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Abstract

The relationship between the underlying contact network over which a pathogen spreads

and the pathogen phylogenetic trees that are obtained presents an opportunity to use

sequence data to learn about contact networks that are difficult to study empirically. How-

ever, this relationship is not explicitly known and is usually studied in simulations, often with

the simplifying assumption that the contact network is static in time, though human contact

networks are dynamic. We simulate pathogen phylogenetic trees on dynamic Erdős-Renyi

random networks and on two dynamic networks with skewed degree distribution, of which

one is additionally clustered. We use tree shape features to explore how adding dynamics

changes the relationships between the overall network structure and phylogenies. Our tree

features include the number of small substructures (cherries, pitchforks) in the trees, mea-

sures of tree imbalance (Sackin index, Colless index), features derived from network sci-

ence (diameter, closeness), as well as features using the internal branch lengths from the

tip to the root. Using principal component analysis we find that the network dynamics influ-

ence the shapes of phylogenies, as does the network type. We also compare dynamic and

time-integrated static networks. We find, in particular, that static network models like the

widely used Barabasi-Albert model can be poor approximations for dynamic networks. We

explore the effects of mis-specifying the network on the performance of classifiers trained

identify the transmission rate (using supervised learning methods). We find that both mis-

specification of the underlying network and its parameters (mean degree, turnover rate)

have a strong adverse effect on the ability to estimate the transmission parameter. We illus-

trate these results by classifying HIV trees with a classifier that we trained on simulated

trees from different networks, infection rates and turnover rates. Our results point to the

importance of correctly estimating and modelling contact networks with dynamics when

using phylodynamic tools to estimate epidemiological parameters.

Author summary

Understanding whether and how transmission patterns are revealed by branching pat-

terns in phylogenetic trees for pathogens remains a challenging research question. Besides

the diversification of the pathogen, branching patterns depend strongly on the host
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contact structure as it shapes opportunities for the pathogen to reproduce. However, the

host contact network is often difficult to study, in particular as it evolves in time. In this

paper we perform a simulation study on three different dynamic networks, on which we

simulate transmission trees. We use a simple Erdős-Renyi random network and two more

realistic networks with skewed degree distribution, where one is also clustered. We con-

vert transmission trees into phylogenetic trees and analyze them with different tree statis-

tics like imbalance measures, counts of small substructures, and measures containing the

branch lengths. We study the tree features with principal component analysis and with

supervised learning methods, and find that network dynamics and network type can

strongly influence the shape of phylogenetic trees. This implies that using phylogenetic

trees from a mis-specified network type and dynamic can lead to poor phylodynamic esti-

mation of transmission parameters. We illustrate this with HIV phylogenetic trees con-

structed from viral sequences of patients in the Dutch ATHENA cohort, and from

sequences of the Los Alamos Sequence database.

Introduction

Understanding whether and how the transmission patterns of a pathogen are revealed by

branching patterns in pathogen phylogenetic trees remains a challenging research question.

Alongside the stochastic diversification of the pathogen on the short time scales of an infec-

tious disease outbreak, branching patterns in the pathogen’s phylogenetic tree also depend

strongly on the underlying transmission pattern [1] and the host contact structure, as these

shape the pathogen’s reproductive opportunities.

The role of networks in epidemic spreading has been studied extensively in past decades

[2–12]. The topology of the host contact network plays a crucial role in setting the epidemic

threshold, the epidemic size and the most effective interventions. Network properties also play

a role in determining which individuals are at high risk of infection. Naturally, modellers seek

to inform simulated networks with individual-level data from real populations. Respondent-

driven sampling [13, 14], snowball sampling or questionnaires [15] are several approaches to

gathering these data, but all are challenging: people do not always remember how many people

they have been in contact with, and in some contexts (such as injection drug use or sexual

behaviour), contact is stigmatized or even illegal. As a result, individuals may not wish to

report contacts to public health practitioners.

Recently there has been interest in using genetic data from pathogens, together with phylo-

genetic and phylodynamic tools, to estimate the parameters of human contact networks [16–

19]. This is appealing, in that data now accessible with high-throughput sequencing technolo-

gies (pathogen sequences, at a level of resolution that makes detecting even small amounts of

genetic variation feasible) can reveal information about a fundamental population-level struc-

ture (the network). Sequences can show patterns of descent, and pathogens transmitted

directly from human to human need human contact networks to have descendants. Since net-

works are difficult to observe directly and phylogenetic trees in principle contain some infor-

mation about them, researchers have used a variety of tools to relate pathogen phylogenetic

trees to the underlying contact network’s degree distribution, connectivity and clustering [17,

20]. This method has been of particular interest for HIV phylogenies [21–24].

Studies have reported varying strengths of the effect of the contact network on the phylog-

eny. For example, [25] found a very weak influence of the network’s clustering coefficient

when the degree distribution is held constant, [26] studied the shapes of phylogenies from
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simulated genetic data and found a moderate influence of the underlying network degree dis-

tribution, though “clustering” in phylogenetic trees did not parallel the heterogeneity in the

degree distribution, and network dynamics shape phylogenies as well. [21] found a relatively

stong effect of the variance in degree distribution and of the average pathlength of the network

on the shapes of phylogenies. Also, within-host viral diversity affects the link between network

structures and phylogenies [23], as do the basic reproduction number and other details of the

process [27, 28]. It is therefore reasonable to assume that details of timing of infection, in-host

selection, selection at the population level and other factors may also affect the relationship

between contact networks and phylogies.

Human contact networks are self-organizing systems with certain general characteristics;

one approach to modelling human host networks is to perform simulations that are able to

reproduce those characteristics. Key characteristics include a short average pathlength (small-

world property) [29], clustering [30] and a scale-free (or at least highly skewed) degree distri-

bution [31, 32]. In particular, networks with a skewed degree distribution have received much

attention for epidemic spreading, as they yield significantly different transmission patterns

from a homogeneously mixed population. Depending on the transmission pathway, there is

evidence that networks can have an exponential degree distribution [13, 33] or a scale-free

degree distribution, found in various social networks [34–36], and in human contact networks

[37–39]. The Barabasi-Albert model [40] in particular is a much-studied process by which

scale-free degree distributions may emerge. It is based on the idea of preferential attachment:

nodes attach preferentially to existing nodes that already have many links.

Preferential attachment is a plausible rationale for many applications (fame, publicity). It

describes a constantly growing network, or a static network if the growth is halted. In contrast,

human host contact networks are often dynamic, but may not be growing in size over time.

Instead, they have population turnover [5, 41], with individuals entering and leaving a network

as time goes on. Especially for chronic infections like TB, HCV or HIV [42], people may enter

and exit the network over shorter timescales than the length of the infectious period. The num-

ber of contacts that individuals accumulate over time is significantly larger than the number of

contacts at one point in time.

Furthermore, many of the observations underlying reports of scale-free degree distributions

in human contact networks are derived from reports of the cumulative numbers of contacts

that individuals have over a long period (for example over one year [32, 43], or accumulated to

date). Accordingly, it may not be appropriate to compare simulated transmission dynamics in

models where individuals’ degrees are modelled from observed accumulated numbers of con-

tacts to transmission where degrees are taken as the instantaneous (or even shorter-term)

numbers of contacts. The static network (with degrees modelled on data for the number of

contacts accumulated over long time periods) can be a very poor approximation of the true

dynamic network; outbreaks can spread faster in such a static network due to the potentially

very high numbers of simultaneous contacts.

In using phylodynamic tools to estimate network parameters from pathogen phylogenies, it

is typically assumed that the contact network is static in time; one seeks network parameters

that produce pathogen phylogenetic trees that are similar to observed trees, conditional on the

static network assumption (and perhaps also on assumptions about the degree distribution,

clustering patterns and other network attributes). Whatever the details, inferred quantities

such as degree distribution, the average number of partners and the infection rate are influ-

enced by assumptions about the network, including the static assumption.

The duration of infectiousness and the time scale of the network dynamics must affect the

relationship between pathogen phylogenies and network parameters. Clearly, no individual

has thousands of contacts over a week; reports of degrees that are orders of magnitude higher
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than the average are from data aggregated over long time periods; where an infectious duration

is of the order of weeks or a few months, the scale-free property is unlikely to hold. These

issues are presented briefly in [26] and [44, 45].

In this paper, we investigate the effect of human host network dynamics on pathogen phy-

logenies. Our study focuses on simulations, and on the relationship between network assump-

tions and estimates of transmission parameters. We compare simulated phylogenies from

outbreaks on static and dynamic networks, and we explore the effect of the turnover rate at

which individuals enter and leave the system. We also study the effect of the network charac-

teristics on the phylogenies. For this, we use networks with binomial degree distribution and

skewed degree distribution, as well as clustered and unclustered networks. We explore the

effect of the infection rate and the mean number of contacts. We study how the features of the

underlying networks affect phylogenetic trees with various tree statistics. Finally, we turn to

phylodynamic inference of HIV transmission parameters and illustrate our main results using

HIV sequence data from the Dutch ATHENA cohort and Los Alamos. In particular, we char-

acterise the impact of alternative assumptions on human contact network dynamics on estima-

tion of key transmission parameters including R0.

Methods

We simulate the human contact network with the algorithms described in section. First, we

allow the networks to converge to a stationary state in terms of degree distribution; in this sta-

tionary state, networks are still dynamic in the sense that people enter and exit. Then, an out-

break is simulated on the networks while they continue to evolve. One person is infected and,

with a constant infection rate per contact, the infection can spread. The resulting infection

trees are converted into a phylogenetic trees (see section). Unlike the Barabasi-Albert (BA)

model, our approach allows a skewed degree distribution to emerge while keeping the size and

total degree fixed. Throughout, individuals enter and leave the network and links are formed

and dissolved. In contrast, in the BA model, nodes and links are continuously added and

remain in the network. We set a constant number of tips in our trees. We use tree shape and

length statistics, detailed in section, to compare phylogenetic trees.

Network algorithms

We use an algorithm for a “skewed-clustered” network which generates a network with a

skewed degree distribution and positive transitivity [38]. To understand what these features

add, we also use skewed (but not particularly clustered) networks, and an Erdős-Renyi random

network. These all have a stationary average number of contacts and stationary degree distri-

bution, while people are entering and exiting the network. This entry and exit happens with a

turnover rate δ, which is the ratio between the number of people entering per time step to the

number of people in the network. Networks are simulated in discrete time. In each time step

the following steps happen:

Random network. A person enters the network and gets connected to a person chosen at

random. Further links are added between randomly chosen people in the network to keep the

average degree constant. People exit the system at the given rate. When a person leaves the net-

work, their links are broken. The degree distribution in this algorithm converges to a binomial

degree distribution.

Skewed network. A person enters the network and forms a partnership (link) with one

other person j, where the probability to select someone as partner is proportional to that per-

son’s current number of partnerships (degree). To maintain a constant number of links despite

the fact that individuals leave the system, additional links are introduced. For this, a first

Phylogenies from dynamic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006761 February 26, 2019 4 / 21

https://doi.org/10.1371/journal.pcbi.1006761


person i is picked with probability proportional to its number of contacts. Node i is then linked

to a second person j, who is again picked with probability proportional to person j’s number of

contacts. People exit the system at a given rate, and their links are all broken. If a person is left

without any links because their partners have left the network, they are connected to existing

nodes, again with probability proportional to a node’s degree.

It can be shown theoretically [46] that the degree distribution in this process converges to a

power law degree distribution with an exponential cutoff; the cutoff strength increases with

decreasing number of people (nodes), and also is increased when the mean degree is

decreased. For mean degree� 3 and a network size of 1000 nodes, the cutoff is so strong that

the degree distribution can always be approximated by an exponential distribution.

Skewed-clustered network. This is a variant of the algorithm described above. Again a

person i enters the network, and another person j to receive an additional link is picked, with

probability proportional to its current degree. Additional links are added, where the first

neighbour is again picked with probability proportional to its number of contacts. The second

neighbour is picked

(i). among neighbours of second degree (neighbours’ neighbours) (at random)

(ii). if that is not possible, among neighbours of third degree (at random)

(iii). if that is not possible, in the whole network, with probability proportional to a node’s

degree.

After people exit at a given rate, those left without neighbours are connected to existing nodes,

with probability proportional to a person’s degree, and other links are broken.

The stationary state of the degree distribution is again a power law with exponential cutoff,

with a higher decay constant as in the skewed network (for low mean degree d< 3). At a

given point in time, not all nodes in the network are necessarily connected to one component

(see Fig 1). The clustering coefficient, or transitivity, is defined as the ratio of the number

of triangles to the number of connected triplets [29]. Rules (i) and (ii) cause the transitivity

to be higher than it is in the the skewed network (for all system sizes, here the transitivity

is� 0.15).

Time-integrated networks. We also compute time-integrated networks, i.e we let the net-

works evolve with entry and exit, and create (unweighted) networks of all nodes that have ever
been in the network, where two nodes are connected if there has ever been a link between

them. As a consequence, the time-integrated network has many more links than a dynamic

network at a specific point in time. The degree distribution of the time-integrated networks

has a higher mean and more than the degree distribution of the instantaneous networks. Both

dynamic and time-integrated static networks have the same answer to the question “How

many contacts have you had in a given time?”, so they can be modelled using the same source

of input data (e.g. questionnaires [15]).

Outbreak simulation

In our simulations, we begin with one infected individual who then infects neighbours at a con-

stant infection rate per contact, after which the neighbours can infect their respective neighbours

in the next time step, and so forth. Infected individuals stay infected throughout the simulation,

modelling a long-term infection. This simulates an outbreak on these dynamic networks. There

is at least one time step between an individual becoming infected and infecting a neighbour, and

we model a positive time between any two infection events by adding a small positive time to

the infection events of one iteration, such that they occur with equal time lapses.

Phylogenies from dynamic networks
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Fig 1. Topologies of a dynamic skewed-clustered network (top), a dynamic skewed network (middle) and a

dynamic random network (bottom) at one point in time. Turnover rate (probability to leave the network in one

timestep) δ = 0.1. The inlays on the left show the pathlength distribution. The skewed network has a much shorter

pathlength than the random network (for same mean degree), and skewed-clustered network has slightly longer

average pathlength, but still shorter than the random network. This relationship holds for a wide range of mean

Phylogenies from dynamic networks
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We extract what would be the “true timed phylogeny” of the pathogen given the transmis-

sion tree in our network, under the assumption that hosts carry a single pathogen lineage. To

do this we form a binary branching tree in which each host corresponds to a tip in the phylog-

eny and branch lengths correspond to time. Since we know the true transmission tree and its

timing, this can be done by tracking the infectors, infectees and the time between infection

events. This is available in the getLabGenealogy function in the R package PhyloTop [47].

The simulation of the outbreak is stopped after a time such that the phylogenetic trees all have

the same number of tips.

Topological summary measures of trees

We compute features of the phylogenies with software sources listed in Table 1.

1. Number of substructures

Cherries: Substructure consisting of two tip descendants

Pitchforks: Substructure consisting of three tips

2. Imbalance measures

Sackin Index: Average number of internal nodes Ni between each tip i and the root of the phy-

logenetic tree Sn ¼ 1

n

Pn
i¼1

Ni, [48, 49]

Colless Index: It compares the number of tips that descend on the left and right (L and R)

from each internal node, and averages over these differences |L − R| [49, 50].

3. Other tree measures

Maximum Height: Maximum height of tips in the tree.

Average Size of Ladder: Ladder structures [1] consisting of a connected set of internal nodes

with a single tip descendant

degrees. The inlay on the right shows the counter-cumulative degree distribution in loglinear scale, which are power

laws with exponential cutoff for the skewed-clustered network and skewed network (blue and red), and binomial for

the random network (black).

https://doi.org/10.1371/journal.pcbi.1006761.g001

Table 1. References of tree features.

Cherries [47]

Pitchforks [47]

Sackin Index [47]

Colless Index [47]

Maximum Heigh [47]

Average Size of Ladder [47]

IL numbers [47]

Maximum Betweenness treeCentrality [51]

Wiener Index treeCentrality [51]

Maximum Closeness treeCentrality [51]

Average Pathlength treeCentrality [51]

Diameter treeCentrality [51]

Branching next index phyloTop

Generalised branching next phyloTop

Mean of length from internal nodes to root (own)

https://doi.org/10.1371/journal.pcbi.1006761.t001
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IL numbers: Number of internal nodes with a single tip child.

4. Centrality measures and general network measures

Maximum Betweenness: Maximum number of shortest paths that pass through a particular

node.

Wiener Index: Sum of the lengths of the shortest paths between all pairs of nodes.

Maximum Closeness: Sum of lengths of the shortest paths between one node and all other

nodes (maximum thereof).

Average Pathlength: Average distance between two nodes.

Diameter: Longest possible path between two nodes in the tree.

5. Tree measures that use the edge length

Branching next index (BNI): We compare the extent to which a node that branches at time t
is chronologically next to branch; in other words, does branching now make it more or less

likely that a node will branch next? If a node’s child is chronologically next to branch fol-

lowing the node itself, we say the node has the ‘branching next’ property (si = 1). We add

and rescale the sum of si over all internal nodes i in the tree (except the root and the last

node to branch). si is a Bernoulli random variable whose expected value is pi = 2/ki, where ki
is the number of lineages in the tree that exist at time ti + �, in the limit as �! 0, where ti is

the time of node i and � > 0. We define the BNI as

P
i
si � piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
pið1� piÞ

p

Generalised branching next (MNI): Extending the BNI concept, we ask whether one of the

next m branching events (chronologically) in the tree descends from the current node, in

which case we set di = 1 for node i. We sum and rescale di, as with si, over the tree to create

this summary statistic. We let kij, j = 1, . . ., m be the numbers of lineages immediately after

the j0th branching event following node i (in the entire tree). We define qi = ∏j(1 − 1/kij)

and normalise by setting MNI to

P
i
di � qiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
qið1� qiÞ

p . Since now they are not independent we use

every m0th node i rather than every node.

Length statistics We use the mean of the path length from the internal nodes of the tree to its

root, as well as the median, variance, skewness and kurtosis of this set of path lengths.

Analysis approach

We use two approaches to understand how the underlying contact network affects the tree fea-

tures. The first is to visualise the results using principal components analysis (PCA) on the

matrix of features described above. The matrix values are scaled such that the mean is zero,

and normalized such that variance is 1, as is standard in PCA. This visually illustrates the

extent to which these features discriminate between phylogenetic trees derived from different

contact networks. However, visual separation on a 2-dimensional PCA plot is a limited mea-

sure of how informative the features are of the contact network. Thus, we also explore this

quantitatively using both K-nearest neighbours and random forest classification. We attempt

to classify the network (random, skewed or skewed-clustered) based on the features. We assess

accuracy in these binary and categorical classifications when the underlying network model

correct, and when it is mis-specified. We also attempt to classify the transmission rate. For this

goal we use trees from simulated outbreaks where we distributed the transmission rate β
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uniformly. We grouped these trees into bins depending on the underlying β and train classifi-

ers on the tree features with the aim of predicting the bin of β for a test set. We study a scenario

where turnover rate δ and mean degree d̂ are distributed uniformly, and a scenario where they

are kept constant.

Application to HIV

Partial nucleotide HIV-1 polymerase sequences were obtained as described previously from

patients in the ATHENA national observational HIV cohort in the Netherlands (by June 2015)

[52]. We used the first sequence per patient, with a minimum of 750 nucleotides length. No

patient information was included in the analysis. Sequences were aligned with Clustal Omega

1.1.0 [53] and manually checked and adjusted. HIV-1 subtyping was performed with COMET

v1.3 [54] and 6912 subtype B sequences were considered for further analysis. In addition we

retrieved 19,459 HIV-1 subtype B sequences from the Los Alamos database (by September

2017) [55], with a minimum length of 1000 nucleotides overlap to the ATHENA alignment.

Excluding sites with less than 75% coverage, and with IAS resistant mutations 2015 removed

This resulted in a sequence alignment of 1,128 nucleotides length [56]). Viral phylogenies were

reconstructed with FastTree version 2 [57].

From this tree we identify 90 non-intersecting clades in the specified size range 100-151,

using a depth first search approach. The mean number of tips in the clades was 127. 86 out of

90 clades contained samples from the ATHENA cohort, with a fraction between 0.01 and 0.97.

Overall, the clades we extracted contained 8326 sequences from the Los Alamos data and 3186

from the Dutch HIV-1 ATHENA cohort. We compared the HIV clades with simulated trees

from different networks and to trees simulated on the same network, but with varying infec-

tion rates. We trained random forest and K-nearest neighbour classifiers on tree features from

the simulated networks, and used the features from the HIV clades as a test set. The simulated

trees (the training set) had 100 tips. We then used the classifiers to predict the network type or

infection rate for the HIV clades.

Overview of scenarios

We used principal component analysis to study different types of networks, different mean

degree and infection rate for a given network, as well as different turnover rates and a time-inte-

grated static network (see all scenarios in Table 2). We also trained classifiers on the networks

in order to predict infection rate, turnover rate and network type (see all scenarios in Table 3).

Results

The network structure and dynamics both affect features of phylogenetic trees of pathogens

spreading on the networks. However, the effects are modulated by the transmission rate and

the turnover rate. These relationships are sufficiently strong as to disrupt the signal of the

Table 2. Summary of the simulation scenarios for principal component analysis.

Different scenarios—PCA analysis:

Kept constant Varied

same mean degree d̂ and δ 3 network types

skewed-clustered static network d̂ and β

skewed-clustered network of same d̂ , δ, β static and 3 turnover rates

d̂ : mean degree, δ: turnover rate, β: infection rate

https://doi.org/10.1371/journal.pcbi.1006761.t002
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network type in the pathogen phylogeny. A summary of results for the different network struc-

tures is given in in the discussion and the trees are given in supporting information.

Phylogenetic tree features can reveal network structure

Fig 2 shows a principal component analysis based on phylogenetic trees simulated on dynamic

networks with three different topologies. Phylogenies from the Erdős-Renyi network differ

strongly from the two others. This holds even for relatively small trees (100 tips), whereas for

clustered and unclustered networks, the discrimination improves with the size of tree (up to

250 tips). The same results hold for a wide range of infection rates (β = 0.025 to β = 0.2) and

higher turnover rates (δ = 0.1). Overall, the discrimination between networks improves with

tree size. The distinction between trees from different underlying networks improves if addi-

tional features are used that take into account the lengths of edges. Skewed and skewed-clus-

tered network have a lower number of small substructures (cherries and pitchforks), and a

higher value for all imbalance measures. Most network measures (except betweenness) are also

positively correlated with imbalance measures.

The network structures become more distinct with a higher rate of infection per contact

and with a higher rate of turnover (eg β = 0.2, δ = 0.1), and in particular the numbers of cher-

ries and the path lengths become more distinct as these parameters increase. Differences in the

path lengths and the imbalance between the networks are also more pronounced with higher β
and δ. In contrast, however, there are a few features for which differences are more pro-

nounced at low infection rates (including the ‘ILnumbers’ and the Wiener index for clustered

vs unclustered networks). In other words, given fixed values of the transmission and turnover

rates, it is possible to separate, and estimate, the underlying network structure based on phylo-

genetic tree features, for example by discriminant analysis, classification methods, or by

Approximate Bayesian Computation.

However, the details—which phylogenetic features point to which kinds of networks—are

specific to the transmission and turnover rates, and mis-estimation seems likely if these are

mis-specified. Furthermore, for some choices of parameters, the networks are no longer well-

separated in the PCA analysis; for example, if β = 0.05 and δ = 0.1 (so β< δ), the clustered net-

work overlaps with the random network, whereas if β> δ, they do not overlap, but the two

skewed networks (clustered and unclustered) begin to overlap.

Features of phylogenies depend on transmission rate and average degree

When infection rate per contact β increases, so does the variance of tree features, and the fol-

lowing tree features increase on average: Colless index, Sackin index, IL numbers (nodes with

Table 3. Summary of the simulation scenarios used for automatic classification.

Different scenarios—automatic classification:

Predicted variable Training set

network type 3 networks

β different networks separately

β mis-specified network

δ 3 networks

network type in 90 HIV clades/in different fractions of NL tips 3 networks

β in 90 HIV clades/in different fractions of NL tips skewed-clustered network, different β

d̂ : mean degree, δ: turnover rate, β: infection rate

https://doi.org/10.1371/journal.pcbi.1006761.t003
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single tip child), average ladder size, maximum height, average pathlength, Wiener index and

diameter. The number of cherries, pitchforks and maximal closeness decrease with increasing

infection rate, as shown in Fig 3 for the skewed-clustered network.

The same features increase as the mean degree increases (red and green vs. turquoise and

purple in Fig 3), which is expected, as both increasing β (infection rate per contact) and

increasing the number of contacts increase the basic reproduction number R0 ¼ b
�dt (τ being

the duration of infection and �d the median degree) of an outbreak. The phylogenies from the

four outbreak hypotheses in Fig 3 may therefore correspond to different pathogens or to a

pathogen in rather different epidemiological settings, as in these scenarios R0 values may differ

substantially. However, the tree features that discriminate these scenarios are also affected by

the nature of the contact network (Fig 1) and by the turnover rate (Fig 4). This comparison

highlights that the network type and turnover are likely to affect estimation of the mean degree

and the infection rate from phylogenetic trees.

Simulated trees to figure 4 are found in S3 File.

Network dynamics affect phylogenetic tree features

Fig 4 shows a PCA of phylogeny features derived from skewed-clustered networks with same

mean degree but different turnover rates (i.e. rates at which people enter and exit the system),

and from a time-integrated static network of same mean degree d̂. Higher population turnover

of the network increases the following features of the simulated phylogenetic trees: Sackin

Fig 2. Tree features of the simulated phylogenies. Left: PCA plot of tree features from phylogenetic trees simulated on different networks: random (Erdős-Renyi),

skewed and skewed-clustered. Each contact network has mean degree n = 5, and all simulated trees have 500 tips. Parameters: infection rate β = 0.05, population

turnover = 0.03. Right: correlations between tree features, here most features are clearly correlated (blue) or anti-correlated (red). Simulated trees to figure (a) are

found in supporting information.

https://doi.org/10.1371/journal.pcbi.1006761.g002
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index, Colless index, average ladder sizes, IL number, maximum height, average pathlengths,

diameter, Wiener index, and betweenness, and decreases the number of cherries and pitch-

forks as well as maximum closeness.

Higher turnover gives similar results to a higher mean degree or a higher infection rate

(see Fig 3). The static time-integrated network has no turnover, but contacts have a longer

Fig 3. Phylogenies simulated on time-integrated static skewed-clustered networks. We compare trees from outbreaks on networks

with mean degrees d̂ ¼ 5 and d̂ ¼ 9 for infection rates β = 0.05 and β = 0.1. All trees have 500 tips. Simulated trees to this figure are

found in S2 File.

https://doi.org/10.1371/journal.pcbi.1006761.g003
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duration, presenting the opportunity to transmit comparably to a dynamic network with

much higher turnover than the one used for the time integration. In dynamic networks, links

get rewired often and therefore many opportunities for transmission exist. The static network

has higher mean degree as the temporally existing links are accumulated (see Fig 4). Instead of

resembling those from very low turnover, the phylogenies from static networks have therefore

features similar to those from networks with very high turnover.This effect holds for different

infection rates β, but the higher the infection rate, the more the phylogenies from a time-inte-

grated network differ from those from networks with low turnover.

Results for varying infection rate, mean degree, turnover and time-integration are qualita-

tively the same for the skewed-clustered and skewed-unclustered network, but since the

unclustered network has shorter average pathlength than the clustered network of same mean

degree, the effects are more pronounced.

Imbalance measures are always anticorrelated with the counts of small substructures (pitch-

forks and cherries). The fact that network skewness increases tree imbalance (and decreases

substructures) could be due to the fact that high heterogeneity in the network degree is passed

on to high heterogeneity in the number of secondary infection, resulting in an imbalanced tree

(measured e.g. by Sackin and Colless index). On the other hand, increased network clustering

may have the opposite effect, as it results in fewer nodes being connected to hubs in the net-

work, which may cause the infection tree and resulting phylogenetic tree to be more balanced

and to exhibit more pitchforks and cherries. However, an imbalanced phylogenetic tree could

in principle also result from long chains of person-to-person transmission, in which each

Fig 4. Comparison static vs. dynamic network. Left: PCA plot of tree features for trees from time-integrated and dynamic skewed-clustered networks (β = 0.1),

mean degree hni = 5, number of nodes N = 1000. red: time-integrated network. Right: counter-cumulative degree distribution on log-log scale of time-integrated and

dynamic network.

https://doi.org/10.1371/journal.pcbi.1006761.g004
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individual infects exactly one other: imbalanced trees do not necessarily require heterogeneous

contact numbers or heterogeneous numbers of secondary infections.

Classification of networks and parameters from phylogeny features

For simulations with distributed values for β, δ and mean degree of the network, we calculated

all of our features of phylogenetic trees and used these to train classifiers, which we then tested.

We used K nearest neighbours (KNN) [58] which classifies an object based the the class of the

majority of its nearest neighbours, and random forests [59] which use decision trees to classify

the test data.We simulated 1549 phylogenetic trees on the three types of networks, with ran-

dom uniformly distributed values of the turnover and transmission rate parameters (both in

[0.05, 0.15]) and mean degrees (in [4, 9]). We trained classifiers on 1040 instances to classify

from which type of network a phylogeny was derived. We compute the mean and standard

deviation of the accuracy using 10-fold cross-validation. The classification is successful in the

sense that it is possible to classify the dynamic network type based on the phylogenetic fea-

tures, given a range of transmission parameters and turnover rates in the training data. Table 4

lists the results when we choose the key parameters β (transmission rate), mean degree and

turnover δ uniformly at random over the specified ranges. Both classifiers predict the network

type with high accuracy, using the phylogenetic features. This means that even with the addi-

tional complications of dynamic networks and unknown underlying parameters, phylogenetic

trees encode information about the nature of the network.

We also asked how varying the underlying (and in general unknown) dynamic contact net-

work would affect estimation of the transmission parameter β (also in Tables 4 and 5). Estima-

tion of β is much worse than estimation of the network, and strongly depends on the assumed

network. The performance is best for random forests with either all three networks present in

the data (accuracy 0.47) or with a single, correctly-specified, skewed or random network used

to train the model (accuracy 0.55, 0.44 respectively). Mis-specification of the network worsens

predictions.

Table 4. Prediction accuracies (correctly predicted/all predictions).

Predicted value Accuracy

(knn)

Accuracy

(random forest)

Size of training set Size of test set

All three networks, range of mean degree and turnover

network 0.88 ± 0.02 0.92 ± 0.01 1084 (3 networks) 465 (3 networks)

β 0.40 ± 0.01 0.47 ± 0.03 1084 (3 networks) 465 (3 networks)

Correctly specified network, range of mean degree and turnover

β 0.38 ± 0.04 0.43 ± 0.05 261 (skewed-clustered) 113 (skewed-clustered)

β 0.39 ± 0.04 0.55 ± 0.04 262 (skewed) 113 (skewed)

β 0.39 ± 0.03 0.44 ± 0.03 560 (random) 240 (random)

Mis-specified network, range of mean degree and turnover

β 0.30 ± 0.01 0.37 ± 0.01 800 (random) 374 (skewed-clustered)

β 0.34 ± 0.01 0.39 ± 0.01 375 (skewed) 374 (skewed-clustered)

δ 0.36 ± 0.03 0.45 ± 0.03 1084 (3 networks) 465 (3 networks)

Predictions of network type, infection rate β and turnover rate δ. Values are mean and standard deviation of 10-fold cross-validation. For this, β (and δ respectively) is

grouped into bins of width 0.01. β is considered to be classified correctly if it is classified into the correct or in neighbouring bins (i.e. in a range of 0.03). For the

simulations, infection rate β and turnover δ are both distributed uniformly at random in [0.05, 0.15], and mean degree d̂ between [4, 9] respectively. Simulated trees to

this table are found in S4 File.

https://doi.org/10.1371/journal.pcbi.1006761.t004
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Discrimination between skewed and skewed-clustered networks remains difficult, as these

networks are quite similar. The difference between skewed and random networks is more pro-

nounced (as also seen in the PCA analysis in Fig 2). In that sense our results are similar to the

results in [60–62], who successfully predicted contact rates with Approximate Bayesian Com-

putation (ABC) on static networks, where the phylogenetic trees separate well in a PCA plot of

extracted tree measures.

Given the poor ability to predict β when the mean degree and turnover are randomly sam-

pled, we explored whether keeping these parameters fixed would improve the estimation: if we

knew these parameters and had pathogen phylogenies, would we then be able to estimate the

transmission rate in the context of dynamic networks? Here, the accuracy is only good in the

case of the random network (0.7, 0.82 for KNN, random forests respectively). Random forests

give consistently slightly higher accuracy, with an accuracy over 0.5 where (1) all three net-

works (skewed, skewed-clustered an random) were present in the training data, or (2) the

model was trained on the skewed or random networks. If the network is mis-specified or

skewed, neither approach is able to predict β. We suggest that this may have adverse conse-

quences for analyses using static or other assumed network models in phylodynamics; these

may draw erroneous conclusions about the rate of transmission or other parameters due to

mis-specification of the underlying network.

Classification of HIV data

We trained classifiers on phylogenetic trees simulated with different network hypotheses, in

order to predict the network type for HIV clades from sequences of patients in the Dutch

ATHENA cohort and from sequences of the Los Alamos Sequence database [55]. The Dutch

sequences predominantly capture the Dutch national HIV epidemic (cite Bezemer PLoS Med),

whereas the sequences in the Los Alamos database are from cases worldwide and capture

many diverse HIV epidemics. Our network predictions are consistent with this: the higher the

Table 5. Prediction accuracies (correctly predicted/all predictions).

Predicted value Accuracy

(knn)

Accuracy

(random forest)

Size of training set Size of test set

All three networks, constant mean degree and turnover

network 0.92 ± 0.02 0.94 ± 0.01 599 (3 networks) 258 (3 networks)

β 0.52 ± 0.04 0.69 ± 0.02 599 (3 networks) 258 (3 networks)

Correctly specified network, constant mean degree and turnover

β 0.37 ± 0.04 0.39 ± 0.05 105 (skewed-clustered) 45 (skewed-clustered)

β 0.39 ± 0.05 0.67 ± 0.03 227 (skewed) 99 (skewed)

β 0.7 ± 0.04 0.82 ± 0.03 267 (random) 116 (random)

Mis-specified network, constant mean degree and turnover

β 0.32 ± 0.03 0.29 ± 0.01 382 (random) 150 (skewed-clustered)

β 0.25 ± 0.02 0.23 ± 0.02 325 (skewed) 150 (sk-cl.)

Predictions of network type and infection rate β. For this, we simulated outbreaks on dynamic networks with varying β. β is grouped into bins of width 0.005 (while for

simulations β has been distributed in [0.05, 0.1]. We assume β to be correctly classified if it fits within the same or the neighbouring bins for β, i.e. in 3 of the 11 possible

bins, so random allocation into bins would result in an an accuracy of 0.27. For network prediction, random allocation would give an accuracy of 0.33. The results show

mean and standard deviation of 10-fold cross-validation. Results show that if the classifier is trained on the wrong network, the prediction accuracy is much lower.

Results also show that in comparison to the results in Table 4, higher accuracy is obtained for the prediction on skewed and random network, since turnover and mean

degree are fixed, although the range of β is only 0.05. Turnover (δ = 0.1) and mean degree (d̂ ¼ 5) are fixed throughout the tests listed here. Simulated trees to this table

are found in S5 File.

https://doi.org/10.1371/journal.pcbi.1006761.t005
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fraction of tips from the Netherlands, the more HIV trees are predicted to arise from skewed

or skewed-clustered networks, rather than random (see Table 6); this signal is consistent in the

K-nearest neighbour and random forest classification.

We also trained the classifiers on simulated trees from a skewed-clustered network with

two different infection rates (β = 0.05 and β = 0.2), in order to predict the infection rate for the

HIV trees (see Table (7). We did the latter both with trees from static networks and dynamic

networks with turnover rate δ = 0.1. For the static network, roughly two thirds of the HIV

trees are predicted to have infection rate β = 0.05 and one third β = 0.2. In contrast, all of the

HIV trees are predicted to have the higher infection rate of β = 0.2 on the dynamic network.

It is not surprising that more HIV trees were predicted to have the higher infection rate β =

0.2 when the classifiers were trained on the dynamic network. On dynamic networks, not all

links are present at any moment, which slows down the outbreak. A higher infection rate

could compensate to attain the same R0. This result was very robust even when fewer tree fea-

tures were used to train the classifier. However, if only imbalance measures were used, a low

fraction of HIV trees were predicted to have β = 0.05 by dynamic-network-based classifiers.

This suggests that using a variety of tree features is important for specification of network

parameters from phylogenies.

We have also listed separate predictions for clades in which more than 50% or 70% of the

tips are from the ATHENA dataset; these are geographically linked, may include more recent

transmission and are likely to have a higher sampling density than background clades from the

Los Alamos database. Compared to the whole set of 90 HIV clades, these clades are more likely

to be classified to have come from a skewed (clustered) network and to have a high transmis-

sion rate (β = 0.2). However, the certainty on this prediction depends on the underlying net-

work assumption, with classifiers trained on dynamic models showing a completely consistent

set of predictions while those trained on static models leave considerable variation (Table 7).

In contrast, clades with fewer Dutch sequences were classified predominantly to have a lower

transmission rate if classifiers were trained using static networks, but a higher transmission

rate using dynamic networks. The fact that the results differ considerably depending on the

underlying network assumption indicates that a mis-specified network, via an incorrect turn-

over rate or indeed the assumption of a static network, can have a strong effect on predicted

transmission rates.

Discussion

We used models of different human host contact networks to simulate outbreaks of pathogens,

and convert the infection trees into phylogenetic trees. We showed that it is possible to dis-

criminate with tree statistics between different contact network hypotheses, different turnover

rates, different mean degrees and different infection rates. Table 8 sumarizes the network effect

on tree statistics. The underlying contact network hypothesis (random, skewed or skewed-

clustered) is clearly identifiable in statistics of the simulated phylogenetic trees, if β and δ are

the same. This indicates that simple networks such as the Erdős-Renyi model are likely to be

unsuitable models for human host contact networks where there is evidence for a skewed

degree distribution and clustering.

Nevertheless, in our simulations, phylogenies from skewed-clustered networks are slightly

more similar to those from random networks than those from unclustered networks of the

same degree distribution. Phylogenetic trees from outbreaks on the same static network, but

with different infection rates or different mean degrees, can be distinguished clearly in PCA

plots. This result holds also on dynamic networks, and suggests, in keeping with previous

work, that phylogenetic tree features can be used to estimate epidemiological parameters.

Phylogenies from dynamic networks
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However, the relationships between the epidemiological parameters, networks and phyloge-

netic trees are complex. We tested the strength of some of these relationships using supervised

learning methods, and found that both network mis-specification and variability in other

parameters (modelling uncertainty about the values of these parameters) have a strong impact

on the ability to estimate the transmission parameter. Our results indicate that consistent net-

work mis-specification and parameter uncertainty may have an adverse impact on phylody-

namic studies estimating parameters from data.

Population turnover in dynamic networks has a measurable effect on pathogen phylogenies;

phylogenetic tree features can discriminate between different turnover rates at which the

underlying network is evolving. Overall, the higher the turnover, the higher the imbalance

measures and the lower counts of small substructures. No single feature captures the differ-

ences between contact network hypotheses entirely, and a combination of many different fea-

tures yields the best visual separation between the groups in a PCA plot. Features that take into

account the branch length of the phylogenetic trees improve the separation slightly. Very dif-

ferent patterns are obtained from a static time-integrated network as compared to dynamic

Table 6. Classification of HIV trees into trees from 3 simulated networks.

trained on: trees from all three networks, mean deg. hni = 5 and turnover δ = 0.1

HIV test clades KNN Random forest

s/sc network r network s/sc network r network

all 90 0.49 0.51 0.43 0.57

with >50% NL-tips 0.81 0.19 0.87 0.13

with >70% NL-tips 1 0 1 0

with <30% NL-tips 0.38 0.62 0.30 0.70

Classification of HIV trees with different fractions of tips from the Netherlands (NL). Ratios of HIV trees classified into a network type network type of HIV trees. For

this, we simulated 857 trees on three networks truncated to 100 tips, trained KNN and random forest classifiers on them, and tested them on HIV trees and subsets that

have a certain fraction of tips from the Dutch dataset. For these results, tree features were calculated with all branchlengths being set to 1, to make simulated trees and

HIV trees comparable. Simulated trees and anonymized HIV trees to this table are found in supporting information.

https://doi.org/10.1371/journal.pcbi.1006761.t006

Table 7. Classification of HIV trees into simulated trees from outbreaks with different β.

HIV test clades KNN Random forest

β = 0.05 β = 0.2 β = 0.05 β = 0.2

trained on: trees from static skewed-clustered networks

all 90 0.63 0.37 0.66 0.34

with >50% NL-tips 0.23 0.77 0.08 0.92

with >70% NL-tips 0.12 0.88 0 1

with <30% NL-tips 0.71 0.29 0.75 0.25

trained on: trees from dynamic skewed-clustered networks with δ = 0.1

all 90 clades 0 1 0 1

with >50% NL-tips 0 1 0 1

with >70% NL-tips 0 1 0 1

with <30% NL-tips 0 1 0 1

We classified the HIV trees into trees from a skewed-clustered network with different infection rates. This has been

done for a static network and for a dynamic network (δ = 0.1). We predicted the parameters for 90 HIV trees (of

which 13 had 50% of tips from the Netherlands, and 7 more than 70%). Sizes of the training sets for the classifiers are

400 and 244. As in Table 6, branchlengths of simulated trees were not used. Simulated trees and anonymized HIV

trees to this table are found in S6 File.

https://doi.org/10.1371/journal.pcbi.1006761.t007
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networks, on which transmission happens slower. This suggests that in the phylodynamic set-

ting, static networks are a poor approximation for dynamic networks, highlighting the need for

dynamic network models. This also highlights the need for investigating turnover and dynamics

in empirical networks to obtain the data necessary to develop dynamic models. We illustrated

this result by predicting the infection rate β of HIV trees, and showed that the predictions

strongly underestimate β if a static network is used instead of a dynamic one. Comparison to

HIV data also showed that clades with tips predominantly from the Dutch sequence dataset

with high sampling fraction of infected individuals are more likely to be predicted to have come

from a skewed or skewed-clustered network than those with tips mainly from the even sparser

sampled Los Alamos database.

Although the dynamic skewed-clustered network is likely to be a more realistic approxima-

tion to real networks than static or unclustered networks, it still might not be as clustered as a

given real contact network. The details of the relevant network for a study of real data will

depend on the pathogen and also on the nature of the community in which that pathogen is

being studied. The dynamic models we have used here are still relatively simple and tractable,

and real networks are likely to be even more heterogeneous.
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