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Background.  The emergence of antifungal resistance threatens effective treatment of invasive fungal infection (IFI). Invasive 
candidiasis is the most common health care–associated IFI. We evaluated the activity of fluconazole (FLU) against 20 788 invasive 
isolates of Candida (37 species) collected from 135 medical centers in 39 countries (1997–2016). The activity of anidulafungin, 
caspofungin, and micafungin (MCF) was evaluated against 15 308 isolates worldwide (2006–2016).

Methods.  Species identification was accomplished using phenotypic (1997–2001), genotypic, and proteomic methods (2006–
2016). All isolates were tested using reference methods and clinical breakpoints published in the Clinical and Laboratory Standards 
Institute documents.

Results.  A decrease in the isolation of Candida albicans and an increase in the isolation of Candida glabrata and Candida para-
psilosis were observed over time. Candida glabrata was the most common non–C. albicans species detected in all geographic regions 
except for Latin America, where C. parapsilosis and Candida tropicalis were more common. Six Candida auris isolates were detected: 
1 each in 2009, 2013, 2014, and 2015 and 2 in 2016; all were from nosocomial bloodstream infections and were FLU-resistant (R). 
The highest rates of FLU-R isolates were seen in C. glabrata from North America (NA; 10.6%) and in C. tropicalis from the Asia-
Pacific region (9.2%). A steady increase in isolation of C. glabrata and resistance to FLU was detected over 20 years in the United 
States. Echinocandin-R (EC-R) ranged from 3.5% for C. glabrata to 0.1% for C. albicans and C. parapsilosis. Resistance to MCF was 
highest among C. glabrata (2.8%) and C. tropicalis (1.3%) from NA. Mutations on FKS hot spot (HS) regions were detected among 
70 EC-R isolates (51/70 were C. glabrata). Most isolates harboring FKS HS mutations were resistant to 2 or more ECs.

Conclusions.  EC-R and FLU-R remain uncommon among contemporary Candida isolates; however, a slow and steady emer-
gence of resistance to both antifungal classes was observed in C. glabrata and C. tropicalis isolates.
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Antimicrobial resistance (AMR) is a serious problem with mul-
tidrug-resistant (MDR) (resistant to at least 2 classes of agents) 
strains of fungi and bacteria that affect medical progress in 
many regions of the world [1–4]. Collecting AMR surveillance 
data is essential to define the scope of the resistance problem 
and to develop interventions that improve the appropriate 
use of antimicrobial agents and decrease resistance selection 
pressure [5–7]. Another important effort is to understand the 
mechanisms of resistance whereby microorganisms avoid the 
effects of antimicrobial agents and to use this information to 
develop new agents, or modify older agents, that retain potent 
activity against the key target pathogens [1, 8, 9]. AMR reduces 
the potential efficacy of agents, including antifungal agents such 

as the azole and echinocandin classes, that are commonly used 
to treat or prevent serious fungal infections in target patient 
populations [6, 10, 11].

The burden of invasive fungal infections (IFIs) for patients 
and health care systems is difficult to measure [2, 12]; however, 
it is well recognized that IFIs are associated with high morbidity 
and mortality rates and elevated health care costs. A  higher 
prevalence of IFI has been observed in recent decades due to the 
increasing immunocompromised patient population, including 
individuals living with HIV, organ transplant recipients, and 
cancer patients [13, 14]. Increasing populations of the elderly, 
neonates, and patients requiring invasive therapies also con-
tribute to higher IFI rates [5, 6, 15].

Candidemia and other forms of invasive candidiasis (IC; in-
cluding infections of normally sterile body fluids, deep tissues, 
and organs) are the most important of the invasive mycoses 
[1, 16–18]. Although Candida isolates displaying resistance to 
clinically available antifungal agents are still uncommon, these 
organisms are increasingly reported worldwide [19, 20]. Thus, 
continuously monitoring antifungal susceptibility patterns and 
resistance mechanisms to clinically used antifungal agents is in-
creasingly important.

SubBList1=SubSubBList3=SubBList1=SubSubBList2
SubSubBList3=SubBList=SubSubBList=SubBList
SubSubBList2=SubBList=SubSubBList=SubBList
SubBList2=BList=SubBList=BList
HeadB/HeadA=HeadC=HeadB/HeadA=HeadC/HeadB
HeadC/HeadB=HeadD=HeadC/HeadB=HeadC/HeadB
HeadC=NList_dot_numeric1=HeadC=NList_dot_numeric
HeadC/HeadB=NList_dot_numeric1=HeadC/HeadB=NList_dot_numeric
HeadD=NList_dot_numeric1=HeadD=NList_dot_numeric
HeadD/HeadC=NList_dot_numeric1=HeadD/HeadC=NList_dot_numeric
SubBList2=NList_dot_numeric2=SubBList=NList_dot_numeric2
SubBList2=NList_dot_numeric=SubBList=NList_dot_numeric
NList_dot_numeric2=HeadB=NList_dot_numeric=HeadB
NList_dot_numeric3=HeadB=NList_dot_numeric=HeadB
NList_dot_numeric2=SubBList1=NList_dot_numeric=SubBList1
NList_dot_numeric3=SubBList1=NList_dot_numeric=SubBList1
SubBList3=HeadD=SubBList_Before_Head=HeadD
SubBList2=HeadD=SubBList_Before_Head=HeadD
SubBList2=HeadB=SubBList=HeadB
SubBList3=HeadB=SubBList=HeadB
HeadC=NList_dot_numeric1(2Digit)=HeadC=NList_dot_numeric(2Digit)
HeadC/HeadB=NList_dot_numeric1(2Digit)=HeadC/HeadB=NList_dot_numeric(2Digit)
HeadD=NList_dot_numeric1(2Digit)=HeadD=NList_dot_numeric(2Digit)
HeadD/HeadC=NList_dot_numeric1(2Digit)=HeadD/HeadC=NList_dot_numeric(2Digit)
SubBList2(2Digit)=NList_dot_numeric2(2Digit)=SubBList(2Digit)=NList_dot_numeric2(2Digit)
SubBList2(2Digit)=NList_dot_numeric(2Digit)=SubBList(2Digit)=NList_dot_numeric(2Digit)
NList_dot_numeric2(2Digit)=HeadB=NList_dot_numeric(2Digit)=HeadB
NList_dot_numeric3(2Digit)=HeadB=NList_dot_numeric(2Digit)=HeadB
NList_dot_numeric2(2Digit)=SubBList1(2Digit)=NList_dot_numeric(2Digit)=SubBList1(2Digit)
NList_dot_numeric3(2Digit)=SubBList1(2Digit)=NList_dot_numeric(2Digit)=SubBList1(2Digit)
SubBList3(2Digit)=HeadD=SubBList(2Digit)=HeadD
SubBList2(2Digit)=HeadD=SubBList(2Digit)=HeadD
SubBList2(2Digit)=HeadB=SubBList(2Digit)=HeadB
SubBList3(2Digit)=HeadB=SubBList(2Digit)=HeadB

mailto:mike-pfaller@jmilabs.com?subject=


S80  •  OFID  2019:6  (Suppl 1)  •  Pfaller et al

The epidemiology of candidemia and IC (collectively referred 
to as IC for the purposes of this discussion) has been described 
in numerous single-center, sentinel, and population-based 
surveys conducted worldwide [5–7, 21, 22]. However, the dy-
namic nature of IC trends in the United States and elsewhere 
suggests that this issue still merits considerable monitoring [6, 
12, 23–26]. The SENTRY Antifungal Surveillance Program is a 
global program that has been ongoing for 20 years (1997–2016) 
and collects consecutive invasive Candida isolates from med-
ical centers located in North America (NA), Europe (EUR), 
Latin America (LATAM), and the Asia-Pacific (APAC) region 
during each calendar year. Candida spp. isolates are evaluated 
for susceptibility against various antifungal agents used clini-
cally to treat and prevent IC [27]. Applying modern methods 
for species identification, testing antifungal susceptibility, and 
characterizing antifungal resistance mechanisms provides a 
level of standardization and clarity that makes these observa-
tions useful in the ongoing fight against antifungal resistance 
[1, 5, 6, 9, 28–33].

We have reported broad geographic trends in the isolation 
of various Candida species from clinical specimens and the 
accompanying rates of antifungal resistance in the United States 
and internationally in numerous SENTRY Program publica-
tions in the peer-reviewed literature spanning 1997 through 
2016 [9, 29, 34]. We now summarize the geographic and tem-
poral variations in the frequency of Candida species that cause 
IC and associated antifungal resistance profiles using the exten-
sive SENTRY Antifungal Surveillance Program database, which 
includes results for 20 788 invasive isolates of Candida species 
from 135 medical centers in 39 nations. In this analysis, we 
emphasize regional epidemiological data and their impact on 
empiric antifungal therapy.

METHODS

Study Design

The SENTRY Program was established to monitor the predom-
inant pathogens and antimicrobial resistance patterns of noso-
comial and community-onset infections via a broad network of 
sentinel medical centers distributed by geographic location and 
size. Participating medical centers submit organisms each cal-
endar year through a prevalence-based approach across several 
infection types. The current study design collects clinical iso-
lates under the following objectives: bloodstream, skin and skin 
structure, respiratory, urinary tract, intra-abdominal, and inva-
sive fungal infections, as well as pathogens from patients hos-
pitalized with pneumonia (described at https://www.jmilabs.
com/sentry-surveillance-program/). Participating institutions 
contributing Candida spp. isolates have  included 135 medical 
centers in 39 countries: 41 in the United States, 4 in Canada, 14 
in LATAM, 25 in APAC, and 51 in EUR.

Each participating medical center contributed findings 
(organism identification, isolation date, and site) on consecutive 

IC episodes in each calendar month. Additional demographic 
and epidemiological data were recorded on a data form for-
warded with each isolate. All isolates were saved and sent weekly 
to either the University of Iowa (Iowa City, IA; 1997–2005) or 
JMI Laboratories (North Liberty, IA; 2006–2016) for storage 
and for further characterization by reference identification and 
susceptibility testing methods.

Organism Identification

Isolates (1 per patient infection episode) were identified at par-
ticipating institutions using methods routinely employed at the 
submitting laboratory, including the use of the Vitek, MicroScan, 
API, and AuxaColor systems supplemented by classical meth-
ods for yeast identification [35]. Isolates were submitted to the 
2 monitoring laboratories, where identification was confirmed 
by morphological, biochemical, and molecular methods [9, 23, 
30, 35]. All isolates were subcultured to CHROMagar (Becton, 
Dickinson and Company, Sparks, MD) to differentiate Candida 
albicans/Candida dubliniensis, Candida tropicalis, and Candida 
krusei. Isolates collected and tested from 2006 to 2009 showing 
morphology discrepant with the identification submitted by 
the participating laboratory had identification confirmed using 
the Vitek yeast identification system (bioMerieux, Hazelwood, 
MO). Any further discrepancies were resolved by molecular 
or proteomic methods, as described below. Biochemical and 
physiological tests such as growth at 45°C (C. albicans, C. dub-
liniensis) and assimilation of trehalose (Candida glabrata) were 
applied centrally to isolates submitted from 2010 through 2016. 
C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, and C. kru-
sei isolates that were not identified by these methods during 
2010 and 2011, and all uncommon species were identified 
using sequence-based methods for internal transcribed spacer 
region and/or 28S ribosomal subunits, according to protocols 
previously described [9, 30]. From 2012 to 2016, isolate iden-
tification was confirmed by matrix-assisted laser desorption 
ionization-time of flight mass spectrometry (Bruker, Billerica, 
MA). Isolates that were not identified by either phenotypic 
or proteomic methods were identified using sequence-based 
methods, as previously described [30, 36, 37].

Susceptibility Testing

All isolates were tested by broth microdilution according to 
Clinical and Laboratory Standards Institute (CLSI) methods, 
as outlined in documents M27-A3 and M27-S4 [38, 39]. The 
systemically active antifungal agents tested were anidulafungin, 
caspofungin, micafungin, fluconazole, and voriconazole. This 
report focuses primarily on resistance to fluconazole and the 
echinocandins. The results for voriconazole will only be used 
when discussing cross-resistance between azoles and echino-
candins. The range of antifungal agent concentrations tested 
was 0.008–16  mg/L for the echinocandins and voriconazole 
and 0.12–128  mg/L for fluconazole. Minimum inhibitory 

https://www.jmilabs.com/sentry-surveillance-program/
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concentration (MIC) results for all tested agents were deter-
mined visually after 24 hours of incubation at 35°C as the 
lowest concentration of agent that resulted in ≥50% inhibition 
of growth relative to the growth control. CLSI clinical break-
points (CBPs) were applied for the 5 most “common” species 
of Candida (C. albicans, C. glabrata, C. parapsilosis, C. tropica-
lis, and C.  krusei), for which echinocandins, fluconazole, and 
voriconazole are used in treatment. Epidemiological cutoff 
values (ECVs) were applied when available for the other spe-
cies tested [37, 38, 40]. Recognizing that CBPs for fluconazole 
and the echinocandins have changed over the last 20 years, we 
have applied only the most contemporary CBPs and ECVs to 
the entire Candida spp. collection [38–40]. Quality control was 
performed as recommended in CLSI M27-A3 using C. krusei 
ATCC 6258 and C. parapsilosis ATCC 22019. All results were 
within established ranges.

Screening for FKS HS Mutations

Candida spp. isolates with MIC values higher than the CBP for 
the echinocandin compounds were submitted to polymerase 
chain reaction (PCR) and sequencing for hot spots (HS) of the 
FKS genes encoding the 1,3 β-D-glucan synthase (GS) subunits. 
PCR amplification was completed using previously described 
oligonucleotides for the FKS1 and FKS2 HS 1 and 2 [41, 42].

RESULTS 

Organism Collection

A total of 20 788 invasive isolates of Candida spp. (37 species) 
were submitted to the SENTRY Program central monitoring 
sites for identification and antifungal susceptibility testing 
of fluconazole between 1997 and 2016, and of echinocandins 
between 2006 and 2016. The number of isolates submitted each 
year ranged from 320 to 2770. Since 2006, isolates submitted 
have undergone the most rigorous identification (confirma-
tion of species identification using either sequence-based or 
proteomic methods) and included C. albicans (7179), Candida 
auris (6), Candida blankii (1), Candida bracarensis (5), Candida 
cacao (1), Candida catenulata (3), C. dubliniensis (264), Candida 
duobushaemulonii (3), Candida fabianii (14), Candida famata 
(2), Candida fermentati (29), Candida fluviatilis (1), C. glabrata 

(2860), Candida guilliermondii (91), Candida haemulonii (10), 
Candida inconspicua (12), Candida intermedia (4), C. interme-
dia/pseduointermedia (2), Candida kefyr (94), C. krusei (421), 
Candida lambica (1), Candida lipolytica (10), Candida lusita-
niae (277), Candida metapsilosis (33), Candida nivariensis (4), 
Candida norvegensis (4), Candida orthopsilosis (82), C. parapsi-
losis (2433), Candida pararugosa (7), Candida pelliculosa (22), 
Candida quercitrusa (2), Candida rugosa (4), Candida sojae (1), 
Candida thasaenensis (1), Candida thermophila (2), C. tropicalis 
(1418), Candida utilis (3), and unspeciated Candida (6).

Global Trends in Species Distribution and Antifungal Susceptibility Among 
Candida Isolates From IC
Temporal Distribution
Among the 20 788 Candida isolates submitted for testing from 
1997 to 2016, 46.9% were C. albicans, 18.7% were C. glabrata, 
15.9% were C. parapsilosis, 9.3% were C.  tropicalis, 2.8% were 
C. krusei, and 6.5% were miscellaneous Candida spp. (Table 1). 
The rank order of the 5 most common species varied slightly over 
time, although C.  albicans was the predominant species each 
year. Notably, the frequency of C.  albicans decreased steadily 
from 57.4% in 1997–2001 to 46.4% in 2015–2016. C. glabrata 
was the most common non-albicans species overall and showed 
a steady increase from 16.0% in 1997–2001 to 19.6% in 2015–
2016. C. parapsilosis was third in rank order and increased in 
frequency from 12.3% in the 1997–2001 time period to 17.8% 
in 2009–2011; however, the frequency of this species as a cause 
of IC decreased after 2011 and was 14.4% in 2015–2016. Given 
the well-recognized association of C. parapsilosis bloodstream 
infection (BSI) with central venous catheters [43], it is notable 
that a marked decrease in central line–associated BSIs has been 
identified in US hospitals over this time period [44, 45]. The 
frequency of C. tropicalis and C. krusei as IC isolates was more 
stable over time, with IC ranges of 8.3%–10.7% and 2.1%–3.2%, 
respectively. Notably, the overall frequency of C.  krusei as a 
cause of IC remained low at 2.8% (range, 2.1%–3.2%) for the 
20-year period despite continued utilization of fluconazole in 
most medical centers [46–49]. In aggregate, the frequency of 
miscellaneous species of Candida (non-top-5 species) showed 
a steady increase from 2.7% of infections in 1997–2001 to 8.5% 
in 2015–2016.

Table 1.  Species Distribution of Candida Isolates: SENTRY Program, 1997–2016

Year No. Tested

% by Species

CA CG CP CT CK

1997–2001 5067 57.4 16.0 12.3 9.1 2.5

2006–2008 2647 51.2 15.9 16.8 10.7 2.1

2009–2011 4080 45.3 18.9 17.6 10.0 2.6

2012–2014 4928 46.3 19.3 15.1 8.6 3.2

2015–2016 3653 46.4 19.6 14.4 8.3 2.8

Abbreviations: CA, C. albicans; CG, C. glabrata; CK, C. krusei; CP, C. parapsilosis; CT, C. tropicalis. 
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Geographic Distribution
The frequencies of IC due to the 5 most common species of 
Candida in the 4 geographic areas participating in the SENTRY 
Program are shown in Table 2. C. albicans was most common 
in EUR (52.5%) and least common in NA (United States and 
Canada; 42.7%), whereas C.  glabrata was most common in 
NA (24.3%) and least common in LATAM (7.1%). C. parapsi-
losis and C.  tropicalis were more common than C. glabrata in 
LATAM (24.3% and 17.0% vs 7.1%, respectively). C. tropicalis 
was also a frequent cause of IC in the APAC region (14.1%). 
C. krusei was more common in NA (2.9%) and EUR (3.0%), and 
other miscellaneous species of Candida were common in APAC 
(7.3%) and NA (7.3%) (data not shown).

Trends in Fluconazole Resistance in Relation to Time, Geographic Area, 
and Species of Candida in IC
Fluconazole Resistance Variation by Species and by Year
The fluconazole resistance profile of the 4 most common spe-
cies of Candida ranged from 0.3% (C. albicans) to 8.1% resistant 
(C.  glabrata) using the most recent CBPs (Table 3): C.  krusei 
is not listed as it is considered intrinsically (100.0%) resistant 
to fluconazole [38, 39, 50]. The low fluconazole resistance rate 
among C. albicans isolates is consistent with previous reports 
[51] and showed very little change from 0.2% in 1997–2001 
to 0.1% in 2015–2016. Resistance to fluconazole showed an 
increase from 1997 through 2014 for C. glabrata (8.6% to 10.1%) 
and C. tropicalis (2.5% to 4.9%), with a slight decline for both 
species in 2015–2016, possibly due to increased use of echino-
candins over fluconazole in those years [26, 44, 46, 48]. Given 
past recommendations to use fluconazole as firstline therapy 
for C. parapsilosis infections [52], it is notable that fluconazole 
resistance increased over time for this species (Table 3).

Fluconazole Resistance by Geographic Area and Species
Table 4 presents the resistance rates for fluconazole tested against 
the 4 most common species of Candida stratified by geographic 
region from 2006 through 2016. Just as geographic variation was 
observed in the frequency of isolation of these species (Table 2), 
variation in the frequency of fluconazole resistance was noted 
as well. Although fluconazole was highly active against C. albi-
cans in all geographic regions, slightly higher rates of resistance 

were seen in isolates from NA (0.4%) compared with those from 
the other 3 regions (range, 0.1%–0.2%).

The overall increase in fluconazole resistance for C. glabrata 
in this survey was reflected in high rates of resistance in isolates 
from APAC (6.8%) and NA (10.6%). Not only was C. glabrata an 
uncommon cause of IC in LATAM, it was also less resistant to 
this agent (2.6%) compared with the other monitored regions.

C.  parapsilosis isolates from EUR (4.6% resistance) and 
LATAM (4.3% resistance) showed the highest rates of resistance 
to fluconazole, whereas only 0.6% of C.  parapsilosis isolates 
from the APAC region were resistant.

Resistance to fluconazole was detected in 9.2% of C. tropicalis 
isolates from the APAC region and was considerably less fre-
quent in the other 3 regions (range, 1.1%–2.9%) (Table 4). These 
findings build upon our previous global surveillance data that 
indicate that the highest rates of fluconazole resistance among 
C. tropicalis BSI isolates were observed among isolates from the 
APAC region [53].

Previously, we examined the fluconazole susceptibilities of 
BSI isolates of C. glabrata from US centers participating in the 
SENTRY Program and grouped the isolates by geographic loca-
tion within the United States from 1992 to 2007 [54]. In the 
present study, we build upon this experience and report the flu-
conazole susceptibilities of an additional 5366 C. glabrata iso-
lates collected from sentinel surveillance sites throughout the 
United States from 2008 through 2016 and stratify the results 
by US region (Table 5). Overall, C. glabrata accounted for 25% 
of all US IC isolates, ranging from 22% in the Northeast to 27% 
in the West (Table 5). Compared with 1992–2001 [29] and 
2001–2007 surveys [54], the proportion of IC isolates that were 
C. glabrata increased in all 4 regions.

Fluconazole susceptibilities of C.  glabrata isolates also var-
ied by US region (Table 5). The rates of fluconazole resistance 
among the C. glabrata isolates from 2001–2007 increased com-
pared with those from 1992–2001 in all regions except for the 
South, where the rate was unchanged. Fluconazole resistance 
rates decreased slightly in all regions except the West in the 
most recent (2008–2016) survey period. Overall, 11% of the 
2008–2016 US C. glabrata isolates were resistant to fluconazole, 
compared with 9% in 1992–2001 (Table 5).

Table 2.  Species Distribution of Candida Isolates by Geographic Region: SENTRY Program, 2006–2016

Region No. Tested

% by Species

CA CG CP CT CK

APAC 1314 46.0 17.9 12.9 14.1 1.8

EUR 5964 52.5 16.0 15.4 7.5 3.0

LATAM 1629 43.9 7.1 24.3 17.0 2.0

NA 6401 42.7 24.3 14.8 8.0 2.9

Total 15 308 46.7 18.7 15.9 9.3 2.8

Abbreviations: APAC, Asia-Pacific; CA, C. albicans; CG, C. glabrata; CK, C. krusei; CP, C. parapsilosis; CT, C. tropicalis; EUR, Europe; LATAM, Latin America; NA, North America.
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Studies have shown that the prevalence of C.  glabrata as a 
cause of BSI is potentially related to many disparate factors in 
addition to fluconazole exposure, including geography, patient 
age, and other characteristics of the patient population studied 
[6, 16, 24, 26, 55, 56]. Few surveys have examined the frequency 
of isolation and resistance to fluconazole among C. glabrata iso-
lates according to patient age group [5, 17, 23–25, 33, 54, 56, 
57]. Table 6 shows the frequency of isolation and fluconazole 

resistance among C.  glabrata isolates stratified according to 
patient age group for all geographic regions from 2006 through 
2016. Previously, we demonstrated that although the propor-
tion of BSI isolates of Candida that were C. glabrata increased 
with patient age in the United States, the rate of fluconazole 
resistance declined [54]. An identical trend was observed in the 
present geographically diverse study. The frequency of C. gla-
brata causing IC increased steadily from 6.4% in the ≤1–19-year 
age group to 22.3% in the ≥70-year age group, but only 4.0% of 
isolates in the older age group were resistant to fluconazole. The 
highest resistance rates were in the 20–49-year (11.8% resistant) 
and 50–69-year (9.8% resistant) age groups.

Consistent with previous observations [54–56, 58, 59], very 
few infections due to C. glabrata were seen in the pediatric and 
adolescent age groups (≤19 years) (Table 6). Only 134 C. gla-
brata IC isolates from patients who were ≤19 years of age were 
submitted to the SENTRY Program. In contrast to the percent-
age of resistant isolates observed in 2008–2009 for isolates from 
this age group (0.0%) [56], 8.2% of the current isolates were 
resistant to fluconazole. This increased resistance may reflect 
the increased use of fluconazole prophylaxis and treatment in 
these groups of younger patients [16, 47, 60].

Cross-Resistance Between Fluconazole and Voriconazole
Voriconazole has been demonstrated to have useful clinical 
activity in treating mucosal and invasive forms of candidia-
sis [61, 62]. The clinical indication for using voriconazole in 
IC has been primarily for oral step-down therapy in patients 
with infections due to C.  krusei and fluconazole-resistant, 
voriconazole-susceptible C. glabrata [50]. We have shown vari-
able cross-resistance between fluconazole and voriconazole 
when tested against the common species of Candida causing 
IC [53, 63, 64]. These findings were confirmed in the pres-
ent survey, where cross-resistance between fluconazole and 
voriconazole was common in fluconazole-resistant C. albicans 
(35.0% susceptible to voriconazole) and C. parapsilosis (32.7% 
susceptible to voriconazole) strains and virtually complete 
for fluconazole-resistant strains of C. glabrata (0.0% suscepti-
ble [MIC, ≤0.5 mg/L] to voriconazole) and C. tropicalis (3.6% 
susceptible to voriconazole) (data not shown). Conversely, 
voriconazole was reliably active against C.  krusei (95.0% sus-
ceptible) isolates, all of which were resistant to fluconazole 
(data not shown). Aside from C.  krusei, the other species of 
Candida usually encountered in IC are not optimal targets for 
voriconazole when fluconazole resistance is observed [50].

Trends in Echinocandin Resistance in Relation to Time, Geographic Area, 
and Species of Candida in IC
Variation in Echinocandin Resistance by Species and 
Surveillance Year
The echinocandin class of antifungal agents acts by inhibition of 
the synthesis of 1,3-β-D-glucan in the fungal cell wall [65]. All 3 
available echinocandins—anidulafungin (Pfizer), caspofungin 

Table 3.  Trends in Fluconazole Resistance: SENTRY Program, 2006–2016

Species Year No. Tested % Resistant (No.)a

C. albicans 2006–2008 1356 0.2 (3)

 2009–2011 1849 0.2 (4)

 2012–2014 2283 0.4 (10)

 2015–2016 1691 0.1 (2)

 2006–2016 7179 0.3 (19)

C. glabrata 2006–2008 420 8.6 (36)

 2009–2011 773 7.6 (59)

 2012–2014 951 10.1 (96)

 2015–2016 716 5.6 (40)

 2006–2016 2860 8.1 (231)

C. parapsilosis 2006–2008 446 5.4 (24)

 2009–2011 717 2.5 (18)

 2012–2014 744 3.2 (24)

 2015–2016 526 5.5 (29)

 2006–2016 2433 3.9 (95)

C. tropicalis 2006–2008 282 2.5 (7)

 2009–2011 407 2.0 (8)

 2012–2014 426 4.9 (21)

 2015–2016 303 3.3 (10)

 2006–2016 1418 3.2 (46)

aPercent resistant (no. of resistant isolates) by CLSI [38] criteria.

Table 4.  Fluconazole Resistance by Geographic Region: SENTRY 
Program, 2006–2016

Species Region No. Tested % Resistant (No.)a

C. albicans APAC 605 0.2 (1)

 EUR 3129 0.2 (7)

 LATAM 715 0.1 (1)

 NA 2731 0.4 (10)

C. glabrata APAC 235 6.8 (16)

 EUR 955 4.9 (47)

 LATAM 114 2.6 (3)

 NA 1556 10.6 (165)

C. parapsilosis APAC 169 0.6 (1)

 EUR 918 4.6 (42)

 LATAM 396 4.3 (17)

 NA 950 3.7 (35)

C. tropicalis APAC 185 9.2 (17)

 EUR 446 2.5 (11)

 LATAM 277 1.1 (3)

 NA 510 2.9 (15)

Abbreviations: APAC, Asia-Pacific; EUR, Europe; LATAM, Latin America; NA, North America. 
aFluconazole-resistant breakpoint values are ≥8 mg/L for C. albicans, C. parapsilosis, and 
C. tropicalis and ≥64 mg/L for C. glabrata.
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(Merck), and micafungin (Astellas)—possess fungicidal activ-
ity against most species of Candida, including those resistant 
to polyenes [66] and to azoles [8]. Caspofungin, micafungin, 
and anidulafungin were approved for clinical use by the US 
Food and Drug Administration (FDA) in 2001, 2005, and 2006, 
respectively, and are now recommended as firstline agents for 
treating IC [50, 67].

Temporal variations in resistance to echinocandins for the 5 
most common Candida species are shown in Table 7. Resistance to 
1 or more of the echinocandins was distinctly uncommon among 
isolates of C. albicans (0.0%–0.1%), C. parapsilosis (0.0%–0.1%), 
C. tropicalis (0.5%–0.7%), and C. krusei (0.0%–1.7%). Resistance 
to anidulafungin (2.2%), caspofungin (3.5%), and micafungin 
(1.7%) was most prominent among C. glabrata isolates. No trend 
toward increasing resistance was seen over time for any of these 
species, although C. tropicalis exhibited an increase in resistance 
in 2015–2016 compared with previous years.

Previously, our investigators and others found echinocandin 
resistance in 8.0%–9.0% of fluconazole-resistant BSI isolates 
of C.  glabrata [68–72]. In the SENTRY Program from 2006–
2016, we noted co-resistance in fluconazole-resistant isolates 
of C. glabrata (5.5%–7.6%) and in fluconazole-resistant isolates 
of C. tropicalis (1.9%–3.6%) and C. krusei (0.0%–1.7%) as well 
(data not shown).

Emerging MDR strains of Candida spp. isolates are sure to 
complicate clinical decision-making at a time when few options 
exist for alternative antifungal therapy [4, 11, 73, 74]. Although 
the MDR phenotype is most often detected after prolonged 
exposure to both classes of agents [1, 6, 26, 65, 68, 70], recent 
studies have demonstrated that under stress conditions, MSH2 
DNA mismatch repair gene mutations may produce a hyper-
mutable state and facilitate rapid acquisition of fluconazole, 
echinocandin, and amphotericin B resistance [71]. These find-
ings may help to explain why echinocandin resistance in some 
studies has been associated with fluconazole exposure, although 
the drug targets and resistance mechanisms are distinctly differ-
ent [1, 6, 26, 68–72].

Micafungin Resistance by Geographic Area and by Species
Geographic trends in the resistance to micafungin for the 
5 most common species of Candida are shown in Table 8. 
Resistance was not detected among C. parapsilosis or C. kru-
sei isolates from the 4 global geographic regions when using 
the current CLSI CBP values [38]. Resistance to micafungin 
(2.8%) was most prominent among C. glabrata isolates from 
NA, whereas none of the C.  glabrata isolates from LATAM 
were resistant to micafungin (Table 8). Micafungin resistance 
rates were 0.1% for C.  albicans isolates collected in NA and 

Table 6.  Frequency of Isolation and Fluconazole Resistance of C. glabrata Isolates by Patient Age Group From All Geographic Regions, 2006–2016

Patient Age Group, y Total No. of Candida Isolates (%) No. of C. glabrata Isolates Tested (% of Total) % (No.) of C. glabrata Isolates Resistant to Fluconazole

≤1–19 2104 (14.7) 134 (6.4) 8.2 (11)

20–49 2980 (21.0) 541 (18.2) 11.8 (64)

50–69 5067 (35.3) 1097 (21.6) 9.8 (107)

≥70 4111 (29.0) 916 (22.3) 4.0 (37)

Table 5.  Temporal and Geographic Trends in the Frequency of Isolation and Resistance to Fluconazole Among C. glabrata Isolates in the United States

Region Study Period Total No. of Candida BSI Isolates

% of C. glabrata Isolatesa

Among all Isolates Resistant to Fluconazole

West 1992–2001 700 17 7

 2001–2007 61 34 10

 2008–2016 1216 27 16

Midwest 1992–2001 678 23 7

 2001–2007 1420 28 12

 2008–2016 1393 26 9

Northeast 1992–2001 819 21 11

 2001–2007 897 19 17

 2008–2016 1519 22 9

South 1992–2001 1486 15 11

 2001–2007 619 21 11

 2008–2016 1238 25 9

Total 1992–2001 3683 18 9

 2001–2007 2536 25 14

 2008–2016 5366 25 11

aData compiled from references 9, 23, 54, 55.
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Table 7.  Trends in Echinocandin Resistance: SENTRY Program, 2006–2016

Species Year No. Tested Antifungal Agent % Resistant (No.)

C. albicans 2006–2008 1356 Anidulafungin 0.0 (0)

   Caspofungin 0.1 (1)

   Micafungin 0.0 (0)

 2009–2011 1849 Anidulafungin 0.0 (0)

   Caspofungin 0.2 (3)

   Micafungin 0.1 (2)

 2012–2014 2283 Anidulafungin 0.0 (0)

   Caspofungin <0.1 (1)

   Micafungin <0.1 (1)

 2015–2016 1691 Anidulafungin 0.0 (0)

   Caspofungin 0.2 (3)

   Micafungin 0.2 (3)

 2006–2016 7179 Anidulafungin 0.0 (0)

   Caspofungin 0.1 (8)

   Micafungin 0.1 (6)

C. glabrata 2006–2008 420 Anidulafungin 2.6 (11)

   Caspofungin 6.9 (29)

   Micafungin 2.8 (6)

 2009–2011 773 Anidulafungin 1.8 (14)

   Caspofungin 4.5 (35)

   Micafungin 1.0 (8)

 2012–2014 951 Anidulafungin 2.8 (27)

   Caspofungin 2.9 (28)

   Micafungin 2.4 (23)

 2015–2016 716 Anidulafungin 1.5 (11)

   Caspofungin 1.3 (9)

   Micafungin 1.3 (9)

 2006–2016 2860 Anidulafungin 2.2 (63)

   Caspofungin 3.5 (101)

   Micafungin 1.7 (46)

C. parapsilosis 2006–2008 446 Anidulafungin 0.0 (0)

   Caspofungin 0.0 (0)

   Micafungin 0.0 (0)

 2009–2011 717 Anidulafungin 0.4 (3)

   Caspofungin 0.0 (0)

   Micafungin 0.0 (0)

 2012–2014 744 Anidulafungin 0.0 (0)

   Caspofungin 0.0 (0)

   Micafungin 0.0 (0)

 2015–2016 526 Anidulafungin 0.0 (0)

   Caspofungin 0.0 (0)

   Micafungin 0.0 (0)

 2006–2016 2433 Anidulafungin 0.1 (3)

   Caspofungin 0.0 (0)

   Micafungin 0.0 (0)

C. tropicalis 2006–2008 282 Anidulafungin 0.0 (0)

   Caspofungin 1.1 (3)

   Micafungin 0.0 (0)

 2009–2011 407 Anidulafungin 0.2 (1)

   Caspofungin 0.0 (0)

   Micafungin 0.0 (0)

 2012–2014 426 Anidulafungin 0.5 (2)

   Caspofungin 0.2 (1)

   Micafungin 0.2 (1)

 2015–2016 303 Anidulafungin 1.3 (4)

   Caspofungin 2.0 (6)

   Micafungin 2.0 (6)
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EUR, but all isolates of C.  albicans from other regions were 
susceptible to this agent. Similarly, micafungin-resistant 
C. tropicalis isolates were only detected in NA (1.3% resistant) 
and LATAM (0.5% resistant).

Previously, we examined the micafungin susceptibilities of 
BSI isolates of C. glabrata from US centers participating in the 
SENTRY Program and grouped the isolates by geographic area 
within the United States from 2001–2007 [54] and 2006–2011 
[23]. In the present study, we build upon this experience and re-
port the micafungin resistance for an additional 474 C. glabrata 
isolates collected from sentinel surveillance sites throughout the 
United States from 2014 through 2016 and stratify the results 
by US region (Table 9). Micafungin resistance rates among the 
C. glabrata isolates from 2014–2016 increased compared with 
rates from 2001–2007 and 2006–2011 in all regions except for 
the South, where the rate varied from 3.4% in 2001–2007 to 
0.6% in 2006–2011 and was 2.0% in 2014–2016. The highest 
rates of resistance were noted in isolates from the West (5.1%) 
and the Northeast (6.3%). Notably, isolates of micafungin-re-
sistant C. glabrata were detected in all 4 US regions in 2014–
2016, compared with only 1 region (South) in 2001–2007, when 
caspofungin was the only echinocandin available for clinical 
use in the United States [48]. As seen with fluconazole (Table 
6), the frequency of micafungin resistance varied with patient 
age; the highest rate of resistance was observed in the 20–49-
year age group (5.1%), and the lowest rate in the ≥70-year age 
group (0.5%) (data not shown). These findings of increasing 
echinocandin resistance among invasive isolates of C. glabrata 
throughout the United States are comparable to findings re-
ported from a population-based candidemia survey conducted 
from 2008 to 2014 [26].

Investigation of FKS Mutations in Echinocandin-Resistant Candida 
spp.

All 70 Candida spp. isolates displaying echinocandin MIC 
values higher than CBPs (either intermediate [I] or resistant 
[R]) or ECVs (C.  dubliniensis and C.  kefyr only) established 
by CLSI were screened for mutations in HS regions of the 
1,3 β-D-GS-encoding genes. The majority of echinocandin-re-
sistant or non-wild-type (non-WT) isolates (54/70, 77.1%) 
were from NA, and 51/70 (72.9%) were C. glabrata (Table 10). 
Eight C.  albicans isolates were tested; all were nonsusceptible 
(NS; either intermediate [MIC, 0.5  mg/L] or resistant [MIC, 
≥1 mg/L]) to caspofungin, and 7 were NS to micafungin. All 
exhibited mutations encoding an FKS1 HS1 alteration (S645P 
[4 isolates] and 1 each of F641S, F641I, S629P, and S654P) 
(Table 10). Only 4 (50.0%) of these isolates were NS (all were I) 
to anidulafungin; the remaining 4 isolates displayed susceptible 
(MIC, ≤0.25 mg/L) MIC values for anidulafungin despite har-
boring FKS mutations.

Fifty-one C.  glabrata isolates displayed NS-type results for 
1 or more of the echinocandins: 40 (78.4%) were NS to all 3, 
and all were NS to at least 2 echinocandins [40]. All 51 isolates 
harbored FKS HS alterations, including FKS2 HS1 S663P (16 
isolates), FKS2 HS1 S663F (3 isolates), FKS2 HS1 L662W (2 iso-
lates), FKS1 HS1 S629P (6 isolates), FKS1 HS1 F625S (4 isolates), 
FKS2 HS1 F659S/V/Y (8 isolates), and FKS2 HS1 F659_del (3 
isolates). Five isolates carried double mutations that were either 
FKS1 HS1 S629P/FKS2 HS1 S663P (2 isolates) or 1 isolate each 
of FKS1 HS1 F625S/FKS2 HS1 F659Y, FKS1 HS1 R631S/S629P, 
or FKS2 HS1 D666E/K753Q. The MIC for the double-mutant 
isolates FKS1 HS1 S629P/FKS2 HS1 S663P (recovered from 
Canada) were highly elevated for caspofungin (>8 mg/L) and 

Species Year No. Tested Antifungal Agent % Resistant (No.)

 2006–2016 1418 Anidulafungin 0.5 (7)

   Caspofungin 0.7 (10)

   Micafungin 0.6 (7)

C. krusei 2006–2008 55 Anidulafungin 3.6 (2)

   Caspofungin 7.3 (4)

   Micafungin 0.0 (0)

 2009–2011 107 Anidulafungin 0.0 (0)

   Caspofungin 1.9 (2)

   Micafungin 0.0 (0)

 2012–2014 158 Anidulafungin 0.6 (1)

   Caspofungin 0.6 (1)

   Micafungin 0.0 (0)

 2015–2016 101 Anidulafungin 0.0 (0)

   Caspofungin 0.0 (0)

   Micafungin 0.0 (0)

 2006–2016 421 Anidulafungin 0.7 (3)

   Caspofungin 1.7 (7)

   Micafungin 0.0 (0)

Echinocandin-resistant breakpoints are ≥1 mg/L for all 3 agents and C. albicans, C. tropicalis, and C. krusei; ≥8 mg/L for all 3 agents and C. parapsilosis; ≥0.5 mg/L for anidulafungin and 
caspofungin; and ≥0.25 mg/L for micafungin and C. glabrata.

Table 7.  Continued
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were at 4  mg/L for anidulafungin and micafungin; however, 
an isolate from Indiana carrying FKS1 HS1 F625S/FKS2 HS1 
F659Y exhibited modestly elevated MIC values at 2 mg/L (resis-
tant) for anidulafungin and caspofungin, and 0.5 mg/L (resis-
tant) for micafungin, suggesting that these alterations might not 
have a cumulative effect. One isolate from Indiana carrying a 
double mutation on FKS1 HS1 R631S/S629P was resistant to all 
3 echinocandins, whereas another isolate from Germany with a 
double mutation on FKS2 HS1 D666E/K753Q was resistant to 
anidulafungin and caspofungin but susceptible to micafungin. 
Finally, a mutation on FKS2 HS1 P667T was observed in an 

isolate of C. glabrata  from New York, and the MIC values for 
this isolate were low for anidulafungin (0.25 mg/L; intermedi-
ate) and micafungin (0.03  mg/L; susceptible) but resistant to 
caspofungin (MIC, 0.5 mg/L).

Among 9 isolates of C. tropicalis harboring FKS mutations, 8 
were from the United States and 1 was from Brazil: FKS1 HS1 
mutations included S654P (3 isolates), S645P (3 isolates), and 
1 each of F650S, F641S, and F641L. All isolates were NS, and 
5 (55.6%) were resistant to all 3 agents. The single isolates of 
C.  dubliniensis and C.  kefyr that were non-WT (MIC>ECV) 
for 1 or more echinocandins were found to have mutations in 
either HS1 or HS2 of FKS1.

Whereas all HS mutations have been shown to influence the 
sensitivity of the GS enzyme complex to inhibition by the indi-
vidual echinocandins, not all mutations will result in resistant 
or non-WT MIC values for all 3 echinocandins [75, 76]. For 
C. albicans, mutations at S641 and S645 are the most frequent 
and produce the most pronounced resistant phenotype [65, 
76]. Previous reports indicated that C.  glabrata isolates with 
the S663F mutation responded in vivo to high doses of either 
micafungin or caspofungin, but not to anidulafungin. In con-
trast, isolates with the S629P mutation failed to respond to even 
the highest dose of any of the 3 echinocandins [75]. Mutations 
at positions S663 and F659 in C.  glabrata have been associ-
ated with breakthrough infections in patients receiving echi-
nocandin therapy [68, 77, 78], whereas patients infected with 
C. glabrata strains containing the I1379V and I634V mutations 
(susceptible to both anidulafungin and caspofungin) tend to 
respond to echinocandin therapy [68].

Activity of Antifungal Agents Tested Against Uncommon Species of 
Candida (≥5 Isolates): SENTRY Program, 2006–2016

MIC distributions for the echinocandins and fluconazole for 
uncommon species of Candida (≥5 isolates) are shown in Table 
11. We included the antifungal susceptibility profiles of less 
common species, all identified by sequence-based or proteomic 

Table 8.  Micafungin Resistance by Geographic Region: SENTRY Program, 
2006–2016

Species Region No. Tested % Resistant (No.)

C. albicans APAC 597 0.0 (0)

 EUR 2869 0.1 (3)

 LATAM 590 0.0 (0)

 NA 2355 0.1 (3)

C. glabrata APAC 234 0.4 (1)

 EUR 898 0.6 (5)

 LATAM 102 0.0 (0)

 NA 1420 2.8 (40)

C. parapsilosis APAC 166 0.0 (0)

 EUR 863 0.0 (0)

 LATAM 334 0.0 (0)

 NA 827 0.0 (0)

C. tropicalis APAC 179 0.0 (0)

 EUR 409 0.0 (0)

 LATAM 216 0.5 (1)

 NA 457 1.3 (6)

C. krusei APAC 23 0.0 (0)

 EUR 169 0.0 (0)

 LATAM 30 0.0 (0)

 NA 168 0.0 (0)

Micafungin-resistant breakpoints are ≥1 mg/L for C. albicans, C. tropicalis, and C. krusei; 
≥8 mg/L for C. parapsilosis; and ≥0.25 mg/L for C. glabrata.

Abbreviations: APAC, Asia-Pacific; EUR, Europe, LATAM, Latin America; NA, North America.

Table 9.  Temporal and Geographic Trends in the Frequency of Isolation and Micafungin Resistance Among C. glabrata Isolates in the US SENTRY Program

Region Time Period Total No. of Candida BSI Isolates

% of C. glabrata Isolates

Among all Isolates Resistant to Micafungin

West 2001–2007 61 34.0 0.0

 2006–2011 552 18.5 2.0

 2014–2016 462 29.9 5.1

Midwest 2001–2007 1420 28.0 0.0

 2006–2011 920 19.3 2.2

 2014–2016 385 28.6 2.7

Northeast 2001–2007 897 19.0 0.0

 2006–2011 727 15.1 1.8

 2014–2016 566 22.6 6.3

South 2001–2007 619 21.0 3.4

 2006–2011 845 19.5 0.6

 2014–2016 448 21.9 2.0
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Table 10.  Summary of FKS Alterations in Echinocandin-Resistant Candida spp. Strains: SENTRY Program, 2006–2016

Year Species State/Country

 1,3-β-D-Glucan Synthase Alterations

MIC, mg/L FKS1 FKS2

ANF CSF MCF HS1 HS2 HS1 HS2

2006–2009 C. albicans Germany 0.12 1 0.06 F641I WT NT NT

 C. glabrata Germany 1 1 0.25 WT WT S663P WT

 C. glabrata Indiana USA 1 1 0.5 R631S 
S629P

WT WT WT

 C. glabrata Indiana USA 1 1 NT WT WT F659S WT

 C. glabrata Massachusetts USA 0.5 1 0.12 L630I WT WT WT

 C. glabrata Ohio USA 2 16 2 S629P WT WT WT

 C. glabrata Virginia USA 1 2 NT WT WT F659V WT

 C. glabrata Washington USA 1 1 0.25 WT WT S663F WT

 C. glabrata Washington USA 2 4 2 S629P WT WT WT

 C. tropicalis Texas USA 1 0.5 0.5 S645P WT NT NT

2010–2011 C. albicans Scotland 0.5 2 1 S629P WT NT NT

 C. albicans Sweden 0.5 1 1 S654P WT NT NT

 C. albicans United Kingdom 0.5 0.5 0.5 F641S WT NT NT

 C. glabrata Australia 1 1 0.5 WT WT S663P WT

 C. glabrata Australia 0.5 0.25 0.12 F625S WT WT WT

 C. glabrata Canada 1 1 0.25 WT WT S659Y WT

 C. glabrata Germany 1 0.5 0.5 WT WT L662W WT

 C. glabrata Germany 1 0.5 0.5 WT WT L644W WT

 C. glabrata Greece 2 1 1 WT WT S663P WT

 C. glabrata Indiana USA 1 4 0.06 WT WT F659V WT

 C. glabrata Indiana USA 1 4 0.06 WT WT F641V WT

 C. glabrata Indiana USA 1 0.5 0.5 WT WT S663Y WT

 C. glabrata Louisiana USA 4 16 2 S629P WT WT WT

 C. glabrata Michigan USA 0.25 0.5 0.03 WT WT D648E WT

 C. glabrata Texas USA 0.5 0.25 0.03 F625Y WT WT WT

 C. glabrata Texas USA 0.5 0.25 0.03 WT WT F641Y WT

2012–2013 C. dubliniensis Belgium 2 2 1 S645P WT NT NT

 C. glabrata Canada 2 1 1 WT WT F659_del WT

 C. glabrata Canada 1 0.5 0.5 WT WT F659_del WT

 C. glabrata France 2 1 0.5 WT WT S663P WT

 C. glabrata Germany 0.5 0.5 0.06 WT WT D666E 
K753Q

WT

 C. glabrata Kentucky USA 2 2 0.5 D632V WT WT WT

 C. glabrata New York USA 2 4 2 WT WT S663P WT

 C. glabrata New York USA 4 16 4 WT WT S663F WT

 C. glabrata New York USA 2 0.5 1 WT WT S663P WT

 C. glabrata Washington USA 2 2 1 WT WT S663F WT

 C. kefyr New York USA 2 0.5 1 WT R1344S NT NT

 C. tropicalis California USA 2 2 1 F641S WT NT NT

 C. tropicalis Indiana USA 1 0.5 0.5 F641L WT NT NT

2014–2016 C. albicans Indiana USA 0.5 1 1 S645P WT NT NT

 C. albicans Ireland 0.12 1 1 S645P WT NT NT

 C. albicans New York USA 0.25 1 1 S645P WT NT NT

 C. albicans Wisconsin USA 0.25 1 1 S645P WT NT NT

 C. glabrata California USA 2 8 2 S629P WT WT WT

 C. glabrata California USA 0.25 0.5 0.25 WT WT F659S WT

 C. glabrata California USA 1 1 0.25 F625S WT WT WT

 C. glabrata Canada 4 >8 4 S629P WT S663P WT

 C. glabrata Canada 4 >8 4 S629P WT S663P WT

 C. glabrata Colorado USA 1 1 0.25 WT WT F659S WT

 C. glabrata Georgia USA 2 2 0.5 F625S WT WT WT

 C. glabrata Indiana USA 2 2 0.5 F625S WT F659Y WT

 C. glabrata Iowa USA 4 4 1 WT WT S663P WT
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methods, to provide MIC information for these opportunistic 
pathogens that may still pose problems in selecting optimal 
therapy. Among the miscellaneous species of Candida, the 
emerging MDR C.  auris strain has been called the “new kid 
on the block” in hospital-associated infections [79, 80]. In the 
SENTRY Program, 6 C. auris isolates were detected: 1 each in 
2009 (Germany), 2013 (New York), 2014 (Colombia), and 2015 
(New Jersey), and 2 in 2016 (both in New York). The C. auris 
isolates were all from nosocomial BSIs and were fluconazole-re-
sistant, 4 were from patients in intensive care units, and 3 were 
from the same institution in the United States.

Among the 992 isolates of the less common Candida species 
encountered from 2006 to 2016, we identified 30 additional spe-
cies (15 with ≥5 isolates) (Table 11). Notable observations in-
clude elevated echinocandin MIC results (MIC50/90, ≥0.5 mg/L) 
among C. auris, C. fermentati, C. guilliermondii, C. haemulonii, 
C.  lipolytica, C.  lusitaniae, C. metapsilosis, and C. orthopsilosis 
(Table 11). Isolates of C. dubliniensis, C. kefyr, and C. pelliculosa, 
as well as the azole-resistant species C. norvegensis and C. incon-
spicua, were all very susceptible to echinocandins (MIC50/90, 
≤0.25 mg/L), although we detected single echinocandin-resis-
tant strains of C. dubliniensis and C. kefyr, both of which har-
bored FKS mutations (Table 10).

Elevated fluconazole MIC values (MIC50/90, >4  mg/L) were 
observed for isolates of C. auris, C. fermentati, C. guilliermondii, 
C. inconspicua, C. lipolytica, C. metapsilosis, and C. norvegensis 
(Table 11). Additional species in which fluconazole MIC results 
appeared to be elevated (MIC, ≥8 mg/L) for 1 or more isolates 
included C. dubliniensis (MIC, 32 mg/L), C. haemulonii (MIC, 

32  mg/L), C.  orthopsilosis (MIC, >128  mg/L), C.  pararugosa 
(MIC, >128 mg/L), and C. pelliculosa (MIC, 8 mg/L).

CONCLUSIONS

The SENTRY Antimicrobial Surveillance Program was 
designed to track antimicrobial resistance trends and the 
spectrum of microbial pathogens on a global scale. The 
SENTRY Antifungal Surveillance Program has unique fea-
tures that distinguish it from other excellent surveillance pro-
grams, such as the PATH Alliance [24, 81, 82], the ARTEMIS 
DISK study [53], the SCOPE Program [83], the NEMIS study 
[84], and population-based surveillance conducted in the 
United States [44], Australia [85], Belgium [86], Denmark 
[5], Finland [87], France [46, 88], Norway [33], Spain [89], 
LATAM [90], and Asia [91]. Whereas these programs are 
based in a single country, may track only nosocomial infec-
tions, and/or rely primarily on diverse susceptibility testing 
results from participating centers, the SENTRY Program 
monitors nosocomial and community-onset infections on a 
global scale and uses validated reference identification and 
susceptibility testing methods at a central monitoring labora-
tory and has done so for 20 years [7, 9, 29].

Despite the low antifungal resistance rates among Candida 
isolates, continuously monitoring antifungal susceptibility 
patterns and understanding resistance mechanisms against 
antifungal agents seems to be a prudent endeavor. Reports of 
breakthrough infections [92], increasing prevalence of uncom-
mon species refractory to clinically available antifungal agents 

Year Species State/Country

 1,3-β-D-Glucan Synthase Alterations

MIC, mg/L FKS1 FKS2

ANF CSF MCF HS1 HS2 HS1 HS2

 C. glabrata Israel 2 2 2 WT WT F659S WT

 C. glabrata Michigan USA 0.25 0.5 0.06 WT WT L662W WT

 C. glabrata New Jersey USA 1 1 1 WT WT S663P WT

 C. glabrata New York USA 4 >8 4 WT WT F659_del WT

 C. glabrata New York USA 0.25 0.5 0.03 WT WT P667T WT

 C. glabrata New York USA 0.5 0.25 0.25 WT WT S663P WT

 C. glabrata New York USA 2 2 2 WT WT S663P WT

 C. glabrata New York USA 2 1 1 WT WT S663P WT

 C. glabrata Utah USA 2 1 2 WT WT S663P WT

 C. glabrata Virginia USA 0.5 0.06 0.12 WT WT F658_del WT

 C. glabrata Washington USA 2 8 2 WT WT S663P WT

 C. glabrata Washington USA 2 4 1 WT WT S663P WT

 C. tropicalis Brazil 1 2 1 F650S WT NT NT

 C. tropicalis Colorado USA 1 >8 2 S654P WT NT NT

 C. tropicalis New Jersey USA 0.5 4 1 S645P WT NT NT

 C. tropicalis New York USA 0.5 4 1 S654P WT NT NT

 C. tropicalis New York USA 2 4 2 S654P WT NT NT

 C. tropicalis New York USA 2 4 2 S654P WT NT NT

Abbreviations: ANF, andulafungin; CSF, caspofungin; HS, hot spot; MCF, micafungin; NT, not tested; WT, wild-type. 

Table 10.  Continued
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Table 11.  Activity of 4 Antifungal Agents Tested Against 15 Uncommonly Isolated Species of Candida (≥5 Isolates Each): SENTRY Program, 2006–2016

Species No. Tested Antifungal Agent

MIC, mg/L

Range 50% 90%

C. auris 6 Fluconazole 64–>64 >64

  Anidulafungin 0.25–1 0.5  

  Caspofungin 0.12–0.5 0.25  

  Micafungin 0.12–0.5 0.25  

C. bracarensis 5 Fluconazole 1–4 2  

  Anidulafungin 0.03–0.12 0.06  

  Caspofungin 0.03–0.06 0.03  

  Micafungin 0.015–0.03 0.015  

C. dubliniensis 264 Fluconazole ≤0.5–32 ≤0.5 ≤0.5

  Anidulafungin ≤0.008–2 0.06 0.12

  Caspofungin ≤0.008–2 0.03 0.12

  Micafungin ≤0.008–1 0.03 0.06

C. fabianii 14 Fluconazole ≤0.5–4 1 4

  Anidulafungin 0.015–0.12 0.015 0.12

  Caspofungin 0.015–0.25 0.03 0.06

  Micafungin 0.015–0.06 0.03 0.06

C. fermentati 29 Fluconazole 0.25–>128 2 32

  Anidulafungin 0.5–2 1 2

  Caspofungin 0.06–1 0.25 0.5

  Micafungin 0.12–1 0.25 1

C. guilliermondii 91 Fluconazole ≤0.5–>64 4 64

  Anidulafungin 0.06–8 2 4

  Caspofungin 0.06–>16 0.5 1

  Micafungin 0.03–8 1 1

C. haemulonii 10 Fluconazole 0.5–32 2 4

  Anidulafungin 0.06–1 0.12 0.5

  Caspofungin 0.03–0.12 0.06 0.12

  Micafungin 0.03–0.25 0.12 0.25

C. inconspicua 12 Fluconazole 4–>128 16 >64

  Anidulafungin ≤0.008–0.03 0.015 0.03

  Caspofungin 0.015–0.25 0.03 0.25

  Micafungin ≤0.008–0.12 0.03 0.06

C. kefyr 94 Fluconazole ≤0.5–1 ≤0.5 ≤0.5

  Anidulafungin 0.03–2 0.06 0.12

  Caspofungin ≤0.008–0.5 0.015 0.12

  Micafungin 0.015–1 0.06 0.12

C. lipolytica 10 Fluconazole 0.25–32 2 32

  Anidulafungin 0.25–0.5 0.25 0.5

  Caspofungin 0.12–0.25 0.12 0.25

  Micafungin 0.06–1 0.5 1

C. lusitaniae 277 Fluconazole ≤0.5–64 ≤0.5 1

  Anidulafungin 0.015–2 0.25 0.5

  Caspofungin 0.015–2 0.25 0.5

  Micafungin 0.015–2 0.12 0.25

C. metapsilosis 33 Fluconazole 0.12–16 1 8

  Anidulafungin 0.015–2 0.25 0.5

  Caspofungin 0.03–0.5 0.12 0.25

  Micafungin 0.015–1 0.25 0.5

C. orthopsilosis 82 Fluconazole ≤0.12–>128 1 2

  Anidulafungin 0.12–2 0.5 2

  Caspofungin 0.03–0.5 0.12 0.25

  Micafungin 0.06–1 0.5 1

C. pararugosa 7 Fluconazole 1–>128 4  

  Anidulafungin 0.06–0.25 0.12  

  Caspofungin 0.06–0.25 0.12  
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[93, 94], and emerging resistance mechanisms [20, 68] high-
light the importance of local and global surveillance studies.

If the goals of surveillance programs are to identify emerg-
ing infectious threats, to monitor trends in antimicrobial resis-
tance, and to contribute data that may be used by individual 
practitioners, institutions, and organizations developing drugs, 
then the combination of population-based and sentinel surveil-
lance programs for IC has served its purpose to date [6, 7, 17]. 
The findings of the SENTRY Program (sentinel surveillance) 
support reports from population-based surveys conducted in 
the United States and other countries worldwide [6, 21, 22]. 
Specifically, the trend of increasing infections due to C. glabrata 
noted in the United States has also been observed in Australia 
and several European countries [6]. C. glabrata as a cause of IC 
accounted for 27.0% of all isolates in Australia and 35.0% in 
Denmark in 2015 [5, 85] as well as 27.3% in Belgium in 2014 
[86]. The increase in C.  glabrata infections in these countries 
has been linked to an increased use of azoles, to which C. gla-
brata is intrinsically less susceptible [5, 6, 57, 95, 96]. Similar 
to the SENTRY Program findings (Table 2), C. parapsilosis and 
C. tropicalis were more prominent than C. glabrata in popula-
tion-based surveys reported from India, LATAM, South Africa, 
and Asia [91, 97–100].

Likewise, trends in resistance to fluconazole documented in 
the SENTRY Program support observations reported from other 
sentinel and population-based surveys in the United States and 
other countries. Aside from intrinsically fluconazole-resistant 
species, such as C. krusei and C. auris, increasing rates of acquired 
resistance to fluconazole have been noted in other non-albicans 
species including C.  glabrata, C.  parapsilosis, and C.  tropicalis. 
High rates of fluconazole-resistant C. glabrata have been reported 
from both the SENTRY Program and population-based sur-
veillance conducted in the United States, Australia, Denmark, 
and Belgium [5, 6, 51, 85, 86]. Although fluconazole resistance 
is generally considered to be uncommon among C. parapsilosis 
isolates, SENTRY Program data from EUR and LATAM (Table 
4) and reports from Brazil [101], Finland [102], and South 
Africa [99] suggest that fluconazole resistance in C. parapsilosis 
may emerge following drug pressure in the form of fluconazole 
treatment and prophylaxis, with subsequent patient-to-patient 
transmission within the hospital environment. C.  tropicalis is 
generally susceptible to fluconazole [103], and prophylaxis with 
this agent has been associated with a decrease in the incidence 

of C. tropicalis BSIs in US cancer treatment centers [104]. The 
SENTRY Program data highlight elevated resistance to fluco-
nazole among isolates of C.  tropicalis from the APAC region 
(Table 4), supporting reports from Australia, Brazil, Taiwan, and 
Belgium documenting the emergence of fluconazole resistance 
in C. tropicalis clinical isolates [6, 85, 86].

It is important to realize that there is not a single best way 
to conduct surveillance and provide useful information [31]. 
Whereas population-based surveillance efforts are unsurpassed 
in providing incidence data and risk factor profiles [5, 7, 44], 
they are limited in time and space due to expense and labor-in-
tensive designs. Sentinel surveillance programs designed to 
capture organisms and patient demographic data from repre-
sentative sites spanning a larger geographical area and over a 
longer period of time serve to fill the gaps in time and space that 
are necessarily left by the more intensive and focused, yet inter-
mittent, population-based programs [7, 111, 112]. Establishing 
the infrastructure necessary for conducting sentinel surveil-
lance may facilitate more intensive surveillance in certain geo-
graphic areas, such as a single US state, and provide information 
that may approximate that obtained from a population-based 
program (eg, Emerging Infections and the Epidemiology of 
Iowa Organisms) [95, 113–115].

In comparing these data, it is important to realize that the 
results of most surveillance studies have potential biases that 
reflect the population surveyed, the method for data collection, 
and the underlying purposes for data collection [31, 32, 108–
110, 112]. Significant differences may exist regarding patterns 
of antimicrobial resistance and usage, and these differences are 
likely to affect the ability to compare data among different stud-
ies [31, 32, 109–111]. Thus, longitudinal surveillance (SENTRY 
Program) by the same methods and study sites is important in 
providing accurate estimates of trends in antibacterial and anti-
fungal resistance [7, 9, 29, 34].

In summary, we have provided a 20-year comparison of dif-
ferences in species distribution and overall antifungal suscepti-
bility profiles among IC-causing Candida isolates from 4 broad 
geographic regions (NA, LATAM, EUR, and APAC). The results 
document the sustained activities of fluconazole (azoles) and 
echinocandin antifungal agents against all IC isolates, except 
for MDR species such as C.  glabrata, C.  krusei, and C.  auris. 
The differences in species distribution observed among the 
geographic areas may be due to several factors, but they most 

Species No. Tested Antifungal Agent

MIC, mg/L

Range 50% 90%

  Micafungin 0.015–0.25 0.12  

C. pelliculosa 22 Fluconazole 0.5–8 2 4

  Anidulafungin ≤0.008–0.12 0.015 0.03

  Caspofungin ≤0.008–0.5 0.03 0.25

  Micafungin ≤0.008–0.06 0.03 0.06

Table 11.  Continued
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likely reflect variation in antifungal usage and infection control 
practices. The emergence of less common yet potentially MDR 
strains, such as C. auris, is a grave concern and argues in favor 
of continued global surveillance efforts to detect, characterize, 
and report emerging pathogenic species [73, 112, 113].
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