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Abstract

The nervous system represents the most complex tissue in animals. How this complexity evolved 

has been a challenging question to address. The explosion in single cell sequencing techniques, the 

development of new algorithms to cluster single cells into cell types, along with powerful tools for 

drawing developmental trajectories offer a unique opportunity to compare homologous cell types 

between species. They further permit the identification of key developmental points and 

transcription factors that can lead to the evolution of new cell types. At the same time, the ease of 

use and efficiency of CRISPR genome editing technology allow validation of predicted regulators. 

This promises exciting developments in the next few years in the field of neuronal evolution and 

development.

Introduction

Single cell sequencing gives access to transcriptomic information for every cell in any 

animal at nearly every developmental stage. Over the last five years, a number of 

computational algorithms have been generated to cluster single cell transcriptomes into 

different cell types in an unbiased manner [1–4], to match cell types between different 

species [5], and to generate developmental trajectories for these cell types [6–13]. The 

development of such tools offers us a unique opportunity to address the molecular 

developmental mechanisms that lead to the evolution of new cell types. In this review, we 

suggest how newly developed computational tools applied to single cell transcriptomic data 

can be used to study cell type evolution in neuronal systems.

How do cell types evolve?

Cell types were historically defined as a population of cells sharing the same morphology, 

and, when known, biochemical properties and function. In the transcriptomic era, similar 

transcriptomes are another feature that cells should satisfy in order to be classified as the 

same cell type. The inherent noise of transcription, the effect of cell cycle, as well as the 

response to potential stimuli can cause the transcriptome to be significantly more diverse 
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than the morphology; two cells identical in terms of morphology and function will never 

have identical transcriptomes, which makes their classification into cell types more 

challenging.

Today, large consortia have been initiated to identify all the main cell types in human, 

mouse, and fly tissues thus defining ‘cell atlases’ [14]. These efforts will generate the 

knowledge needed to understand the extent of variability within cell types and determine 

whether some cell types that are thought to be distinct may actually represent elements of a 

larger continuum [15]. Thus, cell type classification may be seen as a taxonomy of the cells 

in an organism.

Whether cell types are distinct or form a continuum, it is important to understand how they 

evolved to give rise to the differences that we observe today (Figure 1). Lineage duplications 

or extensions can generate supernumerary cells of the same cell type that can then diverge 

from one another and sub-functionalize [16]. Moreover, apoptosis is a normal component of 

developmental processes in which cells that are not needed are purged during development 

[17]; their survival could underpin the evolution of new cell types [18] (Figure 1). Other 

ways could be envisaged for the evolution of new cell types.

Neuro: Single cell mRNA sequencing of neuronal cell types

The nervous system consists of a large number of different cell types that are tightly 

interconnected to form functional circuits. Understanding how this amazing diversity has 

evolved under the constraints imposed by connectivity is still defying our technical abilities. 

The newly developed massively parallel single cell mRNA sequencing (scRNAseq) 

techniques have allowed researchers to read the transcriptomes of all cell types in neuronal 

tissues. Three main approaches are used to sequence single neurons: a) droplet-based 

techniques (Drop-seq [1] and 10xGenomics [19]) allow for the parallel sequencing of a large 

number of single cells at a relatively low depth, b) plate-based methods and Fluidigm [20] 

are used to sequence many fewer cells at increased sequencing depth per cell, and c) split-

pool combinatorial barcoding [21] can be used to increase the number of single cells that can 

be sequenced in a single experiment. Moreover, single-nucleus techniques have also been 

beneficial for sequencing neuronal types in vertebrates, avoiding lengthy digestions with 

proteases for tissues that are complex and hard to dissociate [22]. After acquiring the 

transcriptome of each cell, clustering algorithms, such as density clustering, k-nearest 

neighbor algorithms, etc, allow the grouping of single cells into clusters of transcriptionally 

similar units. Finally, cluster annotation (correspondence of each cluster with a cell type) has 

to be performed a posteriori and relies on identifying markers that separate the clusters from 

each other and annotating the cell types that express these markers. A good previous 

knowledge of the tissue and its morphologically and functionally-defined cell types is thus 

very beneficial. Using these transcriptomic techniques, many different neuronal tissues have 

been sequenced at the single cell level over the last two years, greatly increasing our 

understanding of cell type diversity and development [2,3,22–33].
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Evo: How to assign homologous cell types using single cell sequencing

One of the major difficulties in studying cell type evolution is to identify homologous cell 

types between different animals. A major issue in comparing transcriptomes between 

animals is assigning orthologous genes [34,35] and normalizing their expression across 

species [36]. A number of different approaches have been proposed to homologize cell types 

from one animal to another (Figure 2):

1) Identification of key features that endow each neuronal type with its 
functional characters.—One approach to compare neuronal cell types between different 

species is to uncover a collective set of effector genes that are directly responsible for the 

specific neuronal features of each cell type and to compare their expression across species. 

Such features could be neurotransmitter identity, neurotransmitter receptors, ion channels, 

cell adhesion molecules, etc (Figure 2). This necessarily relies on identifying orthologous 

genes, which can be a difficult task in the case of large gene families, such as 

neurotransmitter receptors that often have many different subunits. To overcome this 

problem, scmap [37] uses an unsupervised approach to select features that are representative 

of the underlying biological differences [38], which are then used to project data sets from 

one experiment onto a reference data set of another. Such approach was shown to reliably 

match pancreatic cell clusters coming from different single cell sequencing studies [37]. It 

remains to be shown whether scmap can match cell clusters from distinct species.

2) Identification of a core regulatory complex of transcription factors that 
defines a cell type.—Transcription factors control the morphology, physiology, 

molecular characteristics, and hence the identity of a neuron. Therefore, the unique 

combination of transcription factors can be used to define cell types more precisely than the 

combination of effector genes that are often shared by multiple cell types. One way to 

compare cell types between different species would be to define a cell type-specific 

transcription factor identity (core regulatory complex or CoRC [16]) and use this for 

assigning homologous cell types (Figure 2).

This could be done either in a supervised or unsupervised manner. If the tissue of interest 

has been studied extensively, one could select transcription factors that are known to specify 

different neuronal features, such as the case of terminal selectors in C. elegans [39]. 

Alternatively, one could use unsupervised models to detect combinations of transcription 

factor present in single cell clusters and then select those that appear to define a cluster in 

different species.

3) Use of batch-effect reducing algorithms.—Experimental results are affected by 

technical sources of variation, known as “batch-effect”, which may compromise data 

analysis. One could consider the differences in expression between the same cell type in 

different species as the batch effect of an experiment performed by evolution. In this case, an 

approach to compare cell types from different species would be to apply batch effect 

correction algorithms before aligning the two datasets (Figure 2). A number of batch-effect 

correction methods have recently been developed [5,40,41]; however, only one such 

algorithm has been used to integrate data from different species [5]. It relies on identifying a 
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shared gene correlation structure that is conserved between the data sets. It can then spot 

cells that cannot be well described by this shared structure, which can be used to identify 

cell types that are nonoverlapping between the data sets. It then aligns the data sets into a 

conserved lowdimensional space, using nonlinear ‘warping’ algorithms to normalize for 

differences in feature scale, in which one can perform comparative analysis to identify 

changes in population density or gene expression. This is an active area of research and, as 

new data from different species are being generated, new algorithms will emerge.

The techniques described above could allow for the identification of homologous cell types, 

as well as taxon-specific cell types. Such an example is the homology between neo-

endometrial stromal fibroblasts (neo-ESFs), which are found in eutherian mammals, and 

paleo-ESFs found in marsupial mammals. Neo-ESFs are evolutionarily related to decidual 

stromal cells, which are unique to eutherian mammals and are important for the immune 

tolerance following embryo implantation [42]. How do taxon-specific cell types, such as 

decidual stromal cells, arise during development? Were they gained in one lineage or were 

they lost in the other? What are the molecular mechanisms that led to their evolution?

Devo: How to define developmental trajectories

Neuronal cell type diversity is established during development. To recognize the potential 

for the generation of a new cell type during evolution (“cell speciation”), it is important to 

know the cell lineage of the tissue of interest in different species to then be able to discover 

differences in these lineages. Extensive research in model organisms such as worms, flies 

and mice, has provided a significant breadth of information regarding the development of 

neuronal tissues. In the absence of such information in an animal of interest, one can use a 

number of different recently developed techniques that rely on sequential CRISPR-generated 

mutations and single cell sequencing and allow the reconstruction of cell lineages during 

development.

scGESTALT [44], ScarTrace [46], and LINNAEUS [45] rely on the use of CRISPR for 

generating different marks in multiple target loci that have been integrated in the genome. 

The inherent variability of the targeting and repair process introduces different mutations at 

these loci in different branches of the cell lineage. The mutated targets can then be read in 

adult cells alongside the cell-specific transcriptome using single cell sequencing; the 

transcriptome allows for the identification of the cell type, while the specific CRISPR-

induced mutations are used to reconstruct the lineage tree, in ways similar to the 

reconstruction of phylogenetic trees based on specific DNA sequences. This has enabled the 

reconstruction of neuronal lineages in zebrafish, both in larva and adult brains. Moreover, 

the ease-of-use of CRISPR and efficiency in diverse species [47] provides the opportunity to 

apply such lineage tracing methods beyond the established model organisms.

Developmental cell lineages are extremely useful to understand the development of cell 

types, but coupling them with the knowledge of the molecules that drive the differentiation 

of sister cells after each division is necessary to understand how each cell type is generated. 

A large number of trajectory inference (TI) methods have been developed over the last 5 

years to probe developmental trajectories, and predict the critical genes at each bifurcation 

along the trajectory [6–13].
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TI methods typically consist of a dimensionality reduction step and a trajectory-building 

step. The first step performs dimensionality reduction (PCA, ICA, t-SNE, and diffusion 

maps), clustering, and/or graph building to represent the cells in a reduced feature space, 

while maintaining the main characteristics of the data. In the second step, the cells are 

ordered along the simplified space in order to find a path through a series of nodes. 

Depending on the algorithm, the user may input different priors such as the initial cell or 

node or the topology of the trajectory [7].

Although most of the developed algorithms are able to handle multiple bifurcations, it is 

clear that the more complex the tissue of interest, the harder the reconstruction of the 

developmental trajectories of its constituent cells. Neuronal tissues are among the most 

complex ones, consisting of a great variety of neuronal cell types. While its complexity is 

what makes the neuronal tissue attractive for studying how diversity develops and evolves, it 

is this same complexity that makes it extremely difficult to study. Improving the depth of the 

sequencing in single cells and the number of available single cell transcriptomes are two 

factors that can facilitate the reconstruction of reliable developmental trajectories. Moreover, 

new developmental trajectory algorithms are being developed to accommodate leaps in the 

development of single cell sequencing technology and the constantly increasing amount of 

available data.

Once the developmental trajectories of a tissue in different species are defined, it becomes 

possible to figure out how cell types that are unique in one animal evolved. Differences in 

the developmental trajectories can pinpoint key splits in the trajectory of evolutionary related 

cells, indicate the mechanisms that led to the evolution of new cell types, and suggest 

transcription factors that differ between species and may have been involved in this split 

(Figure 3). But what is the significance of these regulators? How do they contribute to the 

generation of a new cell type? What are the genetic changes that led to the evolution of a 

new cell type?

CRISPR-induced mutations present the opportunity to test such regulators. Once the 

regulator that allows for the differentiation of a newly evolved cell type from its evolutionary 

related cell type is determined, one can look for genomic changes in its cis elements that 

may have changed its expression. One can then use CRISPR to exchange enhancers and try 

to force the generation of this cell type in a species where it doesn’t exist. This opens up 

other questions (e.g. the identification of cis and trans elements that influence the expression 

of genes in specific cell types), which can be addressed using available single cell chromatin 

accessibility techniques [48,49], and can give us a holistic understanding of how a new 

neuronal cell type evolved.

Conclusions

We present here how new single cell sequencing technologies and available algorithms can 

be used to probe neuronal cell type evolution in three steps (Figure 4): a) single cell 

sequencing of the same tissue in two different species, clustering, and cluster annotation, b) 

identification of homologous cell types, as well as cell types that are unique in one species, 

c) trajectory inference for the development of these cell types, comparison of the trajectories 
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in the two species, and identification and validation of candidate transcription factors that 

may be causing these different trajectories. This will give us the opportunity to address evo-

devo questions in a thorough manner, switching from candidate genes to unbiased large-

scale sequencing and from model to non-model organisms. As discussed here, important 

challenges remain, which will soon be possible to overcome with the fast improvements of 

single-cell sequencing technologies and computational algorithms. Cells are the product of 

their evolutionary and developmental history, which is reflected in their transcriptome. By 

reading their history, we will be able to reverse-engineer it to guide successful in vitro 
differentiation of pluripotent stem cells towards specific neuronal types.
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Highlights

– New sequencing technologies can define the transcriptome of any single cell 

type

– Algorithms can identify homologous cell types in different species

– New computational tools exist to infer developmental trajectories

– It is possible to pinpoint the role of transcription factors in the evolution of 

neuronal cell types

– It is a unique time to address developmental mechanisms that guide neural 

evolution
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Figure 1: Evolution of development of neuronal cell types.
Different events may lead to the evolution of new neuronal cell types. Duplication of a 

lineage doubles the amount of neurons that are generated from it; the duplicated neurons can 

then diversify from the ancestral ones and acquire new functions. The same is true in the 

case of lineage extensions, where the production of more neurons generates potential for cell 

speciation. Another alternative is the survival of apoptotic neurons that can then acquire 

distinct identities. New cell types are indicated by the horizontal stripes.
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Figure 2: Identification of homologous cell types.
Three different approaches can be used to match homologous cell types between different 

species: 1) one can use key features that define each neuronal type, e.g. the expression of 

specific neurotransmitter, neurotransmitter receptors, ion channels, cell adhesion molecules 

(CAMs), secreted proteins etc. If the different species’ cell types express the same functional 

molecules, they are most likely homologous. 2) Alternatively, one can select a core 

regulatory complex of transcription factors and compare their expression between cell types 

of different species. Homologous cell types should express the same transcription factor 
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fingerprint to regulate their phenotypic characteristics. 3) Finally, one could apply batch 

effect correction algorithms before comparing the different cell types between the two 

species, with the assumption that the effect of their independent evolution resembles a 

technical batch effect.
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Figure 3: Comparison of developmental trajectories between species.
After inferring developmental trajectories for the cell types of interest in two different 

species, one can compare these trajectories to identify the developmental mechanisms that 

led to the evolution of the new cell type. Based on the developmental trajectory, one can 

distinguish between cases of lineage duplication and extension, as well as instances where 

cells that undergo apoptosis in one species survive in the other, and define key splits in the 

trajectory of evolutionary related cells. Studying the differential expression of genes along 
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the trajectory, one can identify putative transcription factors that differ between species and 

may have been involved in the key splits.
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Figure 4: Overview of technologies and algorithms to probe neuronal cell type evolution.
To understand how neuronal cell types evolve, one can combine available single-cell 

sequencing techniques with powerful algorithms: A) Use massive parallel sequencing 

technologies to sequence every single cell in the tissue of interest in different species, 

clustering algorithms to group single cells in transcriptionally similar clusters and then 

annotate the clusters based on the expression of specific markers. B) Assign homologous 

cell types between different species (arrows) and identify cell types that are unique in one of 

them (asterisk). C) Draw developmental trajectories of species-specific cell types and their 
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evolutionary sister cells, compare the trajectories between the two species, and identify key 

genes that may have played a causal role in the evolution of these species-specific cell types. 

These genes can be then interrogated for their role using CRISPR driven knock-outs.
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