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Abstract

Motivation: Co-inertia analysis (CIA) is a multivariate statistical analysis method that can assess

relationships and trends in two sets of data. Recently CIA has been used for an integrative analysis

of multiple high-dimensional omics data. However, for classical CIA, all elements in the loading

vectors are nonzero, presenting a challenge for the interpretation when analyzing omics data. For

other multivariate statistical methods such as canonical correlation analysis (CCA), penalized least

squares (PLS), various approaches have been proposed to produce sparse loading vectors via

l1-penalization/constraint. We propose a novel CIA method that uses l1-penalization to induce

sparsity in estimators of loading vectors. Our method simultaneously conducts model fitting and

variable selection. Also, we propose another CIA method that incorporates structure/network infor-

mation such as those from functional genomics, besides using sparsity penalty so that one can get

biologically meaningful and interpretable results.

Results: Extensive simulations demonstrate that our proposed penalized CIA methods achieve the

best or close to the best performance compared to the existing CIA method in terms of feature se-

lection and recovery of true loading vectors. Also, we apply our methods to the integrative analysis

of gene expression data and protein abundance data from the NCI-60 cancer cell lines. Our analysis

of the NCI-60 cancer cell line data reveals meaningful variables for cancer diseases and biologically

meaningful results that are consistent with previous studies.

Availability and implementation: Our algorithms are implemented as an R package which is freely

available at: https://www.med.upenn.edu/long-lab/.

Contact: qlong@pennmedicine.upenn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recently, there has been rapid progress in high-throughput technol-

ogies to generate various -omics datasets (e.g. gene expression data

and metabolomics data) from same biological subjects or samples.

As a result, there has been increasing interest in an integrative ana-

lysis of multiple omics datasets. Such analysis integrates and concat-

enates information from multiple datasets leading to a better

understanding of biological underpinnings of diseases.

There are several statistical techniques to conduct an integrative

analysis of multivariate datasets. In specific, methods for two

multivariate datasets include canonical correlation analysis (CCA),

partial least squares (PLS), canonical correspondence analysis and

multiple factor analysis (MFA). For example, CCA (Hotelling,

1936) is one of the popular statistical multivariate methods, which

finds linear transformations of two multivariate datasets so that the

correlation between transformed datasets is maximized. PLS (Wold,

1966) is similar with the CCA, which is widely used in chemomet-

rics. Estimated loading vectors of PLS maximize a covariance be-

tween two linearly transformed multivariate data. However, a

number of multivariate methods are not applicable if datasets lie in
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a high-dimensional space, which is also one of the natural features

that -omics data have. For example, the CCA typically requires an

inverse of a sample covariance matrix, which can be singular be-

cause the number of variables exceeds the sample size. To overcome

this drawback of the CCA, researchers adopt a regression frame-

work (Lykou and Whittaker, 2010; Parkhomenko et al., 2009;

Waaijenborg et al., 2008) or assume that a covariance matrix as an

identity matrix (Witten et al., 2009). Those analysis methods also

suffer from a lack of interpretability. Typically estimators from

high-dimensional datasets combine thousands of variables in a linear

fashion and there is no zero coefficient. This causes difficulties on

interpreting the results. There have been recent works in the litera-

tures that propose a sparsity-constrained approach as a remedy for

the high dimensionality of the data, such as sparse CCA (Hardoon

and Shawe-Taylor, 2011; Parkhomenko et al., 2009; Safo et al.,

2018; Waaijenborg et al., 2008; Witten et al., 2009) and sparse PLS

(Chun and Keleş, 2010; Chung et al., 2012; Lee et al., 2011).

Co-inertia analysis (CIA) is another multivariate statistical ana-

lysis technique proposed by Dolédec and Chessel (1994), which can

be considered as a generalized CCA or PLS. Co-inertia analysis takes

two multivariate datasets as an input and seeks for multiple sets of

axis pairs that maximize the concordance between two datasets pro-

jected on those new axis pairs. This goal is achieved by maximizing

the global measure called ‘co-inertia’ that calculates the degree of

the co-variability between two heterogeneous datasets. This analysis

approach has been widely used in the ecology area (Dray et al.,

2003; Thioulouse, 2011) to uncover the relationship between species

and environment. CIA can be applied directly to the high dimension-

al datasets without any constraints or problems since CIA does not

require inverting covariance matrices. Due to this advantage of the

CIA, it has been used to the analysis of various biological datasets

such as gene expression and proteomics data (Culhane et al., 2003;

Fagan et al., 2007; Lê Cao et al., 2009). Culhane et al. conducted a

cross-platform comparison of two gene expression datasets using

CIA and Fagan et al. used CIA to conduct an integrative analysis of

proteomic and gene expression data. In Lê Cao et al. (2009), they

consider three methods, sparse PLS, sparse CCA and CIA for the in-

tegrative analysis of two datasets. They pointed out that objective

goals of three methods are different so that it is difficult to compare

them directly. As means of an indirect comparison, they focused on

the biological interpretation of the selected genes and graphical out-

puts from the real data analysis results of each method. In that pro-

cess, it is pointed out that lack of sparsity is one of weaknesses of

the CIA since nonsparse estimated loading vectors make hard to in-

terpret the analysis results and identify robust biomarkers (Lê Cao

et al., 2009; Meng et al., 2016). Lê Cao et al. (2009) apply hard

thresholding on estimated loading vectors to select important varia-

bles as a heuristic approach. Recently Tenenhaus et al. (2017) pro-

posed regularized generalized canonical correlation analysis

framework, which includes many methods as its special cases. The

CIA also can be regarded as a special case of the RGCCA frame-

work, but this framework cannot includes the sparse CIA as its spe-

cial case. To the best of our knowledge, there has been no work on

combining penalization with CIA to obtain sparse loading vectors.

In this paper, we propose two novel penalized CIA methods con-

ducting estimation and features selection simultaneously to improve

interpretability of analysis result and get enhanced identification of

significant biomarkers from analysis result. By converting the CIA

problem into a penalized regression problem, we achieve the sparsity

of estimators. Also, we adopt another penalty that uses network in-

formation among genes such as those from functional genomics data

so that the estimated model is expected to select relevant genes

guided by the prior knowledge about relationships between genes.

All penalty parameters are selected by cross-validation, and the per-

formance of our algorithms is investigated by extensive simulation

studies. We illustrate our methods by analyzing the NCI60 cell line

data, gene expression and proteomics datasets on 57 cell lines.

The rest of this paper is organized as follows. In Section 2, we

first review the CIA problem starting from the case dealing with one

dataset to the case with two datasets. In Section 3, we present two

proposed methods namely the sparse CIA (sCIA) and the structured

sparse CIA (ssCIA) the latter of which incorporates biological/struc-

tural information. In Section 4, we conduct simulation studies to in-

vestigate the performance of our proposed algorithms in comparison

with the CIA. We apply our methods to the NCI-60 cancer cell line

data in Section 5 and some discussions and remarks are addressed in

Section 6.

2 Co-inertia analysis

Suppose that we have a given dataset X 2 R
n�p observed from n sub-

jects and assume that X is centered without loss of generality. Let

D ¼ diagfd1; . . . ; dng 2 R
n�n be the positive weights for samples

(row space) of X and Qx ¼ diagfq1; . . . ; qpg 2 R
p�p be the positive

weights for variables (column space) of X . Define the inner product

of X in the column space of X as hX;XiQ ¼ XQxXT . Based

on the above notations, the inertia of X is defined as

Ix ¼
Pn

i¼1 dijjxijj2Qx
¼ traceðXQxXTDÞ. The inertia Ix is a global

measure of the variability of the data X , which has a variance as its

specific case. If X is centered, Qx is the Euclidean metric, and D is

the 1
n In, the inertia Ix is the sum of variances of n data points of X .

There are several approaches to construct D and Qx. For example,

D can be used to adjust possible sampling bias or duplicated obser-

vations. Specifically, we can estimate the probability of selection for

each individual in the sample using available covariates in the data

and use the inverse of the estimated probability as a weight for each

individuals to adjust sampling bias. Also D can be used to put strong

emphasis on some reliable samples compared to the other samples.

Qx can be used to give weights for specific variables, a column sum

is one of the choice for the diagonal elements of Qx (Dray et al.,

2003). As another approach, Qx can be chosen such that genes in X

that are known to be associated with a clinical phenotype of interest

have larger weights. It may be also a good approach to compute Qx

based on functional annotation following some recent proposed

methods, originally proposed for rare-variant test for integrative

analysis (Byrnes et al., 2013; He et al., 2017).

Let XQxu denote the projection of X to the vector u normalized

with Qx, where u is known as the inertia axis (Culhane et al., 2003;

Dray et al., 2003) or the inertia loading vector (Lê Cao et al., 2009).

Following the latter, we call u the loading vector. The projected

inertia IxðuÞ is defined as IxðuÞ ¼ uTQxXTDXQxu. There exists

p orthogonal vectors ui that are normalized with Qx such that sum of

projected inertias becomes the total inertia Ix. Those orthogonal vec-

tors are the eigenvectors of the matrix XTDXQx, which also can be

calculated sequentially by solving the following problem,

maximize
ui

uT
i QxXTDXQxui

s:t: uT
i Qxui ¼ 1;uT

i Qxuj ¼ 0; 1 � j < i:
(1)

Suppose that there is another set of data Y 2 R
n�q collected from

the same subjects. Analogous to the definition of the inertia, we de-

fine the ‘co-inertia’ that measures the concordance between two

datasets (Dray et al., 2003) as Ic ¼ traceðXQxXTDYQyYTDÞ. For

two projections XQxu and YQyv, where a Qx-normed vector u and
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a Qy-normed vector v, the co-inertia between two projections is

defined as Icðu; vÞ ¼ ðuTQxXTDYQyvÞ2. In addition to the centering

the data, it is recommended to scale both datasets if variables in

each data are measured on different scales (Dolédec and Chessel,

1994; Dray et al., 2003).The goal of CIA is to find the optimal load-

ing vector pair ðu; vÞ that maximizes the projected co-inertia. Pairs

of optimal co-inertia loading vectors can be obtained simultaneously

via eigenvalue decomposition of the matrix

Q1=2
x XTDYQyYTDXQ1=2

x . First R co-inertia loadings are UR ¼
Q�1=2

x AR 2 R
p�R; VR ¼ YTDXQ1=2

x ARK�1=2
R 2 R

q�R with respect to

X and Y , where AR 2 R
p�R is set of eigenvectors and KR 2 R

R�R is

corresponding eigenvalues. By solving following optimization prob-

lem, the first loading vectors can be acquired,

maximizeu;v ðuTQxXTDYQyvÞ2

subject to uTQxu ¼ vTQyv ¼ 1:
(2)

We can reformulate problem (2) as follows,

maximize
a;b

aT ~X
T ~Y b subject to jjajj2 ¼ 1; jjbjj2 ¼ 1; (3)

where a ¼ Q1=2
x u;b ¼ Q1=2

y v; ~X ¼ D1=2XQ1=2
x and ~Y ¼ D1=2YQ1=2

y ,

which is a singular decomposition (SVD) problem. Subsequent

pairs of orthogonal loadings ður; vrÞ ¼ ðQ�1=2
x ar;Q

�1=2
y brÞ; r ¼

2; . . . ;R can be estimated by applying SVD to the deflated data with

respect to all previously estimated loading vector pairs

ðU r�1;V r�1Þ ¼ ð½u1; . . . ;ur�1�; ½v1; . . . ; vr�1�Þ. In following sections,

we will develop our methods based on above problem representa-

tion (3).

3 Penalized co-inertia analysis

3.1 Sparse co-inertia analysis (sCIA)
To get a sparse loading vector, we impose the l1-constraint on the

optimization problem (3) as follows.

maximize
a;b

aT ~X
T ~Y b

subject to jjajj2 � 1; jjbjj2 � 1; jjajj1 � c1; jjbjj1 � c2;

(4)

where c1, c2 are pre-defined constants. Note that we relax the l2-

equality penalty on a into inequality penalty to achieve the convex-

ity of the problem following Witten et al. (2009). The problem (4)

has constraints on a and b, which are transformed u and v, not dir-

ectly on u and v. However, the sparsity that a and b achieved is

transferred to u and v because Qx and Qy are diagonal matrices.

Lagrangian formulation of the problem (4) is

maximize
a;b

�aT ~X
T ~Y bþ 1

2
jjajj22 þ k1jjajj1 þ

1

2
jjbjj22 þ k2jjbjj1; (5)

where k1 and k2 are Lagrangian multipliers. The objective function

of the problem (5) is a biconvex function in a and b such that we

can use iterative approach. By fixing one loading vector at a time,

the problem (5) can be reformulated into the iterative algorithm that

consists of two penalized least squares problem as follows,

ð1Þ a arg mina

1

2
jj ~X T ~Y b� ajj22 þ k1jjajj1;

ð2Þ b arg minb

1

2
jj~Y T ~X a� bjj22 þ k2jjbjj1:

(6)

We can get the optimal pair of ða; bÞ by solving iterative problem (6)

until it converges. More than two orthogonal sCIA loading vector

pairs can be estimated by applying the above iterative procedure to

the deflated data with respect to all previous estimated loading

vector pairs. The complete overall procedure for the sCIA is sum-

marized in Algorithm 1.

3.2 Structured sparse co-inertia analysis (ssCIA)
In this section, we extend the proposed sCIA method by incorpo-

rating prior knowledge about the network information among

variables so that relevant variables can be identified more effi-

ciently. To this end, we adopt the Laplacian penalty function

proposed by Li and Li (2008). Let Gx ¼ fC;E;Wg contains a

weighted undirected graph information of variables in X , where

C is the set of vertices corresponding to the p features (or nodes),

E ¼ fi � jg is the set of edges showing that features i and j are dir-

ect neighbors in the network, and W is the weight of each node.

Using Gx ¼ fC;E;Wg, the (i, j)th element of the normalized

Laplacian matrix Lx is defined by

Lxði; jÞ ¼
1�wxði; jÞ=di; if i ¼ j and di 6¼ 0;
�wxði; jÞ=

ffiffiffiffiffiffiffiffi
didj

p
; if i and j are adjacent;

0; otherwise;

8<
: (7)

where wxði; jÞ is the weight of the edge e ¼ ði � jÞ and di is the de-

gree of the vertex i defined as
P

i�j wxði; jÞ. The normalized

Laplacian matrix Ly for the data Y can be defined in the same

way. With definitions of Lx and Ly and given positive constants

c1; c2; c3 and c4, we propose the following structured sparse CIA

(ssCIA) criterion that is the extended model of the sCIA problem

(4),

maximize
a;b

aT ~X
T ~Y b

subject to jjajj2 � 1; jjbjj2 � 1; jjajj1 � c1; jjbjj1 � c2

aT ~Lxa � c3; b
T ~Lyb � c4;

(8)

where ~Lx ¼ Q�1=2
x LxQ�1=2

x and ~Ly ¼ Q�1=2
y LyQ�1=2

y . Like as the

sCIA problem, the sparsity that a and b achieved is transferred to

u and v due to the diagonality of Qx and Qy. Also, the Laplacian

penalty in the problem (8) smoothes the estimated loading vec-

tors such that variables within a same network can be selected or

neglected together. Our structure penalty function uses the

Laplacian matrices that Q�1=2
x and Q�1=2

y are pre-/post-multiplied

Algorithm 1: Sparse Co-Inertia Analysis
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respectively. Thus, this penalty function encourages smoothness

of the u and v. Smaller values of c3 and c4 result in smoother esti-

mates of loading vectors a and b respectively. Lagrangian formu-

lation of the problem (8) is

minimizea;b �aT ~X
T ~Y bþ 1

2
jjajj2 þ k1jjajj1 þ

k2

2
aT ~Lxa

þ1

2
jjbjj2 þ k3jjbjj1 þ

k4

2
bT ~Lyb;

(9)

which is a biconvex problem for a and b such that we can find the

optimal a and b using an iterative algorithm. By fixing one loading

vector at a time, the problem (9) can be recast into the following it-

erative algorithm that consists of two simple lasso regression prob-

lem as in Li and Li (2008) and Chen et al. (2013),

ð1Þ a arg mina

1

2
jjNxa� ~bjj22 þ k1jjajj1;

ð2Þ b arg minb

1

2
jjNyb� ~ajj22 þ k3jjbjj1;

(10)

where

Nx ¼
Ipffiffiffiffiffi

k2

p
MT

x

� �
;Ny ¼

Iqffiffiffiffiffi
k4

p
MT

y

" #
; ~b ¼ ~X

T ~Y b
0p

" #
; ~a ¼ ~Y

T ~X a
0q

" #
;

Mx ¼ Q�1=2
x ExC

1=2
x ; ~Lx ¼ Q�1=2

x LxQ�1=2
x ; Lx ¼ ExCxET

x ;

My ¼ Q�1=2
y EyC

1=2
y ; ~Ly ¼ Q�1=2

y LyQ�1=2
y ; Ly ¼ EyCyET

y ;

and Ex;Cx;Ey;Cy are eigenvectors and eigenvalues of Lx and Ly re-

spectively. More than two orthogonal ssCIA loading vectors can be

derived by applying above iterative procedure again to the deflated

data that is projected to the orthogonal space of all previously esti-

mated pairs of loading vectors. The complete overall procedure for

the ssCIA is summarized in Algorithm 2.

4 Numerical studies

4.1 Generative model for synthetic data
We generate the simulation data following the model presented in

Parkhomenko et al. (2009), which assumes the existence of a latent

variable to make the dependency between two sets of random varia-

bles. Consider a pair of random variable vectors x 2 R
p and y 2 R

q.

Suppose that l from Nð0; r2
lÞ is a latent variable that generates de-

pendency between two random variables. We construct two random

variables x ¼ luþ ex 2 R
p and y ¼ lvþ ey 2 R

q where ex �
Nð0p;RxÞ; ey � Nð0q;RyÞ and u ¼ ½u1; . . . ; up0; 0; . . . ;0�T 2 R

p; v ¼
½v1; . . . ; vq0;0; . . . ; 0�T 2 R

q are pre-defined true sparse co-inertia

loading vectors such that uTQxu ¼ vTQyv ¼ 1. Then the covariance

matrix of x and y have a block matrix structure, and we can show

that Q1=2
x u and Q1=2

y v are left and right singular vectors of
~X

T ~Y ¼ Q1=2
x XTDYQ1=2

y , which maximize the objective function of

the CIA. Detailed description of the covariance matrix and the sim-

ple proof that u and v be the singular vectors of ~X
T ~Y can be found

in the Section A.1 of the Supplementary Material.

4.2 Design of experiments
One hundred Monte Carlo (MC) datasets are generated, where

x 2 R
400 and y 2 R

500 are drawn for n¼200 times for each. We

make D as an identity matrix without loss of generality, and di-

agonal weight matrices Qx and Qy are randomly generated. To

mimic networks existing in the omics data, we assume that the

first 300 variables each of x and y form 30 networks. Each

network has 10 variables and the first one of them within each

network is the main variable connected to the rest of 9 variables.

Variance matrices for x and y are generated so as to contain each

assumed network information.

For the construction of the true loading vectors, we assume that

the most of the genes have no effects to the relationship between

two datasets and only small portion of genes affects to that relation-

ship. Thus true loading vectors are sparse across all simulations. We

consider seven scenarios by changing three conditions, a number of

networks affecting on dependency between two datasets, different

signal direction of genes within each network, and degree of sparsity

within each network. The first condition decides the sparsity of the

true loading vector. There are more nonzero elements in the true

loadings if there are more effective networks we have. The second

and third conditions decide whether the ssCIA can benefits from the

prior network information. If signals of coefficients vary or there are

zero coefficients within a network, that scenario is not favorable to

the ssCIA since true loading vectors cannot make the network pen-

alty zero. Specific values of the constructed variance matrices and

true sparse loading vectors for each scenario design are described in

Section A.2 and A.3 of the Supplementary Material.

4.3 Tuning parameter selection and performance

measures
We use five-fold cross validation (CV) method for selecting the opti-

mal tuning parameters. For each data, we divide the data

into five subgroups and calculate CV objective values,

Algorithm 2: Structured Sparse Co-Inertia Analysis
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CVðkÞ ¼ 1
K

PK
k¼1

ðû�kðkÞTQxXT
k DYkQyv̂T

�kðkÞÞ
2, where Xk; Yk are kth

subgroup of the data, û�kðkÞ; v̂T
�kðkÞ are estimators from the data

except the kth subgroup using tuning parameter k. We select the op-

timal tuning parameters that maximize the above cross validation

criteria. For the grid search of sparsity tuning parameters of both

methods, we use evenly spaced grid points between the maximum

and minimum value of the sparsity parameter that gives almost zero

loading vectors to almost non-sparse loading vectors. For the net-

work penalty parameters of the ssCIA, we conduct preliminary anal-

yses to obtain a rough guess for the range containing tuning

parameter values. After narrowing down the ranges, evenly distrib-

uted grid points are used in the simulation. According to the case-

specific situation, different grid density generated using different

gaps can be used instead.

We assess the feature selection performance of our methods

using sensitivity, specificity, Matthews correlation coefficient

(MCC), and the estimation performance using the angle between the

true and an estimated loading vector. Each measure is defined as

sensitivity ¼ TP
TPþFN ; specificity ¼ TN

FPþTN ; angleðâÞ ¼ âT a�

jjâ jj2�jja�jj2
and

MCC ¼ TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ
p , where TP, TN, FP and FN

are true positives, true negatives, false positives and false negatives

and â are the estimator of the true loading vector a�.

4.4 Results
Simulation results are shown in Table 1. The loading estimators

from sCIA having better angles in all scenarios compared to the clas-

sical CIA. Since the estimators from sCIA have better angles with

fewer nonzero elements in the estimated loadings, we can think that

the sCIA shows improvements in interpretability and precision.

Also, the ssCIA shows higher angle values in most of the cases,

which indicates that the ssCIA shows improvements in the interpret-

ability and precision in most cases.

We evaluate the performance of the ssCIA compared to the CIA

and the sCIA when the true underlying loadings do not agree with

the graph structure assumed by comparing results of the first, second

and sixth scenarios to the rest. Scenario 1, 2 and 6 are favorable

designs to the ssCIA, because the true loading vectors in those simu-

lation settings agree with the network information incorporated in

the model. The ssCIA outperforms the CIA and the sCIA in those fa-

vorable scenarios. The estimators from ssCIA have higher values in

sensitivity, specificity and MCC in general compared to estimators

from the sCIA. In the first and second scenario, the ssCIA finds all

effective variables while it keep showing high specificity. Also, meas-

ured angle values of the ssCIA are higher in every cases compared to

that of the sCIA. Based on the above observations, we conclude that

our ssCIA shows better feature selection performance compared to

the CIA and the sCIA with a help of graph information if incorpo-

rated graph information agrees with true loading vectors.

In the other settings such as scenario 3, 4, 5 and 7, the penalty

function has nonzero value when the input is the true loading vector.

Thus in those simulation settings, the ssCIA cannot enjoy the benefit

of incorporated prior information. However, the ssCIA still shows

comparable values in all measures even though those designs are not

favorable to them. The difference of four measures between the

ssCIA and the CIA/sCIA are relatively small. We conclude that still

Table 1. Simulation results of sCIA and ssCIA

a in X b in Y

Sens Spec MCC Angle Sens Spec MCC Angle

Scen1 CIA – – – 0:940ð0:013Þ – – – 0:928ð0:015Þ
sCIA 0:956ð0:091Þ 0:478ð0:258Þ 0:358ð0:214Þ 0:948ð0:014Þ 0:784ð0:173Þ 0:720ð0:306Þ 0:481ð0:225Þ 0:943ð0:017Þ
ssCIA 1:000ð0:000Þ 0:765ð0:314Þ 0:628ð0:244Þ 0:968ð0:015Þ 0:884ð0:062Þ 0:781ð0:338Þ 0:579ð0:236Þ 0:955ð0:015Þ

Scen2 CIA – – – 0:943ð0:011Þ – – – 0:927ð0:015Þ
sCIA 0:808ð0:039Þ 0:962ð0:113Þ 0:731ð0:120Þ 0:981ð0:010Þ 0:752ð0:134Þ 0:866ð0:245Þ 0:617ð0:245Þ 0:959ð0:015Þ
ssCIA 1:000ð0:000Þ 0:933ð0:021Þ 0:647ð0:064Þ 0:985ð0:006Þ 0:920ð0:027Þ 0:964ð0:010Þ 0:678ð0:049Þ 0:973ð0:008Þ

Scen3 CIA – – – 0:944ð0:011Þ – – – 0:933ð0:013Þ
sCIA 0:956ð0:090Þ 0:477ð0:265Þ 0:362ð0:224Þ 0:952ð0:011Þ 0:825ð0:173Þ 0:654ð0:316Þ 0:444ð0:237Þ 0:944ð0:014Þ
ssCIA 0:924ð0:017Þ 0:907ð0:023Þ 0:694ð0:042Þ 0:953ð0:010Þ 0:778ð0:035Þ 0:934ð0:091Þ 0:642ð0:072Þ 0:952ð0:012Þ

Scen4 CIA – – – 0:954ð0:008Þ – – – 0:932ð0:012Þ
sCIA 0:881ð0:048Þ 0:952ð0:177Þ 0:731ð0:211Þ 0:982ð0:009Þ 0:769ð0:140Þ 0:828ð0:286Þ 0:604ð0:275Þ 0:960ð0:016Þ
ssCIA 0:882ð0:051Þ 0:952ð0:016Þ 0:643ð0:057Þ 0:935ð0:010Þ 0:858ð0:023Þ 0:971ð0:008Þ 0:679ð0:048Þ 0:958ð0:011Þ

Scen5 CIA – – – 0:945ð0:011Þ – – – 0:932ð0:013Þ
sCIA 0:934ð0:082Þ 0:569ð0:343Þ 0:456ð0:309Þ 0:953ð0:013Þ 0:817ð0:166Þ 0:700ð0:290Þ 0:458ð0:230Þ 0:948ð0:014Þ
ssCIA 0:989ð0:014Þ 0:882ð0:124Þ 0:693ð0:097Þ 0:957ð0:013Þ 0:786ð0:047Þ 0:928ð0:088Þ 0:608ð0:068Þ 0:952ð0:012Þ

Scen6-1 CIA – – – 0:937ð0:016Þ – – – 0:921ð0:019Þ
sCIA 0:804ð0:028Þ 0:972ð0:073Þ 0:731ð0:091Þ 0:981ð0:008Þ 0:760ð0:137Þ 0:858ð0:246Þ 0:604ð0:247Þ 0:957ð0:018Þ
ssCIA 1:000ð0:000Þ 0:930ð0:020Þ 0:639ð0:060Þ 0:984ð0:007Þ 0:919ð0:024Þ 0:962ð0:012Þ 0:670ð0:053Þ 0:972ð0:008Þ

Scen6-2 CIA – – – 0:833ð0:036Þ – – – 0:800ð0:046Þ
sCIA 0:766ð0:074Þ 0:937ð0:133Þ 0:596ð0:117Þ 0:932ð0:031Þ 0:564ð0:089Þ 0:946ð0:124Þ 0:454ð0:089Þ 0:922ð0:042Þ
ssCIA 0:957ð0:135Þ 0:892ð0:097Þ 0:553ð0:109Þ 0:931ð0:043Þ 0:752ð0:131Þ 0:905ð0:157Þ 0:456ð0:010Þ 0:913ð0:044Þ

Scen7-1 CIA – – – 0:949ð0:010Þ – – – 0:929ð0:012Þ
sCIA 0:822ð0:063Þ 0:933ð0:170Þ 0:736ð0:192Þ 0:982ð0:007Þ 0:740ð0:120Þ 0:887ð0:243Þ 0:655ð0:234Þ 0:962ð0:013Þ
ssCIA 0:895ð0:052Þ 0:950ð0:015Þ 0:643ð0:059Þ 0:934ð0:009Þ 0:860ð0:027Þ 0:972ð0:009Þ 0:681ð0:050Þ 0:958ð0:011Þ

Scen7-2 CIA – – – 0:825ð0:052Þ – – – 0:797ð0:048Þ
sCIA 0:725ð0:079Þ 0:947ð0:120Þ 0:617ð0:123Þ 0:929ð0:034Þ 0:547ð0:078Þ 0:958ð0:098Þ 0:470ð0:087Þ 0:929ð0:032Þ
ssCIA 0:680ð0:137Þ 0:930ð0:055Þ 0:491ð0:098Þ 0:893ð0:041Þ 0:613ð0:142Þ 0:951ð0:034Þ 0:461ð0:070Þ 0:896ð0:042Þ

Note: As a measure for the performance of proposed algorithms, sensitivity (Sens), specificity (Spec), Mattews correlation coefficient (MCC), and the angle be-

tween estimated loadings and true loadings are shown. Numbers inside the parenthesis are Monte Carlo standard deviation.
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our ssCIA shows competitive performance, especially in specificity,

despite of the discordance between some elements of the true load-

ing vectors and incorporated graph information.

From the comparison between results of scenario 1, 3 and scen-

ario 2, 4, we compare the performance of our penalized CIA com-

pared to the classical CIA when the true loading vectors become

more sparse. The classical CIA performs better if the true loading

vectors are less sparse, which is expected result. For our proposed

methods, there is a trade off between sensitivity and specificity. Our

algorithms lose some sensitivity but get a lot more specificity so that

MCC and angle are improved. This observation implies that our

proposed methods shows better performance when the true loading

is sparse that fits with our original purpose.

We also generate averaged ROC curves and corresponding

approximated AUC values. Those results are presented in Section B

of the Supplementary Material. Figure 1 and Table 1 in the

Supplementary Material confirms the above simulation results.

5 Real data analysis

5.1 NCI-60 cell line data
The NCI-60 is a panel of 60 diverse human cancer cell lines used by

the Developmental Therapeutics Program (DTP) of the U.S. National

Cancer Institute (NCI) to screen over 100 000 chemical compounds

and natural products. It consists of 10 kinds of cancerous cell lines,

leukemia, lymphomas, melanomas, ovarian, renal, breast, prostate,

colon, lung and CNS origin. There are various -omics datasets avail-

able for those cell lines including gene expression data from various

platforms, protein abundance data and methylation data. We use the

gene expression data used in the CIA application (Culhane et al.,

2003), which contains 1517 probes that have the minimum change in

gene expressions greater than 500 units across all cell lines. For the

other data, we use the protein abundance data generated by

Nishizuka et al. (2003) using the high-density RP lysate arrays

(Paweletz et al., 2001), which can be downloaded from CellMiner

(http://discover.nci.nih.gov/cellminer/) web application for the NCI-60

data (Reinhold et al., 2012). In this study, abundance levels of 162

proteins are available for the NCI-60 cell lines. After matching labels

of cell lines of two datasets, 57 of 60 matched cell line data were used

for the analysis. For the weight matrices in the CIA, sCIA and the

ssCIA, we use the identity matrix for D and the column sum divided

by total sum of the absolute values of the data each as diagonal values

of the weight matrix following Culhane et al. (2003). Network infor-

mation incorporated in the ssCIA method are collected from KEGG

pathway database (Kanehisa et al., 2017).

5.2 Analysis results
To compare the performance of proposed algorithms with the clas-

sical CIA, the number of nonzero elements in the first two estimated

loading vectors and the cumulative percentage of explained variance

of data by the estimated loading vectors are calculated in Table 2.

Cumulated percentage of the explained variability is the ratio of

sum of estimated co-inertia to the total co-inertia. Since the total co-

inertia between X and Y does not change (Dray et al., 2003), we can

use the cumulated percentage of explained variability as a measure

to compare the performance of the CIA, sCIA and the ssCIA how

much they explain the co-variability between two datasets. We can

observe that our penalized algorithms select much fewer elements in

loading vectors but still explains almost same portion of the data

variability explained by the CIA. The ssCIA collects more variables

compared to the sCIA, but it explains more variability than the

sCIA, and much fewer variables compared to the CIA to explain the

similar percentage of the data variability explained by the CIA.

Following Culhane et al. (2003), Fagan et al. (2007) and Meng

et al. (2014), we generate three figures for each method and shown

in Figure 1. The figures in the first row show the sample space of the

gene expression and protein abundance data. The arrow base

pointed as a dot is the projection of the cell line from the gene space

while the tip of the arrow is the projected coordinate of the cell line

from the protein space. The length of the arrow indicates the degree

of the concordance between two datasets, the shorter arrow stands

for the higher consensus between two datasets. For example, the

arrows of the CNS cell line data exhibits relatively short-length com-

pared to others, which suggests that consensus between the gene ex-

pression and the protein abundance data of the CNS cell line is

higher compared to that of leukemia, melanoma, or lung cell lines.

This plot also shows the global pattern of the data, the distance be-

tween the tip and the origin tells us which cell line contributes more

and have higher weights on the specific co-inertia axis. Gene space

(arrow base) of the melanoma cell lines is projected further than its

protein space in the direction of the first co-inertia axis, which sug-

gests that the gene expression data contributes more to the trend of

the first axis compared to the protein abundance data. Similarly, the

protein abundance data of the leukemia cell lines may contributes

more to the first axis compared to the gene expression data.

Clustering pattern is another information that we can get from the

figures in the first row. First we observed is that samples are clus-

tered by their cell lines, especially, samples from leukemia, melan-

oma and colon cell lines are well clustered compared to others. We

notice that both datasets from lung carcinomas and breast cancer

are more dispersed than others, which may suggest that datasets for

those disease is more heterogeneous than others. In second, we can

observe that cell lines are separated by their characteristics. Cell

lines clustered to the right of the second axis are colon, breast, lung,

ovarian, prostate and renal cell lines. All those cell lines are from

epithelial cell tissues (Marshall et al., 2017) while lueukemia, melan-

oma and CNS are not from that origin of tissues.

The plots in the second and the third row in Figure 1 show the

gene and protein projections in their respective spaces. Labeled

genes in each plot are top 50 genes that are the most extreme from

the ends of each co-inertia axis and red color-labeled ones are com-

monly chosen in all three methods (Culhane et al., 2003). We ob-

serve that the sCIA and the ssCIA select similar sets of significant

genes and proteins while their estimators are sparse compared to

estimators of CIA. This suggests that our methods perform well in

feature selection, important features are selected while less import-

ant features are neglected. Also, we observe that there is a group of

genes and proteins projected onto the same direction in those plots

across the methods and spaces. For example, the gene TGFBI is

located in the bottom-end of the second axis in all figures in the se-

cond and third rows. Another observation we make is that the mes-

enchymal biomarker VIM is located in the left-end of the first axis

while epithelial markers KRT7 and KRT19 are located at the right-

end of the first axis of the gene space figures. Also, another epithelial

maker CDH1 has high positive weight on the first axis of the protein

space figures. These observations agree with the results from the fig-

ures in the first row. Those findings suggest that our penalized CIA

methods give us biologically meaningful results.

We also conduct the pathway enrichment analysis for each

selected genes and proteins in each method using ToppGene Suite

(Chen et al., 2009). In general, both sCIA and ssCIA finds biologic-

ally meaningful results, while the ssCIA can detect more enriched

pathways compared to the sCIA. The most highly enriched diseases
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Table 2. Analysis results of CIA, sCIA and ssCIA for the NCI60 cell line data

Result of the CIA, sCIA and ssCIA

Number of nonzero elements Cumul % explained by estimated loadings

a1 a2 b1 b2 1st loading 1st, 2nd loadings

CIA 1517 1517 162 162 0.359 0.641

sCIA 1038 573 92 153 0.336 0.598

ssCIA 1206 1036 113 132 0.348 0.624

Note: First four columns are number of nonzero elements in the estimated first two co-inertia loadings for each X and Y , next two columns are cumulated per-

centage of explained variability of the data.

Fig. 1. NCI60 Cell Line data analysis result from the CIA, the sCIA and the ssCIA, left to right respectively at each row. The first row shows the sample space of ana-

lysis result. The starting point of an arrow is a normalized score of a sample in the gene data, while the endpoint of arrow is a normalized score of a sample in the

protein data. The figures second row show the distribution of samples in the gene space by the first and second scores of estimated CIA axis for the gene space,

while the figures in the third row show the distribution of samples in the protein space by the first and second score of estimated CIA axis. The value of d in the

upper right part of each figure is the unit length of the grid in each figure

1024 E.J.Min et al.



in the selected genes from the sCIA and the ssCIA are neoplasma,

tumor progression, glioma, non-small cell lung carcinoma, ovarian

carcinoma, colon carcinoma and a number of other cancers such as

leukemia, renal cell carcinoma and malignant tumor of colon. All

those listed diseases are included in the list of diseases selected for

the NCI60 cell line data. Pathways in cancer (Bonferroni adjusted q-

value for sCIA: 5:07e�12, ssCIA: 5:26e�14), non-small cell lung can-

cer (Bonferroni adjusted q-value for sCIA: 4:48e�09, ssCIA:

1:03e�11) and many other cancers related pathways are enriched

among the selected genes of results from our methods. We also find

GO terms that are significantly enriched in the selected genes and

proteins. In both the sCIA and the ssCIA results, highly enriched

GO term include RNA binding (ID GO: 0003723), enzyme binding

(ID GO: 0019899) and structural constituent of the ribosome (ID

GO: 0003735) (Ross et al., 2000). GO terms related tissue develop-

ment, metastasis are expected to be detected in the enrichment ana-

lysis of the first estimates since the first axis separates epithelial

cancers. And we find that cell adhesion (GO: 0007155), extracellu-

lar matrix structural constituent (GO: 0005201) are enriched from

both results of the sCIA and the ssCIA. There exists some other GO

term such as structural molecule activity (GO: 0005198), structural

constituent of cytoskeleton (GO: 0005200) that are related to cell

structure but only enriched in the results of the ssCIA. From this, we

confirm that the ssCIA enjoys the benefits of network information

incorporated via network penalty.

6 Discussion

We proposed two sparse CIA methods that impose penalties on the

CIA loading vectors. We use the l1 penalty and the network penalty

that utilizes the prior knowledge about relationships among varia-

bles. Our approach is useful when data is high dimensional, since

estimated loading vectors from our model are sparse while explain-

ing a similar amount of variation between two datasets as the CIA,

particularly when the ssCIA is used and our methods are computa-

tionally efficient and scalable to analysis of high-dimensional -omics

data. Regarding the scalability, computational complexity of our

algorithms are discussed in Section B of the Supplementary

Material. Numerical studies prove that our proposed penalized CIA

methods achieve close performance compared to the CIA, with small

number of selected variables. For the future research, we plan to ex-

tend the methods to multiple co-inertia analysis (MCIA) for analysis

of more than two datasets.
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