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Abstract

Urban living in modern large cities has significant adverse effects on health, increasing the risk of 

several chronic diseases. We focus on the two leading clusters of chronic disease, heart disease and 

diabetes, and develop data-driven methods to predict hospitalizations due to these conditions. We 

base these predictions on the patients’ medical history, recent and more distant, as described in 

their Electronic Health Records (EHR). We formulate the prediction problem as a binary 

classification problem and consider a variety of machine learning methods, including kernelized 

and sparse Support Vector Machines (SVM), sparse logistic regression, and random forests. To 

strike a balance between accuracy and interpretability of the prediction, which is important in a 

medical setting, we propose two novel methods: K-LRT, a likelihood ratio test-based method, and 

a Joint Clustering and Classification (JCC) method which identifies hidden patient clusters and 

adapts classifiers to each cluster. We develop theoretical out-of-sample guarantees for the latter 

method. We validate our algorithms on large datasets from the Boston Medical Center, the largest 

safety-net hospital system in New England.
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I. Introduction

Living in modern large cities is impacting our health in many different ways [1]. Primarily 

due to: (i) stress associated with fast-paced urban life, (ii) a sedentary lifestyle due to work 
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conditions and lack of time, (iii) air pollution, and (iv) a disproportionate number of people 

living in poverty, urban populations face an increased risk for the development of chronic 

health conditions [2]. For example, according to the World Health Organization [3], ambient 

(outdoor air) pollution was estimated in 2012 to cause 3 million premature deaths worldwide 

per year; this mortality is due to exposure to small particulate matter of 10 microns or less in 

diameter (PM10), which cause cardiovascular, respiratory disease, and cancers. In fact, the 

vast majority (about 72%) of these air pollution-related premature deaths were due to 

ischemic heart disease and strokes.

There is an increasing percentage of the world population facing the adverse health effects 

of urban living. Specifically, according to the United Nations [4], 54% of the earth’s 

population resides in urban areas, a percentage which is expected to reach 66% by 2050. It 

becomes evident that the health of citizens should become an important priority in the 

emerging smart city agenda [5]. To that end, smart health care –“smart health” as it has been 

called– involves the use of ehealth and mhealth systems, intelligent and connected medical 

devices, and the implementation of policies that encourage health, wellness, and well-being 

[6]. It is estimated that by 2020 the smart city market will be worth about $1.5 trillion, with 

smart health corresponding to 15% of that amount [6]. Additional potential actions smart 

cities can adopt include ways to improve city life, reduce congestion and air pollution levels, 

discourage the use of tobacco products and foods high in fat and sugar which increase the 

risk of chronic diseases, and improve access to health care. Without overlooking the 

importance of all these population-level measures, our work aims at enabling personalized 
interventions using an algorithmic data-driven approach.

Through smart health, smart cities and governments aim at improving the quality of life of 

their citizens. In the state of Massachusetts, the MassHealth program –a combination of 

Medicaid and the Children’s Health Insurance Program–provides health insurance for 1.9 

million Massachusetts residents, children in low-income households, low-wage workers, 

elders in nursing homes, people with disabilities, and others with very low incomes who 

cannot afford insurance [7], [8]. The state’s fiscal year 2018 budget includes approximately 

$16.6 billion for MassHealth, which is around 37% of the total state budget [8]. Clearly, this 

is a substantial share of the budget. Consequently, if health care costs can be lowered 

through smart health, more resources will become available for many other services smart 

cities can offer. Conversely, if other aspects of smart cities can be improved, the adverse 

health effects of urban living can be reduced, thus lowering health care costs. This suggests a 

beneficial feedback loop involving smart health and non-health-related smart city research.

Health care is also, unquestionably, an important national and global economic issue. In 

2013, the United States (U.S.) spent about $3 trillion on health care, which exceeded 17% of 

its GDP [9]. The World Health Organization estimates that healthcare costs will grow to 

20% of the U.S. GDP (nearly $5 trillion) by 2021 [10], especially with civilization diseases 

(or else called lifestyle diseases), like diabetes, coronary heart disease and obesity, growing.

Our goal in this paper is to explore and develop predictive analytics aiming at predicting 

hospitalizations due to the two leading chronic diseases: heart disease and diabetes. 

Prediction, naturally, is an important first step towards prevention. It allows health systems 
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to target individuals most in need and to use (limited) health resources more effectively. We 

refer to [11] for a general discussion of the benefits, and some risks, associated with the use 

of health analytics. We seek to predict hospitalizations based on the patients’ Electronic 
Health Records (EHR) within a year from the time we examine the EHR, so as to allow 

enough lead time for prevention. What is also critical is that our methods provide an 

interpretation (or explanation) of the predictions. Interpretability will boost the confidence of 

patients and physicians in the results, hence, the chance they will act based on the 

predictions, and provide insight into potential preventive measures. It is interesting that 

interpretability is being increasingly recognized as important; for instance, recent European 

Union legislation [12] will enforce a citizen’s right to receive an explanation for algorithmic 

decisions.

Our focus on heart disease and diabetes is deliberate. Diseases of the heart have been 

consistently among the top causes of death. In the U.S., heart disease is yearly the cause of 

one in every four deaths, which translates to 610,000 people [13]. At the same time, diabetes 

is recognized as the world’s fastest growing chronic condition [14]. One in eleven adults has 

diabetes worldwide (415 million) and 12% of global health expenditures is spent on diabetes 

($673 billion) [15]. In the U.S. alone, 29.1 million people or 9.3% of the population had 

diabetes in 2012 [16].

Our interest in hospitalizations is motivated by [17], which found that nearly $30.8 billion in 

hospital care cost during 2006 was preventable. Heart diseases and diabetes were the leading 

contributors accounting, correspondingly, for more than $9 billion, or about 31%, and for 

almost $6 billion, or about 20%. Clearly, even modest percentage reductions in these 

amounts matter.

An important enabler of our work is the increasing availability of patients’ EHRs. The 

digitization of patients’ records started more than two decades ago. Widespread adoption of 

EHRs has generated massive datasets. 87% of U.S. office-based physicians were using 

EHRs by the end of 2015, up from 42% in 2008 [18]. EHRs have found diverse uses [19], 

e.g., in assisting hospital quality management [20], in detecting adverse drug reactions [21], 

and in general primary care [22].

A. Contributions and Organization

Our algorithmic approach towards predicting chronic disease hospitalizations employs a 

variety of methods, both already well-established, as well as novel methods we introduce, 

tailored to solve the specific medical problem. We formulate the problem as a binary 

classification problem and seek to differentiate between patients that will be hospitalized in a 

target year and those who will not. We review related work in Section II. Section III explores 

baseline methods that separate the two classes of samples (patients) using a single classifier. 

We evaluate their performance in terms of prediction accuracy and interpretability of the 

model and the results. Baseline methods include linear and kernelized Support Vector 

Machines (SVM), random forests, and logistic regression. We also develop a novel 

likelihood ratio-based method, K-LRT, that identifies the K most significant features for 

each patient that lead to hospitalization. Surprisingly, this method, under a small value of K, 

performs not substantially worse than more sophisticated classifiers using all available 
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features. This suggests that in our setting, a sparse classifier employing a handful of features 

can be very effective. What is more challenging is that the “discriminative” features are not 

necessarily the same for each patient.

Motivated by the success of sparse classifiers, in Section IV we seek to jointly identify 

clusters of patients who share the same set of discriminative features and, at the same time, 

develop per-cluster sparse classifiers using these features. Training such classifiers amounts 

to solving a non-convex optimization problem. We formulate it as an integer programming 

problem; which limits its use to rather smaller instances (training sets). To handle much 

larger instances we develop a local optimization approach based on alternating optimization. 

We establish the convergence of this local method and bound its Vapnik-Chervonenkis (VC) 

dimension; the latter bound leads to out-of-sample generalization guarantees.

In Section V, we provide a detailed description of the two datasets we use to evaluate the 

performance of the various algorithms. One dataset concerns patients with heart-related 

diseases and the other, patients with diabetes. The data have been made available to us from 

the Boston Medical Center (BMC) – the largest safety-net hospital in New England. We 

define the performance metrics we use in Section VI. We report and discuss our 

experimental settings and results in Section VII and we present our conclusions in Section 

VIII.

Notation—All vectors are column vectors. For economy of space, we write x = (x1, …, 

xdim(x)) to denote the column vector x, where dim(x) is the dimension of x. We use 0 and 1 
for the vectors with all entries equal to zero and one, respectively. We denote by ℝ+ the set 

of all nonnegative real numbers. M ≥ 0 (resp., x ≥ 0) indicates that all entries of a matrix M 
(resp., vector x) are nonnegative. We use “prime” to denote the transpose of a matrix or 

vector and | | the cardinality of a set . Unless otherwise specified, ‖·‖ denotes the ℓ2 norm 

and ‖·‖1 the ℓ1 norm.

II. Related Work

To the best of our knowledge, the problem of chronic disease hospitalization prediction 

using machine learning methods is novel. A closely related problem, which has received a 

lot of attention in the literature, is the re-hospitalization prediction, since around 20% of all 

hospital admissions occur within 30 days of a previous discharge. Medicare penalizes 

hospitals that have high rates of readmissions for some specific conditions that now include 

patients with heart failure, heart attack, and pneumonia. Examples of work on this problem 

include [23], [24], [25] and [26].

Other related problems considered in the literature are: predicting the onset of diabetes using 

artificial neural networks [27]; developing an intelligent system that predicts, using data-

mining techniques, which patients are likely to be diagnosed with heart disease [28]; and 

using data-mining techniques to predict length of stay for cardiac patients (employing 

decision trees, SVM, and artificial neural networks) [29], or for acute pancreatitis (using 

artificial neural networks) [30].
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We should also mention the Heritage Health Prize, a competition by Kaggle, whose goal was 

to predict the length of stay for patients who will be admitted to a hospital within the next 

year, using insurance claims data and data-mining techniques [31].

III. Baseline Methods and K-LRT

In this section we outline several baseline classification methods we use to predict whether 

patients will be hospitalized in a target year, given their medical history.

In medical applications, accuracy is important, but also interpretability of the predictions is 

indispensable [32], strengthening the confidence of medical professionals in the results. 

Sparse classifiers are interpretable, since they provide succinct information on few dominant 

features leading to the prediction [33]. Moreover, medical datasets are often imbalanced 

since there are much fewer patients with a condition (e.g., hospitalized) vs. “healthy” 

individuals (non-hospitalized). This makes it harder for supervised learning methods to learn 

since a training set may be dominated by negative (non-hospitalized) class samples. Sparsity, 

therefore, is useful in this context because there are fewer parameters in the classifier one 

needs to learn. In this light, we experiment with sparse versions of various classification 

methods and show their advantages. While harder to interpret than linear and sparse 

algorithms, ensemble methods that build collections of classifiers, such as random forests, 

can model nonlinear relationships and have been proven to provide very accurate models for 

common health care problems [34], including the one we study in this paper.

The last method we present in this section is an adaptation of a likelihood ratio test, designed 

to induce sparsity of the features used to make a prediction. All but the last method fall into 

the category of discriminative learning algorithms, while the last one is a generative 

algorithm. Discriminative algorithms directly partition the input space into label regions 

without modeling how the data are generated, while generative algorithms assume a model 

that generates the data, estimate the model’s parameters and use it to make classification 

decisions. Our experiment results show that discriminative methods are likely to give higher 

accuracy, but generative methods provide more interpretable models and results [35], [36]. 

This is the reason we experiment with methods from both families and the trade-off between 

accuracy and interpretability is observed in our results.

A. Radial Basis Function (RBF), Linear & Sparse Linear SVM

An SVM is an efficient binary classifier [37]. The SVM training algorithm seeks a 

separating hyperplane in the feature space, so that data points from the two different classes 

reside on different sides of that hyperplane. We can calculate the distance of each input data 

point from the hyperplane. The minimum over all these distances is called margin. The goal 

of SVM is to find the hyperplane that has the maximum margin. In many cases, however, 

data points are neither linearly nor perfectly separable. So called soft-margin SVM, tolerates 

misclassification errors and can leverage kernel functions to “elevate” the features into a 

higher dimensional space where linear separability is possible (kernelized SVMs) [37].

Given our interest in interpretable, hence sparse, classifiers we formulate a Sparse version of 

Linear SVM (SLSVM) as follows. We are given training data xi ∈ ℝD and labels yi ∈ {−1, 
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1}, i = 1, …, n, where xi is the vector of features for the ith patient and yi = 1 (resp., yi = −1) 

indicates that the patient will (resp., not) be hospitalized. We seek to find the classifier (β, 
β0), β ∈ ℝD, β0 ∈ ℝ, by solving:

min
β, β0, ξi

1
2‖β‖2 + C∑i = 1

n ξi + ρ‖β‖1

s . t . ξi ≥ 0, ∀i,
yi(xi′β + β0) ≥ 1 − ξi, ∀i,

(1)

where ξi is a misclassification penalty. The first term in the objective has the effect of 

maximizing the margin. The second objective term minimizes the total misclassification 

penalty. The last term, ‖β‖1, in the objective, imposes sparsity in the feature vector β, thus 

allowing only a sparse subset of features to contribute to the classification decision. The 

parameters C and ρ are tunable parameters that control the relative importance of the 

misclassification and the sparsity terms, respectively, compared to each other and, also, the 

margin term. When ρ = 0, the above formulation yields a standard linear SVM classifier.

A linear SVM finds a linear hyperplane in the feature space and can not handle well cases 

where a nonlinear separating surface between classes is more appropriate. To that end, 

kernel functions are being used that map the features to a higher dimensional space where a 

linear hyperplane would be applicable. In the absence of the sparse-inducing ℓ1-norm term, 

kernelized SVMs use K(xi, x j) = ϕ(xi)′ϕ(x j) as a kernel for some feature mapping function ϕ 

and solve an optimization problem that is based on the dual problem to (1) to find an optimal 

(β, β0). In our application, we will employ the widely used Radial Basis Function (RBF) 

K(xi, xj) = exp(−‖xi − xj‖2/2σ2) [38] as the kernel function in our experiments.

B. Random Forests

Bagging (or bootstrap aggregating) is a technique for reducing the variance of an estimated 

predictor by averaging many noisy but approximately unbiased models. A random forest is 

an ensemble of de-correlated trees [39]. Each decision tree is formed using a training set 

obtained by sampling (with replacement) a random subset of the original data. While 

growing each decision tree, random forests use a random subset of the set of features 

(variables) at each node split. Essentially, the algorithm uses bagging for both trees and 

features. Each tree is fully grown until a minimum size is reached, i.e., there is no pruning. 

While the predictions of a single tree are highly sensitive to noise in its training set, the 

average of many trees is not, as long as the trees are not correlated. Bagging achieves de-

correlating the trees by constructing them using different training sets. To make a prediction 

at a new sample, random forests take the majority vote among the outputs of the grown trees 

in the ensemble. Random forests run very efficiently for large datasets, do not have the risk 

of overfitting (as, e.g., AdaBoost [40], a boosting method) and can handle datasets with 

imbalanced classes. The number of trees in the ensemble is selected through cross-

validation.
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C. Sparse Logistic Regression

Logistic Regression (LR) [41] is a linear classifier widely used in many classification 

problems. It models the posterior probability that a patient will be hospitalized as a logistic 

function of a linear combination of the input features, with parameters θ that weigh the input 

features and an offset θ0. The parameters of the model are selected by maximizing the log-

likelihood using a gradient method. For the test samples, decisions are made by thresholding 

the log-likelihood ratio of the positive (hospitalized) class over the negative class. Logistic 

regression is popular in the medical literature because it predicts a probability of a sample 

belonging to the positive class. Here, we use an ℓ1-regularized (sparse) logistic regression 

[33], [42], [43], which adds an extra penalty term proportional to ‖θ‖1 in the log-likelihood. 

The motivation is to induce sparsity, effectively “selecting” a sparse subset of features. More 

specifically, we solve the following convex problem using a gradient-type method:

min
θ, θ0

∑i = 1
n ( − log p(yi |xi; θ, θ0)) + λ‖θ‖1 (2)

where the likelihood function is given by

p(yi = 1|xi; θ, θ0) = 1

1 + e
−θ0 − θ′xi

= 1 − p(yi = − 1|xi; θ, θ0),

and λ is a tunable parameter controlling the sparsity term. Setting λ = 0, we obtain a 

standard logistic regression model.

D. K-Likelihood Ratio Test

The Likelihood Ratio Test (LRT) is a naive Bayes classifier and assumes that individual 

features (elements) of the feature vector x = (x1, …, xD) are independent random variables 

[44]. The LRT algorithm empirically estimates the distribution p(xj|y) of each feature j for 

the hospitalized and the non-hospitalized class. Given a new test sample z = (z1, z2, ⋯, zD), 

LRT calculates the two likelihoods p(z|y = 1) and p(z|y = −1) and then classifies the sample 

by comparing the ratio

p(z | y = 1)
p(z | y = − 1) = ∏

j = 1

D p(z j | y = 1)
p(z j | y = − 1)

to a threshold. In our variation of the method, which we will call K-LRT,1 instead of taking 

into account the ratios of the likelihoods of all features, we consider only the K features with 

the largest ratios. We consider only the largest ratios because they correspond to features 

with a strong hospitalization “signal.” On the other hand, we do not consider features with 

the smallest ratios because they could be due to the imbalance of the dataset which has much 

more non-hospitalized than hospitalized patients.

1K-LRT was first proposed in [44] and was applied only to a heart-disease dataset.
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The optimal K can be selected using cross-validation from a set of pre-defined values, that 

is, as the value with the best classification performance in a validation set. The purpose of 

this “feature selection” is again sparsity, that is, to identify the K most significant features 

for each individual patient. Thus, each patient is actually treated differently and this 

algorithm provides interpretability as to why a specific classification decision has been made 

for each individual patient.

IV. Joint Clustering and Classification (JCC)

In this section, we introduce a novel Joint Clustering and Classification method. The 

motivation comes from the success of K-LRT, which we will see in Section VII. Since K-

LRT selects a sparse set of features for each patient, it stands to reason that there would be 

clusters of patients who share the same features. Moreover, since K-LRT uses the K largest 

likelihood ratios, feature selection is more informative for patients that are hospitalized 

(positive class). This is intuitive: patients are hospitalized for few underlying reasons while 

non-hospitalized patients appear “normal” in all features associated with a potential future 

hospitalization.

To reflect this reasoning, we consider a classification problem in which the positive class 

consists of multiple clusters, whereas negative class samples form a single cluster. It is 

possible to extend our framework and consider a setting where clustering is applied to both 

the positive and the negative class. However, because our results are satisfactory and to avoid 

further increasing complexity, we do not pursue this direction in this work. We assume that 

for each (positive class) cluster there is a sparse set of discriminative dimensions, based on 

which the cluster samples are separated from the negative class. Fig. 1 provides an 

illustration of this structure. The different clusters of patients are naturally created based on 

age, sex, race or different diseases. From a learning perspective, if the hidden positive 

groups are not predefined and we would like to learn an optimal group partition in the 

process of training classifiers, the problem could be viewed as a combination of clustering 

and classification. Furthermore, with the identified hidden clusters, the classification model 

becomes more interpretable in addition to generating accurate classification labels. A 

preliminary theoretical framework for JCC appeared in our conference paper [45], but 

without containing all detailed proofs of the key technical results and with very limited 

numerical evaluation.

A. An integer programming formulation

We next consider a joint cluster detection and classification problem under a Sparse Linear 

SVM (SLSVM) framework. Let xi
+ and x j

− be the D-dimensional positive and negative class 

data points (each representing a patient), and yi
+ = 1, ∀i, y j

− = − 1, ∀ j, the corresponding 

labels, where i ∈ {1, 2, …, N+} and j ∈ {1, 2, …, N−}. Assuming L hidden clusters in the 

positive class, we seek to discover: (a) the L hidden clusters (denoted by a mapping function 

l(i) = l, l ∈ {1, 2, …, L}), and (b) L classifiers, one for each cluster. Let Tl be a parameter 

controlling the sparsity of the classifier for each cluster l. We formulate the Joint Clustering 
and Classification (JCC) problem as follows:
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min
βl, β0

l , l(i)

ζ j
l , ξi

l(i)

∑
l = 1

L 1
2‖βl‖2 + λ+ ∑

i: l(i) = l
ξi

l(i) + λ− ∑
j = 1

N−

ζ j
l

s . t . ∑
d = 1

D
| βd

l | ≤ T l, ∀l,

ξi
l(i) ≥ 1 − yi

+β0
l(i) − ∑

d = 1

D
yi

+βd
l(i)xi, d

+ , ∀i,

ζ j
l ≥ 1 − y j

−β0
l − ∑

d = 1

D
y j

−βd
l x j, d

− , ∀ j, l,

ξi
l(i), ζ j

l ≥ 0, ∀i, j, l .

(3)

In the above formulation, the margin between the two classes in cluster l is equal to 2/‖βl‖, 
hence the first term in the objective seeks to maximize the margin. The variables ξi

l(i), ζ j
l

represent misclassification penalties for the positive and negative data points, respectively. 

The first constraint limits the ℓ1 norm of βl to induce a sparse SVM for each cluster. The 

second (resp., third constraint) ensures that the positive (resp., negative) data points end up 

on the positive (resp. negative) side of the hyperplane; otherwise a penalty of ξi
l(i) (resp., ζ j

l ) 

is imposed; these misclassification penalties are minimized at optimality. We use different 

misclassification penalties for the positive and negative data points to accommodate a 

potential imbalance in the training set between available samples; typically, we have more 

negative (i.e., not hospitalized) samples. Notice that the misclassification costs of the 

negative samples are counted L times because they are drawn from a single distribution and, 

as a result, they are not clustered but simply copied into each cluster. The parameters λ− and 

λ+ control the weights of costs from the negative and the positive samples.

As stated, problem (3) is not easily solvable as it combines the cluster allocation decisions 

(i.e., deciding the cluster assignment l(i) for each sample i) with the determination of the 

SVM hyperplanes. One approach to solve JCC is shown below, where we transform the 

problem into a mixed integer programming problem (MIP) by introducing binary indicator 

variables to represent the cluster assignment in JCC (each positive sample can only be 

assigned to one cluster):
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min
βl, β0

l , zil
ζ j
l , ξi

l

∑
l = 1

L 1
2‖βl‖2 + λ+ ∑

i = 1

N+

ξi
l + λ− ∑

j = 1

N−

ζ j
l

s . t . ∑
d = 1

D
| βd

l | ≤ T l, ∀l,

ξi
l ≥ 1 − yi

+β0
l − ∑

d = 1

D
yi

+βd
l xi, d

+ − M ∑
k ≠ l

zik, ∀i, l,

ζ j
l ≥ 1 − y j

−β0
l − ∑

d = 1

D
y j

−βd
l x j, d

− , ∀ j, l

∑
l = 1

L
zil = 1, ∀i; zil ∈ {0, 1}, ∀i, l,

ξi
l, ζ j

l ≥ 0, ∀i, j, l,

(4)

where zil = 1 when l(i) = l and 0 otherwise (binary variables describing the cluster 

assignments) and M is a large positive real number. The following proposition establishes 

the equivalence between formulations (4) and (3). The proof can be found in Appendix A.

Proposition IV.1—The MIP formulation (4) is equivalent to the original JCC formulation 

(3).

In order to obtain better clustering performance, we introduce a penalty term in the objective 

function seeking to minimize the intra-cluster distances between samples, that is, making 

samples in the same cluster more similar to each other. This term takes the form: 

ρ∑i1 = 1
N+

∑i2 = 1
N+

σi1i2
‖xi1

+ − xi2
+‖2

, where

σi1i2
= 0,  otherwise .

1,  if xi1
+ and xi2

+ belong to the same cluster,

For σi1i2 to comply with this definition, we need to impose the constraint

zi1l + zi2l − σi1i2
≤ 1, ∀i1 ≠ i2, l and σi, j ∈ {0, 1} .

The MIP approach presented above comes in a compact form, solves jointly the clustering 

and the classification problem, and exhibits good performance on small-scale problems. 

However, there are no general polynomial-time algorithms for solving MIPs, thus, making it 

problematic for large datasets that are most common in practice. This motivates us to 

Brisimi et al. Page 10

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



develop the following Alternating Clustering and Classification (ACC) approach, which 

does not suffer from these limitations.

B. An alternating optimization approach

The idea behind ACC is to alternately train a classification model and then re-cluster the 

positive samples, yielding an algorithm which scales well and also, as we will see, comes 

with theoretical performance guarantees.

Given cluster assignments l(i) for all positive training samples i, the JCC problem (3) can be 

decoupled into L separate quadratic optimization problems, essentially solving an SVM 

training problem per cluster. Our alternating optimization approach, summarized in 

Algorithms 1–2, consists of two major modules: (i) training a classifier for each cluster and 

(ii) re-clustering positive samples given all the estimated classifiers.

The process starts with an initial (e.g., random or using some clustering algorithm) cluster 

assignment of the positive samples and then alternates between the two modules. Algorithm 

1 orchestrates the alternating optimization process; given samples’ assignment to clusters, it 

obtains the optimal per cluster SLSVM classifiers and calls the re-clustering procedure 

described in Algorithm 2.

Algorithm 2 uses the computed L classifiers and assigns a positive sample i to the cluster l 
whose classification hyperplane is the furthest away from the sample i, that is, whose 

classifier better separates sample i from the negative class. Notice that the re-clustering of 

the positive samples is based on , a subset of {1, …, D}, which is a set of selected features 

that allows us to select which features are important in cluster discrimination so that the 

identified clusters are more interpretable. In a notational remark, we denote xi, 𝒞
+  (resp., x ) 

as the projection of the D-dimensional feature vector xi
+ (resp., x) on the subset . We also 

impose the constraint (5) in Algorithm 2, which is necessary for proving the convergence of 

ACC.

Algorithm 1

ACC Training

Initialization:

Randomly assign positive class sample i to cluster l(i), for i ∈ {1, …, N+} and l(i) ∈ {1, …, L}.

repeat

  Classification Step:

  Train an SLSVM classifier for each cluster of positive samples combined with all negative samples. Each classifier is 
the outcome of a quadratic optimization problem (cf. (11)) and provides a hyperplane perpendicular to βl and a 
corresponding optimal objective value Ol.

  Re-clustering Step:

  Re-cluster the positive samples based on the classifiers βl and update the l(i)’s.

until no l(i) is changed or ΣlOl is not decreasing.
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Finally, Algorithm 3 describes how ACC classifies new samples not used in training. 

Specifically, it assigns a new sample to the cluster whose classifier is furthest away from that 

sample and uses the classifier of that cluster to make the classification decision.

Algorithm 2

Re-clustering procedure given classifiers

Input: positive samples xi
+, classifiers βl, current cluster assignment which assigns sample i to cluster l(i).

for all i ∈ {1, …, N+} do

  for all l ∈ {1, …, L} do

    calculate the projection ai
l of positive sample i onto the classifier for cluster l using only elements in a feature set : 

ai
l = xi, 𝒞

+ ′β𝒞
l ;

  end for

  update cluster assignment of sample i from l(i) to l∗(i) = arg max
l

ai
l, subject to

xi
+′βl∗(i) + β0

l∗(i) ≥ xi
+′βl(i) + β0

l(i) . (5)

end for

Algorithm 3

ACC Testing

for each test sample x do

  Assign it to cluster l∗ = arg max
l

x𝒞′β𝒞
l .

  Classify x with βl*.

end for

C. ACC performance and convergence guarantees

In this subsection, we rigorously prove ACC convergence and establish out-of-sample (in a 

“test” set not seen during training) performance guarantees. While theoretical, such results 

are important because (i) they establish that ACC will converge to a set of clusters and a 

classifier per cluster and (ii) characterize the number of samples needed for training, as well 

as (iii) bound out-of-sample classification performance in terms of the in-sample 

performance.

We first present a result that suggests a favorable sample complexity for SLSVM compared 

to the standard linear SVM. Suppose that SLSVM for the l-th cluster yields Ql < D nonzero 

elements of βl, thus, selecting a Ql-dimensional subspace of features used for classification. 

The value of Ql is controlled by the parameter Tl (cf. (4)).
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As is common in the learning literature [46], we draw independent and identically 

distributed (i.i.d.) training samples from some underlying probability distribution. 

Specifically, we draw N− negative samples from some distribution 0 and Nl
+ positive 

samples for cluster l from some distribution 𝒫1
l , where the total number of positive and 

negative samples used to derive the classifier of cluster l is Nl = Nl
+ + N−. Let R

Nl
l  denote the 

expected training error rate and Rl the expected test error (out-of-sample) for the classifier of 

cluster l under these distributions. The proof of the following result is in Appendix B. We 

note that e in (6) is the base of the natural logarithm.

Theorem IV.2—For a specific cluster l, suppose that the corresponding sparse linear SVM 

classifier lies in a Ql-dimensional subspace of the original D-dimensional space. Then, for 

any ε > 0 and δ ∈ (0, 1), if the sample size Nl satisfies

Nl ≥ 8
ε2 log2

δ + (Ql + 1) log 2eNl

Ql + 1
+ Ql logeD

Ql , (6)

it follows that with probability no smaller than 1 − δ, Rl − R
Nl
l ≤ ε.

Theorem IV.2 suggests that if the training set contains a number of samples roughly 

proportional to (Ql+log(1/δ))/ε2, then we can guarantee with probability at least 1 − δ an 

out-of-sample error rate ε-close to the training error rate. In other words, sparse SVM 

classification requires samples proportional to the effective dimension of the sparse classifier 

and not the (potentially much larger) dimension D of the feature space.

Next we establish that the ACC training algorithm converges. The proof is given in 

Appendix C. As a remark on convergence, it is worth mentioning that the values λ+ and λ− 

should be fixed across all clusters to guarantee convergence.

Theorem IV.3—The ACC training algorithm (Alg. 1) converges for any set .

The following theorem establishes a bound on the VC-dimension of the class of decision 

functions produced by ACC training. As we will see, this bound will then lead to out-of-

sample performance guarantees. To state the result, let us denote by ℋ the family of 

clustering/classification functions produced by ACC training. The proof of the following 

theorem is in Appendix D.

Theorem IV.4—The VC-dimension of ℋ is bounded by

V ACC ≜ (L + 1)L(D + 1) log  e (L + 1)L
2 .

Theorem IV.4 implies that the VC-dimension of ACC-based classification grows linearly 

with the dimension of data samples and polynomially (between quadratic and cubic) with 

Brisimi et al. Page 13

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the number of clusters. Since the local (per cluster) classifiers are trained under an ℓ1 

constraint, they are typically defined in a lower dimensional subspace. At the same time, the 

clustering function also lies in a lower dimensional space . Thus, the “effective” VC-

dimension could be smaller than the bound in Theorem IV.4.

An immediate consequence of Thm. IV.4 is the following corollary which establishes out-of-

sample generalization guarantees for ACC-based classification and is based on a result in 

[47] (see also Appendix B). To state the result, let N = N+ + N− the size of the training set. 

Let RN denote the expected training error rate and R the expected test error (out-of-sample) 

of the ACC-based classifier.

Corollary IV.5—For any ρ ∈ (0, 1), with probability at least 1 − ρ it holds:

R ≤ RN + 2 2
V ACC log 2eN

V ACC
+ log 2

ρ

N .

V. The Data

The data we use to evaluate the various methods we presented come from the Boston 

Medical Center (BMC). BMC is the largest safety-net hospital in New England and with 13 

affiliated Community Health Centers (CHCs) provides care for about 30% of Boston 

residents. The data integrate information from hospital records, information from the 

community health centers, and some billing records, thus forming a fairly rich and diverse 

dataset.

The study is focused on patients with at least one heart-related diagnosis or procedure record 

in the period 01/01/2005–12/31/2010 or a diagnosis record of diabetes mellitus between 

01/01/2007–12/31/2012. For each patient in the above set, we extract the medical history 

(demographics, hospital/physician visits, problems, medications, labs, procedures and 

limited clinical observations) for the period 01/01/2001–12/31/2010 and 01/01/2001–

12/31/2012, correspondingly, which includes relevant medical factors from which we will 

construct a set of patient features. Data were available both from the hospital EHR and 

billing systems. Table I shows the ontologies, along with the number of factors and some 

examples corresponding to each of the heart patients. Similarly, Table II shows the 

ontologies with some examples for the diabetic patients. In these tables, ICD9 (International 

Classification of Diseases, 9th revision) [48], CPT (Current Procedural Terminology) [49], 

LOINC (Logical Observation Identifiers Names and Codes) [50], and MSDRG (Medicare 

Severity-Diagnosis Related Group) [51] are commonly used medical coding systems for 

diseases, procedures, laboratory observations, and diagnoses, respectively.

We note that some of the diagnoses and admissions in Table I are not directly heart-related, 

but may be good indicators of a heart problem. Also, as expected, many of the diagnoses and 

procedures in Table II are direct complications due to diabetes. Diabetes-related admissions 

are not trivially identifiable, and are revealed through the procedure described in Subsection 

V-B. Overall, our heart dataset contains 45,579 patients and our diabetes dataset consists of 
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33,122 patients after preprocessing, respectively. Among these patients, 3,033 patients in the 

heart dataset and 5,622 patients in the diabetes dataset are labeled as hospitalized in a target 

year. For each dataset we randomly select 60% of the patients for training and keep the 

remaining 40% of the patients for testing.

Our objective is to leverage past medical factors for each patient to predict whether she/he 

will be hospitalized or not during a target year which, as we explain below, could be 

different for each patient.

In order to organize all the available information in a uniform way for all patients, some 

preprocessing of the data is needed to summarize the information over a time interval. 

Details will be discussed in Subsections V-A and V-B. We will refer to the summarized 

information of the medical factors over a specific time interval as features.

Each feature related to diagnoses, procedures (CPT), procedures (ICD9) and visits to the 

Emergency Room (ER) is an integer count of such records for a specific patient during the 

specific time interval. Zero indicates the absence of any record. Blood pressure and lab tests 

features are continuous valued. Missing values are replaced by the average of values of 

patients with a record at the same time interval. Features related to tobacco use are indicators 

of current- or past-smoker in the specific time interval. Admission features contain the total 

number of days of hospitalization over the specific time interval the feature corresponds to. 

Admission records are used both to form the admission features (past admission records) 

and in order to calculate the prediction variable (existence of admission records in the target 

year). We treat our problem as a classification problem and each patient is assigned a label: 1 

if there is a heart-related (or diabetes-related) hospitalization in the target year and −1 

otherwise.

A. Heart Data Preprocessing

In this section we discuss several data organization and preprocessing choices we make for 

the heart dataset. For each patient, a target year is fixed (the year in which a hospitalization 

prediction is sought) and all past patient records are organized as follows.

1. Summarization of the medical factors in the history of a patient: After exploring 

multiple alternatives, an effective way to summarize each patient’s medical 

history is to form four time blocks for each medical factor. Time blocks 1, 2, and 

3 summarize the medical factors over one, two, and three years before the target 

year, whereas the 4th block summarizes all earlier patient records. For tobacco 

use, there are only two features, indicating whether the patient is currently 

smoking and whether he/she has ever smoked. After removing features with zero 

standard deviation, this process results in a vector of 212 features for each 

patient.

2. Selection of the target year: As a result of the nature of the data, the two classes 

are highly imbalanced. When we fix the target year for all patients to be 2010, 

the number of hospitalized patients is about 2% of the total number of patients, 

which does not yield enough positive samples for effective training. Thus, and to 

increase the number of hospitalized patient examples, if a patient had only one 
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hospitalization throughout 2007–2010, the year of hospitalization is set as the 

target year for that patient. If a patient had multiple hospitalizations, a target year 

between the first and the last hospitalization is randomly selected.

3. Setting the target time interval to be a year: After testing several options, a year 

appears to be an appropriate time interval for prediction. Shorter prediction 

windows increase variability and do not allow sufficient time for prevention. 

Moreover, given that hospitalization occurs roughly uniformly within a year, we 

take the prediction time interval to be a calendar year.

4. Removing noisy samples: Patients who have no records before the target year are 

impossible to predict and are thus removed.

B. Identifying Diabetes-Related Hospitalizations

Identifying the hospitalizations that occur mainly due to diabetes is not a trivial task, 

because for financial reasons (i.e., higher reimbursement) many diabetes-related 

hospitalizations are recorded in the system as other types of admissions, e.g., heart-related. 

Therefore, as a first step, we seek to separate diabetes-related admissions from all the rest. 

To that end, we consider all patients with at least one admission record between 1/1/2007 

and 12/31/2012. From this set, patients with at least one diabetes mellitus record during the 

same period are assigned to the diabetic population, while the rest are assigned to the non-
diabetic population.

We list the union of all unique admission types for both populations (732 unique types). The 

total number of admission samples for the diabetic and non-diabetic populations are N1 = 

47, 352 and N2 = 116, 934, respectively. For each type of admission d, each admission 

sample can be viewed as the outcome of a binary random variable that takes the value 1, if 

the hospitalization occurs because of this type of admission, and 0, otherwise. Thus, we can 

transform the two sets of admission records for the two populations into binary (0/1) 

sequences. By (statistically) comparing the proportions of d in the two populations, we can 

infer whether admission d was caused mainly by diabetes or not.

To that end, we will utilize a statistical hypothesis test comparing sample differences of 

proportions. Suppose we generate two sets of admissions 1 and 2 of size N1 and N2 

drawn from the diabetic and the non-diabetic patient populations, respectively. Consider a 

specific admission type d and suppose that it appears with probability p1, out of all possible 

admission types in 1. Similarly, a type d admission appears with probability p2 in 2. 

Given now the two sets of admissions from diabetics ( 1) and non-diabetics ( 2), let P1 and 

P2 be the corresponding sample proportions of type d admissions. We want to statistically 

compare P1 and P2 and assess whether a type d admission is more prevalent in 1 vs. 2. 

Consider as the null hypothesis the case where p1 = p2, i.e., a type d admission is equally 

likely in the two populations. Under the null hypothesis, the sampling distribution of 

differences in proportions is approximately normally distributed, with its mean and standard 

deviation given by
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μP1 − P2
= 0  and  σP1 − P2

= pq  1
N1

+ 1
N2

,

where p = (N1P1 + N2P2)/(N1 + N2) is used as an estimate of the probability of a type d 
admission in both populations and q = 1 − p. By using the standardized variable z = (P1 − 

P2)/(σP1 − P2) we can assess if the results observed in the samples differ markedly from the 

results expected under the null hypothesis. We do that using the single sided p-value of the 

statistic z. The smaller the p-value is, the higher the confidence we have in the alternative 

hypothesis or equivalently in the fact that the diabetic patients have higher chance of getting 

admission records of type d than the non-diabetic ones (since we consider the difference P1 

− P2). We list admission types in increasing order of p-value and we set a threshold of p-

value ≤ α = 0.0001; admission types with p-value less than α are considered to be attributed 

to diabetes.2 Examples of diabetes-related admissions are shown in Table II.

C. Diabetes Data Preprocessing

The features are formed as combinations of different medical factors (instead of considering 

the factors as separate features) that better describe what happened to the patients during 

their visits to the hospital. Specifically, we form triplets that consist of a diagnosis, a 

procedure (or the information that no procedure was done), and the service department. An 

example of a complex feature (a triplet) is the diagnosis of ischemic heart disease that led to 

an adjunct vascular system procedure (procedure on single vessel) while the patient was 

admitted to the inpatient care. Clearly, since each category can take one of several discrete 

values, a huge number of combinations should be considered. Naturally, not all possible 

combinations occur, which reduces significantly the total number of potential features that 

describe each patient. Also for each patient, we extract information about the diabetes type 

over their history and demographics including age, gender and race. Next, we present several 

data organization and preprocessing steps we take. For each patient, a target year is fixed and 

all past patient records are organized as follows.

1. Forming the complex features: We create a diagnoses-procedures indicator 

matrix to keep track of which diagnosis occurs with which procedure. The 

procedures that are not associated with any diabetes-related diagnosis are 

removed. Procedures in the dataset are listed in the most detailed level of the 

ICD9 coding system [48] or the CPT coding system [49]. We group together 

procedures that belong to the same ICD9/CPT family, resulting in 31 categories 

(out of 2004 in total).

2. Summarization of the complex features in the history of a patient: We use the 

same approach as with heart diseases: we form four time blocks for each medical 

factor with all corresponding records summarized over one, two, three years 

before the target year, and a fourth time block containing averages of all the 

2Apart from selecting a small-value α, we also ensure that the cumulative fraction of patients that are potentially labeled as belonging 
to the hospitalized class is not too small, so that the dataset is not highly imbalanced.

Brisimi et al. Page 17

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



earlier records. This produces a 9, 402-dimensional vector of features 

characterizing each patient.

3. Reducing the number of features: We remove all the features that do not contain 

enough information for a significant amount of the population (less than 1% of 

the patients), as they could not help us generalize. This leaves 320 medical and 3 

demographical features.

4. Identifying the diabetes type: The ICD9 code for diabetes is assigned to category 

250 (diabetes mellitus). The fifth digit of the diagnosis code determines the type 

of diabetes and whether it is uncontrolled or not stated as uncontrolled. Thus, we 

have four types of diabetes diagnoses: type II, not stated as uncontrolled (fifth 

digit 0); type I, not stated as uncontrolled (fifth digit 1), type II or unspecified 

type, uncontrolled (fifth digit 2) and type I, uncontrolled (fifth digit 3). Based on 

these four types, we count how many records of each type each patient had in the 

four time blocks before the target year, thus adding 16 new features for each 

patient.

5. Setting the target time interval to a calendar year: Again, as with heart diseases, 

we seek to predict hospitalizations in the target time interval of a year starting on 

the 1st of January and ending on the 31st of December.

6. Selection of the target year: As a result of the nature of the data, the two classes 

are highly imbalanced. To increase the number of hospitalized patient examples, 

if a patient had only one hospitalization throughout 2007–2012, the year of 

hospitalization will be set as the target year. If a patient had multiple 

hospitalizations, a target year between the first and the last hospitalizations will 

be randomly selected. 2012 is set as the target year for patients with no 

hospitalization, so that there is as much available history for them as possible. By 

this policy, the ratio of hospitalized patients in the dataset is 16.97%.

7. Removing patients with no record: Patients who have no records before the target 

year are removed, since there is nothing on which a prediction can be based. The 

total number of patients left is 33,122.

8. Splitting the data into a training set and a test set randomly: As is common in 

supervised machine learning, the population is randomly split into a training and 

a test set. Since from a statistical point of view, all the data points (patients’ 

features) are drawn from the same distribution, we do not differentiate between 

patients whose records appear earlier in time than others with later time stamps. 

A retrospective/prospective approach appears more often in the medical literature 

and is more relevant in a clinical trial setting, rather than in our algorithmic 

approach. What is critical in our setting is that for each patient prediction we 

make (hospitalization/non-hospitalization in a target year), we only use that 

patients’ information before the target year.
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VI. Performance Evaluation

Typically, the primary goal of learning algorithms is to maximize the prediction accuracy or 

equivalently minimize the error rate. However, in the specific medical application problem 

we study, the ultimate goal is to alert and assist patients and doctors in taking further actions 

to prevent hospitalizations before they occur, whenever possible. Thus, our models and 

results should be accessible and easily explainable to doctors and not only machine learning 

experts. With that in mind, we examine our models from two aspects: prediction accuracy 

and interpretability.

The prediction accuracy is captured in two metrics: the false alarm rate (how many patients 

were predicted to be in the positive class, i.e., hospitalized, while they truly were not) and 

the detection rate (how many patients were predicted to be hospitalized while they truly 

were). In the medical literature, the detection rate is often referred to as sensitivity and the 

term specificity is used for one minus the false alarm rate. Two other terms that are 

commonly used are the recall rate, which is the same as the detection rate, and the precision 
rate, which is defined as the ratio of true positives (hospitalizations) over all the predicted 

positives (true and false). For a binary classification system, the evaluation of the 

performance is typically illustrated with the Receiver Operating Characteristic (ROC) curve, 

which plots the detection rate versus the false alarm rate at various threshold settings. To 

summarize the ROC curve and be able to compare different methods using only one metric, 

we will use the Area Under the ROC Curve (AUC). An ideal classifier achieves an AUC 

equal to 1 (or 100%), while a classifier that makes random classification decisions achieves 

an AUC equal to 0.5 (or 50%). Thus, the “best” (most accurate) classification method will be 

the one that achieves the highest AUC.

For the heart study we conduct, we will also generate the ROC curve based on patients’ 10-

year risk of general cardiovascular disease derived by the Framingham Heart Study (FHS) 

[52]. FHS is a seminal study on heart diseases that has developed a set of risk factors for 

various heart problems. The 10-year risk we are using is the closest to our purpose and has 

been widely used. It uses the following features (predictors): age, diabetes, smoking, treated 

and untreated systolic blood pressure, total cholesterol, High-Density Lipoprotein (HDL), 

and BMI (Body Mass Index) which can be used to replace lipids in a simpler model. We 

calculate this risk value (which we call the Framingham Risk Factor-FRF) for every patient 

and make the classification based on this risk factor only. We also generate an ROC curve by 

applying random forests just to the features involved in FRF. The generated ROC curve 

serves as a baseline for comparing our methods to classifiers that are based on features 

suggested only by medical intuition.

For the diabetes study, we also consider baseline classifiers that are based only on features 

commonly considered by physicians. More specifically, the features we select are: age, race, 

gender, average over the entire patient history of the hemoglobin A1c, or HbA1c for short 

(which measures average blood sugar concentrations for the preceding two to three months), 

and the number of emergency room visits over the entire patient history. All these features 

are part of a 3-year risk of diabetes metric in [53]. We apply random forests to just these 

features to obtain a baseline to compare our methods against.
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Let us also note that we will compare our new algorithm ACC to SVMs (linear and RBF), 

and two other hierarchical approaches that combine clustering with classification, to which 

we refer as Cluster-Then-Linear-SVM (CT-LSVM) and Cluster-Then-Sparse-Linear-SVM 

(CT-SLSVM). Specifically, CT-LSVM first clusters the positive samples (still based on the 

feature set ) with the widely used k-means method [39], then copies negative samples into 

each cluster, and finally trains classifiers with linear SVM for each cluster. The only 

difference between algorithm CT-SLSVM and CT-LSVM is that CT-SLSVM adopts sparse 

linear SVM in the last step.

Notice that ACC implements an alternating procedure while CT-LSVM and CT-SLSVM do 

not. With only one-time clustering, CT-LSVM and CT-SLSVM create unsupervised clusters 

without making use of the negative samples, whereas ACC is taking class information and 

classifiers under consideration so that the clusters also help the classification.

VII. Experimental Results

In this section, we will present experimental results on the two datasets for all methods we 

have presented so far, in terms of both accuracy and interpretability.

For SVM, tuning parameters are the misclassification penalty coefficient C (cf. (1)) and the 

kernel parameter σ; we used the values {0.3, 1, 3} and {0.5, 1, 2, 7, 15, 25, 35, 50, 70, 100}, 

respectively. Optimal values of 1 and 7, respectively, were selected by cross-validation.

For K-LRT, we quantize the data as shown in Table III. After experimentation, the best 

performance of K-LRT is achieved by setting k = 4.

In Figures 2 and 3, we present the ROC curves of all methods, for a particular random split 

of the data into a training and test set. In Tables IV and V, we present the average (avg.) and 

the standard deviation (std) of the AUC over 10 different splits of the data into a training and 

a test set. In these tables, Lin. and RBF SVM correspond to SVM with a linear and an RBF 

kernel, respectively. Sparse LR corresponds to sparse logistic regression (cf. Sec. III-C). 

FRF 10-yr risk corresponds to thresholding the Framingham 10-year risk and random forests 

on FRF features simply trains a random forest on the features used in the Framingham 10-

year risk. We also report the baseline diabetes method we presented in subsection VI in the 

last row of Table V.

Based on the results, random forests perform the best followed by our ACC. It is interesting 

that using features selected by physicians (as in FRF or the diabetes baseline method) leads 

to significantly inferior performance even if a very sophisticated classifier (like random 

forests) is being used. This suggests that the most intuitive medical features do not contain 

all the information that could be used in making an accurate prediction.

In terms of interpretability, with RBF SVM, the features are mapped through a kernel 

function from the original space into a higher-dimensional space. This, however, makes the 

features in the new space not interpretable. Random forests are also not easy to interpret. 

While a single tree classifier which is used as the base learner is explainable, the weighted 

sum of a large number of trees makes it relatively complicated to find the direct attribution 
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of each feature to the final decision. LRT itself lacks interpretability, because we have more 

than 200 features for each sample and there is no direct relationship between prediction of 

hospitalization and the reasons that led to it. On the other hand, sparse linear SVM (SLSVM 

which coincides with ACC using L = 1 cluster), ACC, K-LRT, and sparse LR are easily 

interpretable because they are based on sparse classifiers involving relatively few features. 

ACC, in addition, clusters patients and cluster membership provides extra interpretation.

Our modified LRT, K-LRT, is particularly interpretable and it is surprising that such a simple 

classifier has strong performance. It highlights the top K features that lead to the 

classification decision. These features could be of help in assisting physicians reviewing the 

patient’s EHR profile and formulating hospitalization-prevention strategies. To provide an 

example of intuition that can be gleaned from this information, we consider the heart disease 

dataset and in Table VI we present the features highlighted by 1-LRT. We remind the reader 

that in 1-LRT, each test patient is essentially associated with a single feature. For each 

feature j, we (i) count how many times it was selected as the primary feature in the test set, 

and (ii) calculate the average likelihood ratio p(zj|y = 1)/p(zj|y = −1) over all test patients. 

We normalize both quantities (i) and (ii) to have zero mean and variance equal to 1. The 

average of these two normalized quantities is treated as the importance score of the feature j. 
We rank the importance scores and report the top 10 features in Table VI. In the table, CPK 

stands for creatine phosphokinase, an enzyme which, when elevated, it indicates injury or 

stress to the heart muscle tissue, e.g., as a result of a myocardial infarction (heart attack). It 

is interesting that in addition to heart-related medical factors, utilization features such as lab 

tests and emergency room visits, contribute to the classification decision. This is likely the 

reason why our methods, which use the entirety of the EHR, perform much better than the 

Framingham-based methods.

To interpret the clusters generated by ACC for the heart study (for the case L = 3 which 

yields the best performance), we plot in Figure 4 the mean value over each cluster of each 

element in the feature vector x . The 3 clusters are well-separated. Cluster 2 contains 

patients with other forms of chronic ischemic disease (mainly coronary atherosclerosis) and 

myocardial infarction that had occurred sometime in the past. Cluster 3 contains patients 

with dysrhythmias and heart failure. Cardiologists would agree that these clusters contain 

patients with very different types of heart disease. Finally, Cluster 1 contains all other cases 

with some peaks corresponding to endocardium/pericardium disease. It is interesting, and a 

bit surprising, that ACC identifies meaningful clusters of heart-disease even though it is 

completely agnostic of medical knowledge.

In the diabetes dataset, best ACC performance is obtained for L = 1 (a single cluster). Still, it 

is of interest to examine whether meaningful clusters emerge for L > 1. We plot again in 

Figure 5 the mean value over each cluster of each element in the feature vector, using as 

“diagnostic” features the subset of features which have a correlation larger than 0.01 with 

the labels in the training set. This is done for a single repetition of the experiment and L = 3, 

yielding interesting clusters and highlighting the interpretative power of ACC. We observe 

that Cluster 1 contains diabetes patients with chronic cerebrovascular disease, skin ulcers, 

hypertension, an abnormal glucose tolerance test, and other complications as a result of 

diabetes. Cluster 2 contains patients with diabetes complicating pregnancy. Cluster 3 
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contains patients with less acute disease, combining diabetes with hypertension. The feature 

values of these three clusters clearly separate from the feature values in the negative class.

VIII. Conclusions

In this paper, we focused on the challenge of predicting future hospitalizations for patients 

with heart problems or diabetes, based on their Electronic Health Records (EHRs). We 

explored a diverse set of methods, namely kernelized, linear and ℓ1-regularized linear 

Support Vector Machines, ℓ1-regularized logistic regression and random forests. We 

proposed a likelihood ratio test-based method, K-LRT, that is able to identify the K most 

significant features for each patient that lead to hospitalization.

Our main contribution is the introduction of a novel joint clustering and classification 

method that discovers hidden clusters in the positive samples (hospitalized) and identifies 

sparse classifiers for each cluster separating the positive samples from the negative ones 

(non-hospitalized). The joint problem is non-convex (formulated as an integer optimization 

problem); still we developed an alternating optimization approach (termed ACC) that can 

solve very large instances. We established the convergence of ACC, characterized its sample 

complexity, and derived a bound on VC dimension that leads to out-of-sample performance 

guarantees.

For all the methods we proposed, we evaluated their performance in terms of classification 

accuracy and interpretability, an equally crucial criterion in the medical domain. Our ACC 

approach yielded the best performance among methods that are amenable to an 

interpretation (or explanation) of the prediction.

Our findings highlight a number of important insights and opportunities by offering a more 

targeted strategy for “at-risk” individuals. Our algorithms could easily be applied to care 

management reports or EHR-based prompts and alerts with the goal of identifying 

individuals who might benefit from additional care management and outreach. Depending 

on available resources and economic considerations, a medical facility can select a specific 

point on the ROC curve to operate at. This is equivalent to selecting a tolerable maximum 

false positive (alarm) rate, or, equivalently, a minimum specificity. Because costs associated 

with preventive actions (such as tests, medications, office visits) are orders of magnitude 

lower than hospitalization costs, one can tolerate significant false alarm rates and still save a 

large amount of money in preventable hospitalization costs. To get a sense of this difference, 

the average cost per hospital stay in the U.S. was $9,700 in 2010 [54], with some heart 

related hospitalizations costing much more on average (e.g., $18,200 for Acute Myocardial 

Infarction). In contrast, an office visit costs on the order of $200, tests like an ECG or an 

echo on the order of $100–$230, and a 90-day supply of common medication (hypertension 

or cholesterol) no more than $50. Clearly, even a small fraction of prevented hospitalizations 

can lead to large savings. Our methods can be seen as enabling such prevention efforts.
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Appendix A

Proof of Proposition IV.1

Proof

Let CJCC
∗  and CMIP

∗  be the optimal objective values of problems (3) and (4).

Given any feasible solution to the JCC problem (3): l(i), βl, β0
l , ζi

l, ∀l, i, and ξi, JCC
l (i), a 

feasible solution to the MIP problem is:

zil = 0,  otherwise,
1, l(i) = l, ξi, MIP

l = 0,  otherwise;
ξi, JCC
l , l(i) = l,

and βl, β0
l , ζi

l remain the same as in the JCC solution.

The feasibility of the constructed MIP solution is verified as follows. Notice that except for 

the 2nd constraint in the MIP formulation (4) (the big-M constraint), all other constraints can 

be easily verified to be satisfied by the constructed MIP solution. For the big-M constraint, if 

zil = 1, then M Σk≠l zik = 0, and the big-M constraint holds since ξi, MIP
l = ξi, JCC

l . If, however, 

zil = 0, then M Σk≠l zik = M, and the big-M constraint also holds (trivially).

The above two feasible solutions have the same objective values, and this equality holds for 

any feasible solution to the JCC problem, hence we can conclude that CJCC
∗ ≥ CMIP

∗ .

Next, we prove that each optimal solution to the MIP problem satisfies ξi, MIP
l = 0 when zil = 

0. Note that when zil = 0, M Σk≠l zik = M, and the big-M constraint becomes 

ξi, MIP
l ≥ 1 − yi

+β0
l − ∑d = 1

D yi
+βd

l xi, d
+ − M, which will always hold since M is a large enough 

number. Therefore, to minimize the objective, the optimal solution should select the smallest 

feasible ξi, MIP
l , i.e., ξi, MIP

l = 0.

Given an optimal solution to the MIP problem, a corresponding feasible solution to JCC 

problem is: if zil = 1, then ξi, JCC
l = ξi, MIP

l , and l(i) = l; and all other variables retain their 

values in the MIP solution. Since the two solutions have the same objective cost, it follows 

CJCC
∗ ≤ CMIP

∗ .
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Appendix B

Proof of Theorem IV.2

Proof

To simplify notation we drop the cluster index l. We will use a result from [47]. We note that 

the family of linear classifiers in a D-dimensional space has VC-dimension D + 1 ([35]). Let 

 be a function family with VC-dimension D + 1. Let RN (g) denote the training error rate of 

classifier g on N training samples randomly drawn from an underlying distribution . Let 

R(g) denote the expected test error of g with respect to . The following theorem from [47] 

is useful in establishing our result.

Theorem B.1 ([47])

If the function family  has VC-dimension D + 1, then the probability

P R(g) − RN(g) ≤ 2 2
(D − 1) log 2eN

D + 1 + log 2
ρ

N ≥ 1 − ρ (7)

for any function g ∈  and ρ ∈ (0, 1).

For the given ε in the statement of Theorem IV.2, select large enough N such that

ε ≥ 2 2
(D + 1) log 2eN

D + 1 + log 2
ρ

N ,

or

2
ρ ≤ exp  Nε2

8 − (D + 1) log  2eN
D + 1 . (8)

It follows from Thm. B.1,

P[R(g) − RN(g) ≥ ε] ≤ ρ . (9)

In our setting, the classifier g is restricted to a Q-dimensional subspace of the D-dimensional 

feature space. Thus, the bound in (8) holds by replacing D with Q in the right hand side and 

the bound in (9) holds for any such Q-dimensional subspace selected by the ℓ1-penalized 

optimization. Since there are Q
D  possible choices for the subspace, using the union bound 

we obtain:
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P[R(g) − RN(g) ≥ ε] ≤ Q
D ρ .

Using the bound Q
D ≤ (eD

Q )
Q

= exp(Q logeD
Q ), it follows:

P[R(g) − RN(g) ≥ ε] ≤ ρ exp  Q logeD
Q . (10)

For the given δ ∈ (0, 1) in the statement of Theorem IV.2, select small enough ρ such that

δ ≥ ρ exp  Q logeD
Q ,

or equivalently

1
δ ≤ 1

ρexp  − Q logeD
Q .

Using (8) (with Q replacing D), we obtain

log2
δ ≤ Nε2

8 − (Q + 1) log  2eN
Q + 1 − Q logeD

Q ,

which implies that N must be large enough to satisfy

N ≥ 8
ε2 log2

δ + (Q + 1) log 2eN
Q + 1 + Q logeD

Q .

This establishes P (R(g) − RN (g) ≥ ε) ≤ δ, which is equivalent to Theorem IV.2.

Appendix C

Proof of Theorem IV.3

Proof

At each alternating cycle, and for each cluster l, we train a SLSVM using as training samples 

the positive samples of that cluster combined with all negative samples. This produces an 

optimal value Ol for the corresponding SLSVM training optimization problem (cf. (3)) and 

the corresponding classifier (βl, β0
l ). Specifically, the SLSVM training problem for cluster l 

is:
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Ol = min
βl, β0

l ,

ζ j
l , ξi

l

1
2‖βl‖2 + λ+∑i = 1

Nl
+

ξi
l + λ− ∑

j = 1

N−

ζ j
l

s . t . ξi
l ≥ 1 − yi

+β0
l − ∑d = 1

D yi
+βd

l xi, d
+ , ∀i,

ζ j
l ≥ 1 − y j

−β0
l − ∑d = 1

D y j
−βd

l x j, d
− , ∀ j,

∑d = 1
D | βd

l | ≤ T l, ξi
l, ζ j

l ≥ 0, ∀i, j .

(11)

Set

Z = ∑
l = 1

L
Ol = ∑

l = 1

L 1
2‖βl‖2 + λ− ∑

j = 1

N−
ζ j
l + λ+ ∑

i = 1

N+
ξi
l(i),

where l(i) maps sample i to cluster l(i), ∑l = 1
L Nl

+ = N+, and βl, β0
l , ζ j

l , and ξi
l(i) are optimal 

solutions of (11) for each l. Let us now consider the change of Z at each iteration of the ACC 

training procedure.

First, we consider the re-clustering step (Alg. 2) given computed SLSVMs for each cluster. 

During the re-clustering step, the classifier and slack variables for negative samples are not 

modified. Only the ξi
l(i) get modified since the assignment functions l(i) change. When we 

switch positive sample i from cluster l(i) to l*(i), we can simply assign value ξi
l(i) to ξi

l∗(i). 

Therefore, the value of Z does not change during the re-clustering phase and takes the form

Z = ∑
l = 1

L 1
2‖βl‖2 + λ+ ∑

{i: l∗(i) = l}
ξi
l + λ− ∑

j = 1

N−
ζ j
l .

Next, given new cluster assignments, we re-train the local classifiers by resolving problem 

(11) for each cluster l. Notice that re-clustering was done subject to the constraint in Eq. (5). 

Since yi
+ = 1 for all positive samples, we have

ξi
l(i) ≥ 1 − β0

l(i) − ∑
d = 1

D
βd

l(i)xi, d
+ ≥ 1 − β0

l∗(i) − ∑
d = 1

D
βd

l∗(i)xi, d
+ .

The first inequality is due to ξi
l(i) being feasible for (11). The second inequality is due to 

yi
+ = 1 and Eq. (5). Thus, by assigning ξi

l(i) to ξi
l∗(i) it follows that the ξi

l∗(i) remain feasible for 

problem (11). Given that the remaining decision variables do not change, 
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(βl, β0
l , ζ j

l , ξi
l∗(i), ∀i = 1, …, Nl

+, ∀ j = 1, …, N−) forms a feasible solution of problem (11). 

This solution has a cost equal to Ol. Re-optimizing can produce an optimal value that is no 

worse. It follows that in every iteration of ACC, Z is monotonically non-increasing. 

Monotonicity and the fact that Z is bounded below by zero, suffices to establish 

convergence.

Appendix D

Proof of Theorem IV.4

Proof

The proof is based on Lemma 2 of [55]. Given an assignment of each positive sample i to 

cluster l(i), define L clustering functions

gl(i) = 0,  otherwise .
1,  if l(i) = l,

Hence, positive sample i is assigned to cluster arg maxl gl(i). This can be viewed as the 

output of (L − 1)L/2 comparisons between pairs of gl1 and gl2, where 1 ≤ l1 < l2 ≤ L. This 

pairwise comparison could be further transformed into a boolean function (i.e., sgn(gl1 − 

gl2)). Together with the L classifiers (one for each cluster), we have a total of (L + 1)L/2 

boolean functions. Among all these boolean functions, the maximum VC-dimension is D 
+ 1, because at most D features are being used as input. Therefore, by Lemma 2 of [55], the 

VC-dimension of the function family ℋ is bounded by 2( (L + 1)L
2 )(D + 1) log(e (L + 1)L

2 ), or 

equivalently (L + 1)L(D + 1) log(e (L + 1)L
2 ).
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Fig. 1. 
The positive class contains two clusters and each cluster is linearly separable from the 

negative class.
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Fig. 2. 
ROC curves for the heart data.
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Fig. 3. 
ROC curves for diabetes data.
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Fig. 4. 
Average feature values in each cluster (L = 3) for the heart diseases dataset.
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Fig. 5. 
Average feature values in each cluster (L = 3) for the diabetes dataset.
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TABLE I

Medical Factors in the Heart Diseases Dataset.

Ontology Number
of

Factors

Examples

Demographics 4 Sex, Age, Race, Zip Code

Diagnoses 22 e.g., Acute Myocardial Infarction (ICD9: 410), Cardiac Dysrhythmias (ICD9: 427), Heart Failure (ICD9: 428), 
Acute Pulmonary Heart Disease (ICD9: 415), Diabetes Mellitus with Complications (ICD9: 250.1–250.4, 
250.6–250.9), Obesity (ICD9: 278.0)

Procedures CPT 3 Cardiovascular Procedures (including CPT 93501, 93503, 93505, etc.), Surgical Procedures on the Arteries and 
Vein (including CPT 35686, 35501, 35509, etc.), Surgical Procedures on the Heart and Pericardium (including 
CPT 33533, 33534, 33535)

Procedures ICD9 4 Operations on the Cardiovascular System (ICD9: 35–39.99), Cardiac Stress Test and pacemaker checks (ICD9: 
89.4), Angiocardiography and Aortography (ICD9: 88.5), Diagnostic Ultrasound of Heart (ICD9: 88.72)

Vitals 2 Diastolic Blood Pressure, Systolic Blood Pressure

Lab Tests 4 CPK (Creatine phosphokinase) (LOINC:2157-6), CRP Cardio (C-reactive protein) (LOINC:30522-7), Direct 
LDL (Low-density lipoprotein) (LOINC:2574-2), HDL (High-Density Lipoprotein) (LOINC:9830-1)

Tobacco 2 Current Cigarette Use, Ever Cigarette Use

Visits to the ER 1 Visits to the Emergency Room

Admissions 17 e.g., Heart Transplant or Implant of Heart Assist System (MSDRG: 001, 002), Cardiac Valve and Other Major 
Cardiothoracic procedures (MSDRG: 216–221), Coronary Bypass (MSDRG: 231–234), Acute Myocardial 
Infarction (MSDRG: 280–285), Heart Failure and Shock (MSDRG: 291–293), Cardiac Arrest (MSDRG: 296–
298), Chest Pain (MSDRG: 313), Respiratory System related admissions (MSDRG: 175–176, 190–192)
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TABLE II

Medical Factors in the Diabetes Dataset.

Ontology Examples

Demographics Sex, Age, Race, Zip Code

Diagnoses e.g., Diabetes mellitus with complications, Thyroid disorders, Hypertensive disease, Pulmonary heart disease, 
Heart failure, Aneurysm, Skin infections, Abnormal glucose tolerance test, Family history of diabetes mellitus

Procedures (CPT or ICD9) e.g., Procedure on single vessel, Insertion of intraocular lens prosthesis at time of cataract extraction, Venous 
catheterization, Hemodialysis, Transfusion of packed cells

Admissions e.g., Diabetes (with and without) complications, Heart failure and shock, Deep Vein Thrombophlebitis, Renal 
failure, Chest pain, Chronic obstructive pulmonary disease, Nutritional. & misc metabolic disorders, Bone 
Diseases & Arthropathies, Kidney & urinary tract infections, Acute myocardial infarction, O.R. procedures for 
obesity, Hypertension

Service by Department Inpatient (admit), Inpatient (observe), Outpatient, Emergency Room
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TABLE III

Quantization of Features.

Features Levels of
quantization

Comments

Sex 3 0 represents missing information

Age 6 Thresholds at 40, 55, 65, 75 and 85 years old

Race 10

Zip Code 0 Removed due to its vast variation

Tobacco (Current and Ever Cigarette 
Use)

2 Indicators of tobacco use

Diastolic Blood Pres-sure (DBP) 3 Level 1 if DBP < 60mmHg, Level 2 if 60mmHg ≤ DBP ≤ 90mmHg and Level 3 if 
DBP > 90mmHg

Systolic Blood Pressure (SBP) 3 Level 1 if SBP < 90mmHg, Level 2 if 90mmHg ≤ SBP ≤ 140mmHg and Level 3 if 
SBP > 140mmHg

Lab Tests 2 Existing lab record or Non-Existing lab ecord in the specific time period

All other dimensions 7 Thresholds are set to 0.01%, 5%, 10%, 20%, 40% and 70% of the maximum value of 
each dimension
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TABLE IV

Prediction accuracy (AUC) on heart data.

Settings avg. AUC std AUC

ACC, L = 1 (SLSVM) 76.54% 0.59%

ACC, L = 2 76.83% 0.87%

ACC, L = 3 77.06% 1.04%

ACC, L = 4 75.14% 0.92%

ACC, L = 5 75.14% 1.00%

ACC, L = 6 74.32% 0.87%

4-LRT 75.78% 0.53%

Lin. SVM 72.83% 0.51%

RBF SVM 73.35% 1.07%

sparse LR 75.87% 0.67%

CT-LSVM (L = 2) 71.31% 0.76%

CT-SLSVM (L = 2) 71.97% 0.73%

random forests 81.62% 0.37%

FRF 10-yr risk 56.48% 1.09%

random forests on FRF features 62.20% 1.13%
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TABLE V

Prediction Accuracy (AUC) on diabetes data.

Settings avg. AUC std AUC

ACC, L = 1 (SLSVM) 79.24% 0.52%

ACC, L = 2 78.55% 0.41%

ACC, L = 3 78.53% 0.41%

ACC, L = 4 78.46% 0.35%

ACC, L = 5 78.36% 0.36%

ACC, L = 6 78.18% 0.50%

4-LRT 78.74% 0.28%

Lin. SVM 76.87% 0.48%

RBF SVM 77.96% 0.27%

sparse LR 78.91% 0.38%

CT-LSVM (L = 2) 75.63% 0.50%

CT-SLSVM (L = 2) 77.99% 0.49%

random forests 84.53% 0.26%

random forests on selected features (baseline) 65.77% 0.47%
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TABLE VI

Top 10 significant features for 1-LRT.

1-LRT
Importance Score

1-LRT
Feature Name

10.50 Admission of heart failure, 1 year before the target year

9.71 Age

6.23 Diagnosis of heart failure, 1 year before the target year

5.43 Admission with other circulatory system diagnoses, 1 year before the target year

4.38 Diagnosis of heart failure, 2 years before the target year

4.16 Diagnosis of hematologic disease, 1 year before the target year

3.45 Diagnosis of diabetes mellitus w/o complications, 1 year before the target year

3.40 Symptoms involving respiratory system and other chest symptoms, 1 year before the target year

3.24 visit to the Emergency Room, 1 year before the target year

3.13 Lab test CPK, 1 year before the target year
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