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Abstract

Motivation: Validation of variable selection and predictive performance is crucial in construction of

robust multivariate models that generalize well, minimize overfitting and facilitate interpretation of

results. Inappropriate variable selection leads instead to selection bias, thereby increasing the risk

of model overfitting and false positive discoveries. Although several algorithms exist to identify a

minimal set of most informative variables (i.e. the minimal-optimal problem), few can select all var-

iables related to the research question (i.e. the all-relevant problem). Robust algorithms combining

identification of both minimal-optimal and all-relevant variables with proper cross-validation are

urgently needed.

Results: We developed the MUVR algorithm to improve predictive performance and minimize

overfitting and false positives in multivariate analysis. In the MUVR algorithm, minimal variable

selection is achieved by performing recursive variable elimination in a repeated double cross-

validation (rdCV) procedure. The algorithm supports partial least squares and random forest mod-

elling, and simultaneously identifies minimal-optimal and all-relevant variable sets for regression,

classification and multilevel analyses. Using three authentic omics datasets, MUVR yielded

parsimonious models with minimal overfitting and improved model performance compared with

state-of-the-art rdCV. Moreover, MUVR showed advantages over other variable selection algo-

rithms, i.e. Boruta and VSURF, including simultaneous variable selection and validation scheme

and wider applicability.

Availability and implementation: Algorithms, data, scripts and tutorial are open source and avail-

able as an R package (‘MUVR’) at https://gitlab.com/CarlBrunius/MUVR.git.

Contact: shlin@chalmers.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

State-of-the-art ‘omics’ technologies, such as genomics, proteomics

and metabolomics, generate large and/or high-dimensional data

(Meng et al., 2016; Patti et al., 2012) that can be used to identify

biomarkers (Shi et al., 2018), characterize biochemical systems

(Fondi and Liò, 2015; Li, 2013) and reveal insights into the mecha-

nisms of pathophysiological processes (Smith et al., 2014; Tanaka

and Ogishima, 2011). Supervised multivariate modelling, e.g. partial
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least squares analysis (PLS) and random forest (RF), is often used to

cope with complex data and assess the importance of variables,

thereby facilitating selection of relevant variables into biologically

meaningful interpretations (Afanador, 2016; Yi et al., 2016).

Although designed for multivariate analyses, these methods could

benefit from a compact data structure with non-redundant predic-

tors, by offering decreased computation time, improving the predict-

ive performance and avoiding overfitting, as well as simplifying data

interpretation (Fox et al., 2017; Mehmood et al., 2012). Variable

selection is an important, albeit challenging, element which contrib-

utes to construction of parsimonious models, meaning simple mod-

els with great and robust explanatory predictive power (Saeys et al.,

2007; Vandekerckhove et al., 2014).

Most variable selection techniques are designed to identify a

minimal set of strongest predictors associated with a research ques-

tion, i.e. the minimal-optimal problem (Nilsson et al., 2007). This

strategy may be particularly useful to identify potential diagnostic,

predictive or prognostic biomarkers of disease or exposures (Saeys

et al., 2014). Only a limited number of algorithms have been tail-

ored for identifying all variables of relevance to the analytical prob-

lem, i.e. the all-relevant problem, including weak and redundant

attributes, but avoiding inclusion of noisy, uninformative variables

(Nilsson et al., 2007; Rudnicki et al., 2015). This strategy is of par-

ticular interest to understand complicated biochemical systems and

to uncover mechanisms of e.g. pathophysiological or metabolic

processes. All-relevant algorithms are mostly designed based on

ensembles of decision trees, e.g. Boruta (Kursa and Rudnicki, 2010)

and VSURF (Genuer et al., 2015).

Existing variable selection techniques are mainly dedicated to re-

gression and/or classification tasks applied to independent data

structures (e.g. Hapfelmeier and Ulm, 2013; Mehmood et al., 2012;

Saeys et al., 2014). However, in many situations, e.g. in clinical and

nutritional cross-over or time-series studies, multilevel data analysis

could deal with dependent data structures (Velzen et al., 2008;

Westerhuis et al., 2010) and helps to better dissect the treatment

effects within subject separately from the biological variation be-

tween subjects. To date, multilevel data analysis has been limited to

PLS modelling and, to the best of our knowledge, has not been per-

formed using RF. In addition, no previous study has investigated

how implementation of variable selection affects multilevel model-

ling performance.

It is also noteworthy that many existing variable selection techni-

ques may suffer from selection bias, consequently inducing under-

estimation of error rates and leading to general model overfitting

(Krawczuk and Łukaszuk, 2016). Such selection bias occurs when

variable selection is carried out based on some or all of the samples

used to estimate the prediction error in cross-validation scheme,

which is frequently applied to optimize model parameters and to

evaluate model performance (e.g. Ambroise and McLachlan, 2002;

Baumann and Baumann, 2014; Christin et al., 2013; Filzmoser

et al., 2009). Although a few variable selection-within-validation

schemes have been proposed to reduce selection bias (Boulesteix,

2007; Correa and Goodacre, 2011; Gregorutti et al., 2015), the

number of freely available, easy-to-use algorithms is limited.

Moreover, no algorithm has implemented variable selection within

repeated double cross validation (rdCV), a procedure that was

shown to give more reliable estimations of prediction errors than

several other commonly used validation approaches, such as k-fold

and leave-n-out (Filzmoser et al., 2009; Krstajic et al., 2014).

We therefore introduce an algorithm for multivariate modelling

with minimally biased variable selection in R (MUVR), an easy to

use variable selection-within-rdCV framework for multivariate

modelling. MUVR is particularly useful for underdetermined data,

i.e. where the number of variables outweigh the number of observa-

tions. It allows for both PLS and RF core modelling and supports

regression and classification, as well as multilevel modelling to man-

age data with dependent structures. The aims of the present study

were: i) to describe the working principle of MUVR; ii) to compare

MUVR with rdCV without variable selection in terms of model per-

formance and degree of model overfitting; and iii) to compare

MUVR with Boruta and VSURF.

2 Materials and methods

2.1 Datasets
Freelive. Detailed information on study design and metabolomics

data acquisition is provided elsewhere (Hanhineva et al., 2015). In

brief, free-living participants with no diagnosed or perceived gastro-

intestinal diseases or symptoms were invited to participate and

instructed to adhere to their habitual diet. Untargeted LC-qTOF-MS

metabolomics was performed on urine samples. The dataset con-

sisted of reported wholegrain rye consumption (continuous Y vari-

able) from 112 observations (58 unique participants; two

individuals had samples from one occasion available), codes for in-

dividual (numerical ID variable) and 1, 147 features as X matrix (a

molecular entity with a unique m/z and retention time as measured

by an LC-MS instrument).

Mosquito. This dataset is described in detail by Buck et al.

(2016). Anopheles gambiae mosquitoes were collected from three

villages in western Burkina Faso and whole-body bacterial flora was

analyzed by 16S amplicon sequencing. In total, 29 observations

were available for village of capture (categorical Y variable; three

levels) and 1678 16S operational taxonomic units (OTU, X matrix).

For each sample, the number of reads per OTU was rarefied to the

lowest number of reads per sample. However, owing to the non-

continuous nature of 16S data, leading to a high degree of data scar-

city, 940 OTUs showed near-zero variance. PLS was therefore

performed on a subset with 738 OTUs only.

Crisp. The study design is described elsewhere (Zamaratskaia

et al., 2017). In brief, rye and wheat crispbreads were consumed as

part of isocaloric breakfast interventions in a cross-over design.

Untargeted UHPLC-qTOF-MS metabolomics was performed on

plasma samples from 20 randomly selected individuals and six time

points. Feature signals were numerically integrated using the trapez-

oidal rule to obtain area-under-the-curve values (AUCs) for all fea-

tures. This dataset contained 20 subjects (Y, sample ID) and AUCs

of 1587 features as X matrix.

2.2 Algorithm description
The MUVR algorithm is based on nesting a recursive variable rank-

ing and backward elimination at an intermediate level between

the outer and inner cross-validation loops of an rdCV procedure

(Fig. 1).

2.2.1 Sample independence within MUVR

To reduce risk of model overfitting and false positive discoveries in

the validation scheme, it is crucial to ensure sample independence

between testing, validation and training data segments (Varoquaux

et al., 2017), particularly for studies with repeated measures or a

cross-over design. For instance, it is often seen in clinical studies that

multiple measurements are taken per participant. These measure-

ments are then dependent and should therefore be co-sampled dur-

ing segmentation. To meet this demand, the MUVR algorithm
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allows a subject identifier (‘ID’) as input parameter. If not specified,

observations are considered independent, which is the default and

usually the only available option in commercial and conventional

software and packages.

2.2.2 Variable selection procedure

Variable ranking and selection are performed in the inner validation

loop and final model performance is then assessed using observa-

tions in the test segment that is never used for model training or

tuning.

In each of the inner training models, variables are ranked by de

facto standard techniques, i.e. variable importance of projection

(VIP) for PLS analysis (Mehmood et al., 2011) and mean decrease in

Gini index (classification) or mean decrease in accuracy (regression)

for RF analysis (Strobl et al., 2007). For each iteration of the vari-

able tuning, variable ranks are averaged between the inner models.

After averaging, a user-specified proportion (varRatio) of the varia-

bles is maintained from the data matrix before the next iteration,

where inner segments are again randomly sampled to decrease bias

to individual segments. Model performance is then estimated from

predictions of the untouched test segments, using the number of

selected variables (and optimal number of components for PLS mod-

elling) determined by consensus from all inner observations.

Arbitration of model performance in variable tuning within the

inner validation loop is performed using different fitness functions

specifically adapted to the problem type: Root mean square error of

prediction (RMSEP) for regression and number of misclassifications

(MISS) for multilevel or general classification analysis (two or more

classes). The area under the receiver operation characteristics curve

(AUROC) and balanced error rate (BER) are supported as optional

fitness metrics for classification.

For each inner segment, three different consensus models (i.e.

‘min’, ‘mid’ and ‘max’) with similar model fitness are returned. The

‘min’ and ‘max’ models correspond to the minimal-optimal and all-

relevant predictors, respectively, while ‘mid’ corresponds to the geo-

metric mean of the max and min number of variables. The number

of variables for ‘min’ and ‘max’ model is determined based on

averaged validation performance per repetition and overall. Using

misclassifications as a fitness metric, all three models share the same

optimum fitness response during validation. However, to obtain ro-

bust results while taking into account the higher resolution and ran-

dom variability in RMSEP and AUROC metrics, the criterion for

finding ‘min’ and ‘max’ models includes a permitted 5% deviation

from optimum fitness. The ‘min’, ‘mid’ and ‘max’ models thus share

the same (or similar) prediction performance within permitted devi-

ation during validation. These models are created nRep (number of

repetitions) � nOuter (number of outer test segments) times for pre-

diction of test segment observations, ensuring that test segment

observations are never used for model training or tuning. For final

estimation of fitness and model predictive ability, Q2 is used for

regression analysis, facilitating interpretation of modelling fitness,

regardless of the scale of the original dependent variable (upper

bounded by 1 for perfect prediction). This is in contrast to the inner

validation loop, where RMSEP estimates fitness in the original re-

sponse scale and is thus suitable for averaging. The number of mis-

classifications is used for classification and multilevel analysis.

2.2.3 Key parameters of MUVR

Key parameters of MUVR include nRep, nOuter, nInner (number of

inner validation segments) and the ratio of variables maintained in

the data per iteration during variable elimination (varRatio). All

these parameters can easily be tuned by users. Filzmoser et al.

(2009) suggested nRep¼100, nOuter¼7, nInner¼4 for rdCV.

Since the MUVR algorithm is more computationally demanding

than rdCV, due to the nested recursive variable elimination, an

increasing number of segments will increase computation time and

thus compromises are necessary. As a general principle in classifica-

tion analysis, it is advisable to ensure that each class is represented

in each segment at least once, effectively resulting in an upper bound

of the number of segments. We thus suggest 6�nOuter�8 and

nInner¼nOuter-1 for MUVR, which tends to result in robust model-

ling. However, it is likely that parameter settings are dependent on

context and the nature of the data, and more research is needed to

extend parameter recommendations to full generalizability.

Since the MUVR framework is built upon repeated random seg-

mentation of observations in combination with recursive elimination

of the least informative variables, key parameters of MUVR such as

nRep and varRatio may introduce variability into modelling and

Fig. 1. Working principle of MUVR. (A) Graphical representation of the MUVR algorithm. The original data are randomly subdivided into OUTER segments. For

each outer segment, the remaining (INNER) data are used for training and tuning of model parameters, including recursive ranking and backward elimination of

variables. Each outer segment is then predicted using an optimized consensus model trained on all inner observations, ensuring that the holdout test set is never

used for training or tuning modelling parameters. The procedure is then repeated for improved modelling performance. (B) Pseudocode of the MUVR algorithm
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thus potentially influence final modelling outputs, such as number

and order of selected variables and goodness-of-fit (Filzmoser et al.,

2009). We therefore investigated the effects of nRep and varRatio

on modelling performance using 0.50�varRatio�0.95 and up to

100 repetitions.

In addition, the user can easily select the core multivariate mod-

elling technique [‘PLS’ or ‘RF’ (default)] and fitness function for

model tuning. When the multilevel function (parameter

‘ML¼TRUE’) is used, core modelling applies on the within-subject

variation matrix (Velzen et al., 2008).

2.2.4 Evaluation of stability of variable selection using MUVR

A permutation-by-class approach was designed to examine the sta-

bility of variable selection, not only in terms of separating inform-

ative variables from noisy data, but also for successfully

distinguishing optimal from informative but redundant variables.

We investigated stability of selection for variables in the minimal-

optimal (‘min’) and all-relevant (‘max’) sets using MUVR-PLS mod-

elling of the ‘Mosquito’ data (classification). Variables of the origin-

al model were classified as ‘optimal’ if belonging to the ‘min’ model,

‘redundant’ if belonging to the ‘max’ but not the ‘min’ model and

‘noisy’ otherwise. Four new analyses were then performed to investi-

gate the effect of permuting distinct variable classes on variable clas-

sifications. These were: i) permuted optimal variables substituted for

the original optimal variables; ii) permuted redundant variables sub-

stituted for the original redundant variables; iii) permuted noisy var-

iables substituted for the original noisy variables; and iv) permuted

optimal variables added to all the original data. The variables from

the four new models were then reclassified into optimal, redundant

and noisy and cross-tabularized against their original classes.

2.3 Other variable selection methods
Boruta and VSURF were compared with MUVR. Boruta is an all-

relevant wrapper variable selection that determines variable rele-

vance by comparing the relevance of the real variables with that of

random probes. Variable selection using VSURF performs a stepwise

forward selection of variables for interpretation (VSURF-I) or pre-

diction (VSURF-P). Boruta and VSURF were applied using default

parameter settings. The final choices of variables selected by Boruta

and VSURF for optimum model performance were assessed by

rdCV, i.e. Boruta-rdCV and VSURF-rdCV.

2.4 Assessment of model performance and overfitting
Each of the investigated variable selection methods was applied on

the three authentic datasets designed to i) identify urinary bio-

markers of wholegrain rye intake using regression analysis

(‘Freelive’ data); ii) classify mosquitoes into village of capture

according to their microbiome makeup using classification analysis

(‘Mosquito’ data); and iii) discover intra-individual differences in

the metabolome between consumption of whole-grain rye crisp-

bread and refined wheat bread in a cross-over intervention using

multilevel analysis (‘Crisp’ dataset). Multilevel analysis was per-

formed on an effect matrix calculated as EM ¼ XRye – XWheat, where

X denotes the AUC of plasma metabolites measured for each inter-

vention (Velzen et al., 2008; Westerhuis et al., 2010). This Crisp

EM was then provided as the X argument in MUVR. In the present

work, the ‘Mosquito’ OTU counts were log-transformed, mean cen-

tred and autoscaled per sample, using the ‘preProcess()’ function

implemented in MUVR, while ‘Freelive’ and ‘Crisp’ metabolomics

data were autoscaled internally to the training data in each PLS sub-

model. The ‘preProcess’ function allows for various data pre-

processing options, e.g. transformation, scaling and centreing (see

tutorial at https://gitlab.com/CarlBrunius/MUVR.git).

MUVR, Boruta-rdCV, VSURF-rdCV and rdCV were each

applied on the three omics datasets. To simplify interpretation,

results from the ‘mid’ model of MUVR, representing a compromise

between minimal-optimal and all-relevant variable selections, were

used for between-model comparisons. For fitness estimation, Q2

was used for regression analysis, whereas number of misclassi-

fications was used for classification and multilevel analysis.

Permutation tests were used for assessing modelling performance

(Lindgren et al., 1996). Permutations were obtained by repeated

random sampling of the original Y variable and thereafter modelling

original X matrix on permuted Y responses, thus obtaining a popu-

lation of fitness metrics corresponding to a null hypothesis distribu-

tion. It was then assumed that the population of fitness metrics from

random permutations had a Gaussian t-distribution and permuta-

tion P-values were calculated as the cumulative 1-tailed probability

of achieving the actual model fitness in the t-distribution. In cases

where the assumption of Gaussianity was refuted by e.g. visual in-

spection of the null hypothesis distribution and/or frequentist tests

such as Shapiro-Wilk test and Anderson-Darling test, fitness metrics

of actual model and null hypothesis distribution were rank-

transformed prior to calculations, thus resulting in non-parametric

P-values. The MUVR package provides functions for permutation

analyses, including plotPerm (plots to inspect assumption of

Gaussianity) and pPerm (to calculate P-values).

2.5 Software and hardware
The MUVR algorithm is available in the R package ‘MUVR’, which

is freely available together with data, scripts and tutorial at https://

gitlab.com/CarlBrunius/MUVR.git. The algorithm currently sup-

ports PLS and RF core methods as implemented in the ‘mixOmics’

and ‘randomForest’ R packages. All model calculations except per-

mutation analyses were performed on a HP Elitebook with an Intel

i7-3687U processor. Permutation analyses were performed using

resources provided by the Uppsala Multidisciplinary Centre for

Advanced Computational Science (https://www.uppmax.uu.se/). A

function for rdCV is available at https://gitlab.com/CarlBrunius/

rdCV.git, of which key parameters and variable ranking approaches

are the same as in MUVR, but without ‘varRatio’.

3 Results and discussion

The MUVR algorithm is a novel and easy-to-use statistical valid-

ation framework, incorporating a recursive variable selection pro-

cedure within an rdCV scheme, to cope with datasets where

the number of variables outweighs the number of observations.

MUVR allows for PLS and RF core modelling, effectively selects

both minimal-optimal variable sets and all-relevant variables for re-

gression, classification and multilevel analyses, and yields parsimo-

nious models with minimal variable selection bias and model

overfitting.

3.1 MUVR identified all-relevant and minimal-optimal

predictors
Variables are first ranked in the inner training model by de facto

standard ranking techniques for both PLS and RF. By averaging

variable ranks over the inner segments before variable reduction in

each recursive backwards elimination step, potential overfitting that

may occur during model training and variable ranking is minimized.

This recursive variable elimination is reflected in the validation
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curve (Fig. 2). Regardless of the problem type (i.e. regression, classi-

fication and multilevel) and core modelling applied (i.e. PLS and

RF), variable reduction from the entire data to the ‘max’ model ef-

fectively resulted in removal of noise until optimal validation per-

formance, as measured by the fitness function, was obtained. In PLS

modelling, the proportion of noisy variables removed represented

more than 90% of variables in the original dataset. For RF model-

ling, these proportions were even higher (Fig. 2, Supplementary

Table S1). Further variable reduction from the ‘max’ (all-relevant)

model down to the ‘min’ model (removal of ‘redundant’ variables),

maintaining validation performance, indicates dismissal of inform-

ative but redundant variables. This could correspond to a maximum

of biologically relevant information carried by the optimal variables

that can therefore be considered to provide maximum information

density. The ‘min’ model of the datasets investigated represented a

further reduction of about 60–95% of the variables from the ‘max’

model (Fig. 2, Supplementary Table S1). Further variable reduction

increased model prediction errors, probably due to elimination of

genuinely relevant, non-redundant information. It should be noted

that although validation curves per segment may fluctuate, valid-

ation curves per repetition and overall are based on averaging seg-

mentation curves for higher resolution to better describe the actual

validation performance.

MUVR also provides a ‘mid’ model solution, which represents a

compromise between the minimal-optimal and all-relevant solu-

tions. On a theoretical curve representing the true modelling per-

formance during recursive variable removal (Fig. 2), the ‘min’ and

‘max’ models represent limits outside which the prediction accuracy

rapidly decreases. From a practical perspective, the ‘mid’ model con-

sists of strong predictors but with some redundancy, and may be

useful e.g. in situations where alternatives to the strongest individual

predictors may be desired. This may occur e.g. when identifying

biomarkers of exposure, if the strongest individual predictors (from

the ‘min’ model’) are known to be perturbed by several different fac-

tors and are thus not specific to the research question. It is note-

worthy that the variable ranking technique is not used primarily to

identify the single most predictive variables, but rather as a tool to

identify variables that contribute least to modelling performance

and should therefore be removed prior to the next iteration.

Consequently, the final choice of variables is based on the validation

performance of the constructed models, rather than ranking techni-

ques. Moreover, variable selection is not at all performed on a per-

variable basis and should thus be considered a truly multivariate

variable selection technique. It could therefore be argued that the

effects of the choice of variable ranking technique are diluted in the

selection procedure, but this remains to be investigated in detail.

In addition, the ‘max’ model offers an all-relevant solution corre-

sponding to a maximum of biologically relevant information. It

should, however, be noted that ‘optimal’ and ‘redundant’ in this

sense refer to the data analysis and that instrumental or other arti-

facts may introduce discrepancies between data analysis and under-

lying biology. The redundant variable set does not imply less

important from a biological point of view. But rather, that the infor-

mation contained in the variable was already present in the model in

the ‘optimal’ set, thereby failing to provide additional information

in model prediction (Supplementary Figs S1 and S2).

Importantly, MUVR identified biologically relevant signals from

the analytically optimal variables (Buck et al., 2016; Hanhineva

et al., 2015; Shi et al., 2017, 2018). Specifically, metabolites selected

from the ‘Freelive’ data were found to be putative dietary bio-

markers of rye consisting of e.g. phenolic acids that are mainly

bound to arabinoxylans in the bran, phenolic lipids (e.g. alkylrecor-

cinols) found in the outer cuticle of testa/inner curricula of pericarp,

phenylacetamides previously suggested as potential biomarkers of

rye-rich diet, as well as novel carnitine structures reflecting the meta-

bolic impact of rye consumption (Supplementary Table S2)

(Hanhineva et al., 2015). The top OTUs selected from the mosquito

data contributed to 90% successful classification (Supplementary

Table S1), reflecting different life stages of the An. Gambiae mos-

quito: Wolbachia was maternally inherited via the egg and thus

reflected the locality of females (mothers) from the previous gener-

ation; Shewanella and Massilia sequences were likely obtained in

breeding sites during the larval stage, whereas the Acinetobacter

sequences suggest that the nectar sources for the adults differ (Buck

et al., 2016). Moreover, using the ‘Crisp’ data, 66 out of 1584

metabolomics features successfully discriminated rye intake from

wheat crispbreads intake (MUVR-PLS, ‘min’ model) in a study ma-

terial which had already shown differences in appetite, plasma glu-

cose and insulin concentrations after consumption of rye crispbread

versus wheat crispbread (Zamaratskaia et al., 2017). Further studies

are needed to identify these discriminative metabolites to gain mech-

anistic insights into appetite and glucose regulation. In addition,

MUVR was applied to identify predictive biomarkers of type 2 dia-

betes in a large-scale nested case–control study, providing biologic-

ally meaningful results and interpretation (Shi et al., 2018). These

findings confirm that MUVR has extracted biologically meaningful

information from massive OMICs data and addressed specific bio-

logical problems in various studies.

3.2 Stability of variable selection using MUVR
Regardless of varRatio setting, modelling outcomes showed variabil-

ity between repetitions (Supplementary Fig. S3). After 10–20 repeti-

tions, fluctuations in output parameters were attenuated and

Fig. 2. MUVR validation plots for identification of the all-relevant (‘max’

model) and minimal-optimal (‘min’ model) variables on three datasets: (A)

‘Freelive’, regression; (B) ‘Mosquito’, classification; (C) ‘Crisp’, multilevel.

Results are presented for PLS (left) and random forest (right). Validation plots

can be generated using the MUVR ‘plotVAL’ function
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stability was seemingly obtained after 50–100 repetitions, as shown

for the ‘min’ PLS model of the classification problem. The stability

included fitness (number of misclassifications), number of selected

variables and the actual variables selected. The number of misclassi-

fications was not noticeably affected by the varRatio setting.

Interestingly, there was a negative correlation between varRatio and

the number of selected variables in the ‘min’ model even after 50

repetitions, where stability of outcomes was assumed, although the

variables selected at the higher varRatio setting were always present

at lower varRatio settings (‘Proportion of selected variables’ in

Supplementary Fig. S3). These results indicate that a higher

varRatio may result in a higher degree of parsimony for the

minimal-optimal solution. By removing smaller proportions of vari-

ables per iteration, the variable ranking is limited to identifying only

the poorest predictors. Then, by using model fitness for arbitration,

the effects of the method for ranking are diluted. The same general

trend of increased parsimony with higher varRatio was observed for

all data types and for both PLS and RF core modelling (data not

shown). In addition, with increasing varRatio, smaller proportions

of poorer predictors would be removed per iteration and the compu-

tation time would thus increase. Therefore, our general recommen-

dation is therefore to use nRep�15 and 0.5�varRatio�0.75 for

initial analysis and, if showing results of relevance to the analytical

problem (i.e. high Q2 or low number of misclassifications), later in-

crease nRep�50 for reproducible results and varRatio�0.9 for a

higher degree of parsimony for the minimal-optimal solution.

To further examine the stability of variable selections, variables

from the MUVR-PLS classification problem were permuted by class

(i.e. optimal, redundant or noisy) (Fig. 3). Replacing optimal varia-

bles with permuted variables was expected to promote the strongest

predictors from the redundant to the optimal category: With the

removal of the 31 strongest predictors (i.e. the optimal variables)

from the data, 36 out of 52 redundant variables were expectedly

promoted to the optimal category (Fig. 3). In contrast, permuting

redundant or noisy variables resulted in only limited migration of

variables between categories in most cases, indicating the robustness

of MUVR in variable selection. Migration of variables between cate-

gories occurred primarily between the redundant and noisy catego-

ries, most likely reflecting borderline status of some variables, which

may contain relevant information, but have low signal-to-noise ratio.

As expected, adding permuted optimal variables (n¼31) did not in-

fluence the original classification of variables. Moreover, 26 out of 31

permuted variables were classified as noisy, while 5 were classified as

redundant. This might be attributed exclusively to random permuta-

tions causing systematic patterns due to the small sample size (n¼29;

Supplementary Fig. S4). Substitution of permuted variable categories

for the original variables showed similar effects as above on the distri-

bution of permuted variables between classes, i.e. with a minor

amount of additional optimal and redundant permuted variables due

to random effects from resampling. Our results highlight the potential

impact of false positive findings in small datasets and indicate that

even the most careful cross-validation scheme may not be able to fully

safeguard against overfitting in under-determined systems with a low

number of samples (Rao and Fung, 2006; Varoquaux, 2017).

3.3 MUVR improved model performance without

increasing overfitting
Selection bias has been reported when a given dataset is used for

both variable selection and assessment of model performance, in

turn leading to biased estimates and an increasing risk of false-

positive discoveries due to overfitting (Ambroise and McLachlan,

2002; Castaldi et al., 2011; Cawley and Talbot, 2010; Krawczuk

and Łukaszuk, 2016). Benefitting from the rdCV scheme, MUVR

minimizes selection bias by performing variable selection and tuning

of model parameters in the inner segments, followed by assessment

of modelling performance using outer loop data held out of model

construction and variable reduction. The risk of overfitting to indi-

vidual validation segments is thus effectively minimized by averag-

ing variable ranks among inner models.

Despite this, all observations from the inner data are used to fit

the consensus model per outer segment, which may theoretically in-

duce selection bias and model overfitting during variable selection.

However, such overfitting was not observed (Fig. 4). In contrast,

MUVR compared with rdCV markedly improved model perform-

ance (higher Q2 for regression or lower number of misclassifications

for classification and multilevel analyses), without increasing the risk

of general model overfitting, as demonstrated by increased distance

between actual model fitness and random permutation (Fig. 4). This

was further confirmed by an additional analysis: MUVR was per-

formed on a training-set (n¼40 samples) randomly selected from the

‘Freelive’ data, and was validated on the rest of samples (n¼18). No

difference in Q2 was observed between models constructed using all

samples (n¼58, Q2¼0.61) or the subset of samples (Q2¼0.60), sup-

porting the robustness of MUVR (Supplementary Table S3). Taken

together, our findings confirmed that MUVR resulted in minimal

selection bias, in practice leading to potentially unbiased variable

selection, as indicated by the lack of overfitting examined from the

extensive series of permutation tests.

Notably, modelling performance was not improved for MUVR-

RF classification and multilevel, which gave similar (or slightly

worse) results than those obtained using rdCV-RF, but with a dra-

matic reduction in the variable space (see ‘MUVR-PLS versus

MUVR-RF’ section for details).

3.4 MUVR-PLS versus MUVR-RF
MUVR currently supports PLS and RF as core modelling techniques,

which have been extensively applied in omics and in biostatistics

Fig. 3. Flowchart of the permutation-by-class approach and the reclassification

of variables from the MUVR-PLS classification on ‘Mosquito’ data using permu-

tations-by-class approach. The ‘Optimal’ variable set is selected in the MUVR

‘min’ model. The ‘Redundant’ variable set belongs to the all-relevant variable set

selected in the MUVR ‘max’ model, but not belonging to the minimal-optimal

variable set. The ‘Noisy’ variable set contains presumably uninformative varia-

bles that are not selected in the MUVR ‘max’ model. The permuted variable

refers to the distinct variable class after permutation. Details are given in 2.2.4
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(Gorrochategui et al., 2016; Gromski et al., 2015). The strengths

and weakness of PLS and RF are well summarized elsewhere (see

e.g. Gromski et al., 2015). It should be noted that RF is scale-

invariant and is also insensitive to monotonous variable transforma-

tions, such as log- or square root transformation. In contrast, PLS is

sensitive to data pre-processing. At present, we autoscaled data in-

ternally to the training data in each PLS sub-model (the default in

MUVR PLS core modelling), thereby potentially decreasing risk of

overfitting. MUVR also allows the user to perform any other scaling

procedures priori to modelling (i.e. by manually scaling according to

user preference and then setting internal scaling to ‘FALSE’.).

Although PLS may have benefits over RF for visualization and

interpretation of results, the RF core modelling yielded more robust

and parsimonious models without compromising model perform-

ance for all three datasets tested in the present work, corresponding

to the three problem types most frequently encountered in biostatis-

tical analysis, i.e. regression, classification and multilevel analysis

(Fig. 4, Supplementary Fig. S5; Supplementary Table S1). For the

data investigated, the number of variables selected by MUVR-RF

was smaller than for MUVR-PLS, but with considerable overlap be-

tween the variable sets (Supplementary Fig. S6). Strong correlations

between the variable sets selected by PLS and RF were also observed

(Supplementary Figs S7–S9).

Even though MUVR-PLS showed higher Q2 for the regression

task than MUVR-RF, a much larger discrepancy between R2 and Q2

was obtained, indicative of a higher degree of general overfitting

(Supplementary Table S1, Supplementary Fig. S5). Our findings in-

dicate that the developed variable selection procedure effectively

minimizes model overfitting, but cannot fully optimize variable se-

lection if the core modelling technique applied is prone to overfitting

and up-weighing a large number of redundant variables with a high

degree of inter-correlations, as is the case with component-based

methods like PLS (Gromski et al., 2014, 2015). RF does not assume

latent variables or linear dependencies of variables with the re-

sponse. Instead, it gives priority to information complementarity be-

tween variables, which may explain the increased parsimony

compared with PLS. Moreover, to the best of our knowledge, multi-

level data analysis combined with RF modelling has not been

performed previously. Compared with multilevel MUVR-PLS,

MUVR-RF did not improve actual classification results. However,

the distance between actual model fitness and random permutations

was increased, thus indicating decreased general overfitting and

increased confidence in observed findings (Fig. 4).

In addition, RF makes no assumptions about underlying

Gaussian variable distributions and thus effectively manages discon-

tinuous and near-zero variance variables frequently present in e.g.

microbiota data (such as the ‘Mosquito’ data). However, the RF al-

gorithm was computationally more intensive, which becomes espe-

cially noticeable in complex validation schemes (Supplementary

Table S1). The computational efficiency is of course highly depend-

ent not only on core methodology, but also on implementation

(Wright and Ziegler, 2015) and future generations of the MUVR al-

gorithm may thus improve on computational efficiency. It is worth

mentioning that we base our comparison between PLS and RF on

limited data and our results and interpretations can therefore not be

extended to the general case before extensive validation on multiple

other datasets.

3.5 MUVR versus Boruta and VSURF
Boruta and VSURF resulted in selection of much fewer variables

compared with MUVR (Supplementary Table S4), regardless of

dataset. Considerable overlap between variables selected by MUVR-

RF and those chosen by Boruta and VSURF was observed for regres-

sion and classification analyses (Supplementary Fig. S10). It is likely

that Boruta and VSURF could successfully identify informative vari-

ables, but these methods may be over-stringent, potentially increas-

ing the risk of false-negative findings. This was also supported by

the fact that both Boruta and VSURF were unable to select any

variables at all in over 80% of permutations in classification

(data not shown) and Boruta failed to identify any variables in

multilevel data structure. For the regression task, permutation ana-

lysis strongly suggests increased overfitting using Boruta compared

with MUVR, since the distance between actual model performance

and the random permutation distribution was markedly reduced

(Supplementary Fig. S11). Moreover, the VSURF algorithm was ex-

tremely computationally intensive for high-dimensional datasets in

regression tasks, so permutation analysis could not be undertaken

and investigation into model overfitting was consequently not

Fig. 4. Performance of MUVR or repeated double cross-validation models

(rdCV) built from actual data and random permutations for three datasets: (A)

‘Freelive’, regression; (B) ‘Mosquito’, classification; (C) ‘Crisp’, multi-level. The

performance distributions of random permutations are represented as violin

plots, with the asterisks representing actual model performance (Q2 for regres-

sion, number of misclassifications for classification and multilevel analysis)
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possible. The applicability of these algorithms in omics research

might be limited.

It is also worth noting that Boruta and VSURF enable variable

selection, but some form of cross-validation is still required to avoid

selection bias and to assess prediction performance. In this respect,

MUVR is more easy to use and efficient, allowing for simultaneous

variable selection and validation with minimized selection bias. It

should be mentioned that we applied Boruta and VSURF with de-

fault parameters on limited datasets and tuning of key parameters of

algorithms, e.g. number of decision trees and measures of variable

importance may affect variable selection performance. A more thor-

ough comparison between different types of optimized methods for

variable selection is highly warranted, but was beyond the scope of

the present work.

4 Concluding remarks

We developed the MUVR algorithm, a novel cross-validation frame-

work incorporated with variable selection. MUVR provides effect-

ive, stable and minimally biased selection of biologically meaningful

variables in multivariate modelling. MUVR currently supports PLS

and RF core modelling techniques and allows for regression, classifi-

cation and multilevel modelling, which are the most frequent data

analysis tasks from different study designs. Using authentic omics

datasets, we showed that the MUVR algorithm provides advantages

over state-of-the-art rdCV in terms of prediction accuracy, general

overfitting and selection of informative variables. Although applic-

able to several types of data, MUVR is especially useful for data

where the number of variables outweighs the number of samples, as

often obtained in ‘omics’ studies.
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Fondi,M. and Liò,P. (2015) Multi -omics and metabolic modelling pipelines:

challenges and tools for systems microbiology. Microbiol. Res., 171, 52–64.

Fox,E.W. et al. (2017) Assessing the accuracy and stability of variable selec-

tion methods for random forest modeling in ecology. Environ. Monit.

Assess, 189, 1–20.

Genuer,R. et al. (2015) VSURF: an R package for variable selection using ran-

dom forests. R J. Journal., 7, 19–33.

Gorrochategui,E. et al. (2016) Data analysis strategies for targeted and untar-

geted LC-MS metabolomic studies: overview and workflow. TrAC Trends

Anal. Chem., 82, 425–442.

Gregorutti,B. et al. (2015) Grouped variable importance with random forests

and application to multiple functional data analysis. Comput. Stat. Data

Anal., 90, 15–35.

Gromski,P.S. et al. (2014) A comparative investigation of modern feature se-

lection and classification approaches for the analysis of mass spectrometry

data. Anal. Chim. Acta, 829, 1–8.

Gromski,P.S. et al. (2015) A tutorial review: metabolomics and partial least

squares-discriminant analysis – a marriage of convenience or a shotgun wed-

ding. Anal. Chim. Acta, 879, 10–23.

Hanhineva,K. et al. (2015) Discovery of urinary biomarkers of whole grain

rye intake in free-living subjects using nontargeted LC-MS metabolite profil-

ing. Mol. Nutr. Food Res., 59, 2315–2325.

Hapfelmeier,A. and Ulm,K. (2013) A new variable selection approach using

Random Forests. Comput. Stat. Data Anal., 60, 50–69.

Krawczuk,J. and Łukaszuk,T. (2016) The feature selection bias problem in re-

lation to high-dimensional gene data. Artif. Intell. Med., 66, 63–71.

Krstajic,D. et al. (2014) Cross-validation pitfalls when selecting and assessing

regression and classification models. J. Cheminform., 6, 1–15.

Kursa,M.B. and Rudnicki,W.R. (2010) Feature selection with the Boruta

Package. J. Stat. Softw., 36, 1–13.

Li,H. (2013) Systems genetics in ‘-omics’ era: current and future development.

Theory Biosci., 132, 1–16.

Lindgren,F. et al. (1996) Model validation by permutation tests. J. Chemom.,

10, 521–532.

Mehmood,T. et al. (2011) A Partial Least Squares based algorithm for parsimoni-

ous variable selection. Algorithms Mol. Biol., 6, doi: 10.1186/1748-7188-6-27.

Mehmood,T. et al. (2012) A review of variable selection methods in Partial

Least Squares Regression. Chemom. Intell. Lab. Syst., 118, 62–69.

Meng,C. et al. (2016) Dimension reduction techniques for the integrative ana-

lysis of multi-omics data. Brief Bioinform., 17, 628–641.

Nilsson,R. et al. (2007) Consistent feature selection for pattern recognition in

polynomial time. J. Mach. Learn. Res., 8, 589–612.

Patti,G.J. et al. (2012) Metabolomics: the apogee of the omics trilogy. Nat.

Rev. Mol. Cell Biol., 13, 263–269.

Rao,R.B. and Fung,G, (2006) On the dangers of cross-validation an experi-

mental evaluation. Solutions, 588, 596.

Rudnicki,W.R. et al. (2015) All Relevant Feature Selection Methods and

Applications. In: Sta�nczyk,U. and Jain,L. (eds) Feature Selection for Data

and Pattern Recognition. Studies in Computational Intelligence, Vol. 584.

Springer, Berlin, Heidelberg.

Multivariate modelling with variable selection in R 979



Saeys,Y. et al. (2007) A review of feature selection techniques in bioinformat-

ics. Bioinformatics, 23, 2507–2510.

Saeys,Y. et al. (2014) Robustness of Random Forest-based gene selection

methods. Bioinformatics, 23, 1–8.

Shi,L. et al. (2018) Plasma metabolites associated with type 2 diabetes in a

Swedish population: a case–control study nested in a prospective cohort.

Diabetologia, 61, 849–861.

Shi,L. et al. (2017) Targeted metabolomics reveals differences in the extended

postprandial plasma metabolome of healthy subjects after intake of

whole-grain rye porridges versus refined wheat bread. Mol. Nutr. Food Res.,

61, 1600924.

Smith,R. et al. (2014) Proteomics, lipidomics, metabolomics: a mass spectrom-

etry tutorial from a computer scientist’s point of view. BMC Bioinformatics,

15, S9.

Strobl,C. et al. (2007) Bias in random forest variable importance measures:

illustrations, sources and a solution. BMC Bioinformatics, 8, 25.

Tanaka,H. and Ogishima,S. (2011) Omics-based identification of patho-

physiological processes. Methods Mol. Biol., 719, 499–509.

Vandekerckhove,J. et al. (2014) Model Comparison and the Principle of

Parsimony. In Oxford Handbook of Computational and Mathematical

Psychology. UC Irvine.

Varoquaux,G. et al. (2017) Assessing and tuning brain decoders:

cross-validation, caveats, and guidelines. Neuroimage, 145, 166–179.

Varoquaux,G. (2017) Cross-validation failure: small sample sizes lead to large

error bars. arXiv:1706.07581. Preprint submitted to NeuroImage.

Van Velzen,E.J.J. et al. (2008) Multilevel Data Analysis of a Crossover

Designed Human Nutritional Intervention Study research articles.

J. Proteome Res., 7, 4483–4491.

Westerhuis,J. a. et al. (2010) Multivariate paired data analysis: multilevel

PLSDA versus OPLSDA. Metabolomics, 6, 119–128.

Wright,M.N. and Ziegler,A. (2015) ranger: a fast implementation of random

forests for high dimensional data in Cþþ and R. J. Stat. Softw., 77, 1–17.

Yi,L. et al. (2016) Chemometric methods in data processing of mass

spectrometry-based metabolomics: a review. Anal. Chim. Acta, 914, 17–34.

Zamaratskaia,G. et al. (2017) Impact of sourdough fermentation on appetite

and postprandial metabolic responses – a randomised cross-over trial with

whole grain rye crispbread. Br. J. Nutr., 118, 686–697.

980 L.Shi et al.


