’s per-
ceptions of the informee’s health-related behaviors. Many
clinical and research protocols include information about
the informant’s own health-related behaviors (especially,
whether they smoke, drink alcohol to excess, and maintain
a healthy diet). Our results suggest that collecting infor-
mation on individuals’ perceptions of their family mem-
bers’ health-related behaviors may be at least as important
in contributing sources of variation in their shared FHH.
These covariates may be capturing the joint effect of
shared family environment, which are often concealed in a
standard disease-centric FHH assessment. Our results
suggest that directly accounting for contributions to risk
that stem from lifestyle factors as well as heredity yields
significant improvement in model fit. Clearly, these proxy
reports of health-related behaviors cannot be ignored in
current and future models of FHH.

Under the current framework, the model is highly sensi-
tive to the quality of informants reports. Based on current

data, our model showed significant improvement in classi-
fication accuracy by incorporating multiple informants re-
ports. It is important to point out that this improvement is
likely because of high level of agreement between infor-
mants. Over 60% of the dyadic comparisons of informants
reports are congruent with each other. In this case, a
model based on multi-informant information has increased
power. Conversely, when inter-informant agreement with
respect to a common family members disease diagnosis is
low, incorporating multiple reports could lead to more
noise (i.e., additional informants reporting “dont know”),
and error and bias (ie, additional informants reporting
contradictory information), since the current model weighs
each source of information equally.

Both the model and the empirical data have some limi-
tations. First, the approach we've taken relies on multiple
accounts of FHH from either a single family or from
many families. While multiply sourced information is in-
creasingly recognized as important to improving clas-
sical approaches to individual risk assessments, these
data are difficult to collect and protocols for doing so
are outside the current clinical paradigm. In the mean-
time, our model is probably better suited for research
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than for practice. The model is also limited in that
researchers must choose how the level-2 covariance
structure models dependence in families. For the
current application, we reported two such sources of
dependence: one with just within-informant covariation
by clustering at the informant-level and another that
incorporated between-informant sources of covariation
by clustering at the family-level. While the less complex
family level-2 clustered models were preferred by DIC,
the informant level-2 models were uniformly better
classifiers. In part, this is because the average number
of informants per family in our example dataset was small.
Increasing the average number of informants will necessi-
tate a more nuanced approach, perhaps one that assumes
separate levels of both within- and between-informant co-
variance in one model. The problem of choosing an appro-
priate covariance structure for between-family member
dependence is non-trivial and future research is needed to
evaluate viable alternative specifications. We considered
several such specifications in robustness checking but none
performed better than the within-informant case we pre-
sented here from a classification perspective. Finally, as the
sample was drawn from a population that is at increased
risk for diabetes, these data and the model evaluation may
be an over-characterization of risk profiles in the general
population. While we attempted to adjust for this limita-
tion in generalizability with informative priors for the back-
ground rate of diabetes, there may be additional sources of
unobserved heterogeneity that we cannot account for that
make this sample systematically different from the
population at large.

Notwithstanding these limitations, the problem we
have detailed here is more general than that of the case
of MIFHH. The value of such a model lies in enabling
users to optimally store, present, and analyze heteroge-
neous and dynamic FHH data in a way that properly
supports clinical risk assessments and treatment deci-
sions. Besides accounts from multiple informants, FHH
data can come from different sources, ranging from
self-reports, to proxy reports, medical records, or even
genomic data. Indeed, a few studies have attempted to fur-
ther improve FHH-based risk assessment by including mo-
lecular genetic variables with promising results [37, 38].
Previously, a similar approach has been used to examine
within-patient and between-sample tumor classification ac-
curacy [39]. That model differed from ours, however, in
that multiple-modes of tests represented the level-2 source
of variation rather than multiple informants. As well, it also
lacked the incorporation of covariates. Moreover, informa-
tion from each of these sources is not fixed in time. New
diagnoses, births/deaths, and corrections in family and
individual level data often arise and are reported in new
accounts of FHH. As efforts to build a core family health
history dataset continue [40], there is an urgent need to

Page 8 of 10

design platforms with the capacity to reconcile and inte-
grate FHH from multiple sources in a dynamic manner.
The model we've proposed here is one example of how
such a database may be leveraged for risk prediction in
future work.

Conclusion

The proposed modelling framework is a flexible solution
to integrate multiple informant FHH for risk prediction
purposes. Our approach contributes to the state of the
science on model-based risk assessments by allowing for
the joint incorporation of various forms of correlation
structure within families, together with population-level
priors, and individual attributes. This framework allows
to more fully capture the context of how multiple FHH
reports shape disease risk assessments over existing
methods. Our empirical example results indicate that,
for type-2 diabetes, both disease history and health be-
havior information should be collected for more accur-
ate clinical and research assessments of FHH.

Additional files

Additional file 1: Model diagram. (DOCX 125 kb)

Additional file 2: Supplementary analysis for model robustness.
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