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Abstract

It is over 15 years since the identification through linkage, of “first wave” susceptibility genes for 

common cancers BRCA1, BRCA2, MLH1 and MSH2. These genes have strong frequency-

penetrance profiles such that the associated clinical utility likely remains relevant regardless of the 

context of ascertainment. “Second wave” genes, not tractable by linkage, were subsequently 

identified by mutation screening of candidate genes (PALB2, ATM, CHEK2, BRIP1, RAD51C, 
and RAD51D). Their innately weaker frequency-penetrance profile has rendered delineation of 

cancer associations, risks and variant pathogenicity challenging, which has in turn compromised 

their clinical application. Early germline exome sequencing endeavours in common cancers did 

not yield the long anticipated slew of “next wave” genes, but instead infer a highly polygenic 

genomic architecture requiring much larger experiments to make any substantive inroads into gene 

discovery. As such, the ‘genetic economics’ of frequency-penetrance point firmly to focused 

identification of “wave 1” gene mutation carriers as most impactful for cancer control.

With screening, prevention and early detection at the forefront of the cancer agenda, we propose 

that the time is nigh for initiation of national population testing programmes to identify “first 

wave” gene mutation carriers. To deliver fully a precision prevention program, long-term large-

scale studies of mutation carriers to capture longitudinal clinical data and serial biosamples are 

required.

Introduction

The last thirty years has witnessed significant improvements in the management of cancer, 

with striking successes in the treatment of testicular and paediatric cancers, and many 

haematological malignancies. Despite such advances, on account of the high proportion of 

patients presenting with late-stage disease, mortality rates have remained disappointingly 

poor for many common cancers, such as those of the colorectum and pancreas4. Initial 
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euphoria that precision oncology would address the poor outcome for metastatic cancer has 

been tempered with realisation of the challenges associated with tumour heterogeneity, 

tumour evolution and emergence of resistance mutations5. Hence the precision oncology 

vision is unlikely to be a universal panacea in reducing the bulk cancer-related mortality 

associated with most common solid tumours10.

This recognition has in part driven renewed interest in exploring opportunities for optimising 

early detection of cancer through screening and prevention programmes. Any such strategy 

is likely a priori to have more impact if targeted to those at highest risk of developing cancer. 

This premise has been a central philosophy in the application of genetic testing for 

mutations in the cancer susceptibility genes (CSGs) that is now common place in family 

cancer clinics. Since most cancers have a significant heritable component14, there is now 

interest in the potential of genetic risk profiling to deliver personalised prevention programs 

to the wider population17. This prospect has been made possible as a result of the 

phenomenal progress in the identification of CSGs and risk variants.

Here we review our understanding of the genetic architecture of cancer susceptibility, 

current and future opportunities and consider the case for implementing large-scale genetic 

testing.

Identification of “first-wave” and “second-wave” cancer susceptibility 

genes

For most common cancers, risks for the same cancer in first-degree relatives of patients are 

increased two- to three-fold. Notable exceptions are chronic lymphocytic leukaemia, and 

thyroid and testicular cancers, for which risks are increased four- to eight-fold20. The 

genetic architecture underscoring these familial risks is now known to reflect a range of 

alleles with varying frequencies and effect sizes21.

Genetic linkage and positional cloning studies of multi-case families in the 1990s delivered 

the first tranche of CSGs for non-syndromic clusters of common cancers, most notably for 

breast and ovarian cancers (BRCA1 and BRCA2), colorectal cancer (mismatch repair 

(MMR) genes MLH1 and MSH2) and melanoma (CDKN2A)22–26. However, subsequent 

linkage analyses of the sizeable numbers of residual “unexplained” large pedigrees failed to 

yield ‘BRCA3’ or equivalent, leading to gradual acceptance that for these common cancers 

no further CSGs of “first wave” frequency-risk profile existed27,28. Alternative 

experimental approaches were required and focus moved to candidate gene experiments 

informed by the pathways revealed by the “first wave” CSGs. During the noughties, 

mutational screening of genes involved in DNA repair led to the identification of a second 

tranche of CSGs, including MuTYH, PALB2, CHEK2, BRIP1, ATM, RAD51C and 

RAD51D2129–36. Given the simplistic biological rationale and limited size of experiment 

feasible with available low-throughput technologies, the yield of “second wave” CSGs from 

these early gene-screening endeavours was, in retrospect, surprisingly rich37.
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A decade of clinical characterisation of cancer susceptibility genes

Despite more than 20 years of study (i) the estimates of cancer risk for the ‘first wave’ genes 

remain relatively imprecise with considerable variation between analyses and (ii) association 

of additional new cancers being regularly reported (and disputed). Plotting of frequency-risk 

profiles demonstrates neatly that both BRCA1 and BRCA2 lie well above the linear function 

obeyed by “second wave” and other breast cancer genetic susceptibility variants, with a 

similar pattern for MLH1 and MSH2 (Fig. 1). It is unsurprising therefore that 

characterisation of the “second wave” genes of much weaker frequency-risk profile has 

proved highly problematic, despite generation of high volumes of data over the last decade 

through both research and clinical high-throughput sequencing (HTS) of cancer gene panels.

The first, seemingly basic, challenge has been establishing which cancers are truly 

associated with pathogenic mutations in these newer ‘second wave’ genes. Uncertainty 

persists as to whether reported ‘breast-cancer susceptibility genes’ such as BARD1, RAD50, 
NBS1 (NBN) and RECQL are actually associated with breast cancer risk38–42. BRIP1, 
originally reported as a CSG for breast cancer, has subsequently been shown through recent 

large-scale analyses to only influence ovarian cancer risk34,43–45. Likewise, there are 

multiple conflicting reports as to whether ovarian cancer susceptibility genes RAD51C and 

RAD51D also confer risk of breast cancer30,31,46–49. More tangentially, the purported 

association of mosaic mutations in PPM1D as a cause of susceptibility to breast and ovarian 

cancer seems instead simply to represent the confounding artefact of chemotherapy50–53.

The second challenge is establishing the magnitude of cancer risk (known also as 

penetrance) conferred by CSG mutations. Initial studies suggested PALB2 mutations 

conferred only a modest two-fold risk of breast cancer32. Subsequent (i) assembly of the 

world’s largest set of PALB2 mutation positive families with adjustment for ascertainment 

and (ii) huge case-control analyses of unselected breast cancer cases both support the true 

penetrance of PALB2 mutations for breast cancer as being of comparable magnitude to that 

of BRCA2. Disparity in risk estimates nevertheless caused ambivalence around 

implementation of clinical PALB2 testing 54,55. For ATM, epidemiological and pan-

mutation analyses support intermediate penetrance with respect to breast cancer risk 

(Relative risks (RR) of 2 to 3); however again there are reports of specific missense ATM 
mutations having BRCA-equivalent risks33,54,56–58. For CHEK2, the breast cancer risks 

for the relatively frequent 1100delC mutation are well explored and reproducible (RR, 2-3) 

but for other mutations and cancer associations of CHEK2, the data are conflicting35,59–64. 

Such observations serve to illustrate that mutation penetrance can be different in heavily 

laden families as compared to the general population reflecting the influence of modifiers 

and environment. Only through very large unbiased studies of population-based data will the 

true associations and risks for variants in these “second wave” genes be ratified.

The third challenge lies in establishing which of the many variants in these genes are truly 

“pathogenic”. To date, there has been poor correlation with clinical pathogenicity for the 

majority of functional assays and in-silico predictions (largely derived from inter-species 

conservation and physio-chemical amino acid similarity)65. Accordingly, establishing 

pathogenicity for rare variants in “first wave” genes has been challenging and has largely 
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relied on case-control comparison of variant frequencies incorporating tumour 

characteristics and family segregation. However, for “second wave” genes, except for 

founder mutations, such case-control comparisons are almost impossible due to very low 

frequencies of individual variants and/or modest risks. Accordingly, there have been 

minimal inroads in ascribing pathogenicity to anything other than nonsense and frameshift 

mutations in “second wave genes’, aside from occasional missense variants found in 

children with the respective rare bi-allelic phenotype (e.g. Ataxia Telangiectasia)33. 

Assessing pathogenicity for individual non-founder variants in “second wave” genes will 

likely only be feasible if robust functional assays can be developed (which correlate 

perfectly with clinical pathogenicity). Early data from CRISPR saturation editing of BRCA1 
by multiplex homology-directed repair is heralding tentative enthusiasm of this long-sought 

nirvana19,66.

Clearly, for a given gene, analyses of (i) association with cancer, (ii) penetrance and (iii) 

variant “pathogenicity” are interdependent. Our “working” clinical estimates for these 

parameters have often been derived from overlapping analyses of the same underlying 

datasets, which are almost invariably distorted by ascertainment bias, limited by power and 

frequently subject to population stratification.

Clinical testing for cancer susceptibility: progress or misdirection?

Increasing affordability and throughput of HTS coupled with relaxation of gene patents has 

led to effective ‘deregulation’ of clinical testing of CSGs. For a given cancer type, the 

‘clinical panel’ will typically include (i) relevant “first wave” and ‘second wave’ genes, (ii) 

selected genes only to date characterised within extremely rare, highly distinctive 

pleomorphic cancer syndromes, such as PTEN, TP53, CDH1 and STK11, and often (iii) 

additional genes with dubious or no evidence for association67.

For the ‘second wave genes’ of (seemingly) higher penetrance, mutations have proven 

strikingly infrequent, exemplified by the yield on testing of PALB2 in familial breast cancer 

or RAD51C/RAD51D in familial ovarian cancer 30,31,42,46,68. Furthermore, the 

conflicting published data around basic disease associations and penetrance have 

unsurprisingly resulted in disparity in clinical management for carriers of mutations in these 

genes (including individuals from the same family managed in different centres). For genes 

of intermediate penetrance such as CHEK2, effective management paradigms for families 

remain unclear69. Unlike for BRCA1, when a CHEK2 mutation is detected in a breast 

cancer proband, cascade testing in the family does not neatly place unaffected family 

members into dichotomised categories of high- and low-risk.

Furthermore, the complexity deepens as we extend genetic testing outside of the context of 

familial disease, into unselected incident cancer cases or indeed the general population. The 

inherently stronger frequency-penetrance function for “first wave genes”, has made possible 

(i) large studies of mutation positive families as well as (ii) analyses in large unselected 

cancer cohorts70–75. Triangulation of these data suggests a ‘true’ (or average) penetrance 

sufficiently high that interventions for screening and prevention likely remain relevant 

regardless of ascertainment73,74. For most ‘second wave’ genes, the ‘true’ penetrance is 
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uncertain: ascertainment outside of the familial context thus further amplifies uncertainties 

around the efficacy of and justification for available clinical interventions.

The ‘rare syndromic’ genes such as TP53, STK11 and CDH1 also pose challenges when 

testing outside of a classical familial context. The case has been made for testing unselected 

cancer cases on account of concern that these conditions are underdiagnosed, especially 

because mutations can have pleomorphic effects, and can arise de novo. However, there are 

limited data on cancer risks outside of the families ascertained due to classic phenotype. 

Higher than predicted mutational frequencies in control data suggest the disease risks quoted 

in classic families grossly exceed those applicable to mutation carriers acertained from the 

general population76–80. Until such risks have been better established, extending testing for 

these genes beyond ‘classical’ or familial context may lead to interminable challenges in 

patient management. The risk-benefit trade-off for prophylactic gastrectomy would be 

highly uncertain if a pathogenic CDH1 variant were found in unaffected individual or 

isolated breast cancer case without relevant family history.

For many clinicians, initial enthusiasm for offering testing of a broader palette of genes has 

been tempered by such uncertainties as well as the low detection rates. Some would go so far 

as to argue that the ‘additional content’ on panels beyond “first wave” genes has only served 

to inflate costs of mainstreaming genetic testing whilst generating a spiralling industry in 

interpretation and over-management of variants of uncertain significance. Moreover, use of 

inflated estimates of cancer risk may unduly elevate anxiety and divert healthcare resource 

towards screening and preventative surgery of questionable benefit to the individual, let 

alone justification in the context of Public Health81.

Ten years on in genome-wide association studies

Early proponents of the common variant-common disease hypothesis had envisaged that 

genome-wide association studies (GWAS) might deliver a tractable ‘set’ of common variants 

for each tumour type, capturing a significant proportion of the heritable risk. The field of 

public health genomics arose in anticipation of implementing such information to stratify the 

population into neat tranches of risk for programmes of screening and prevention82 In 2007, 

the long-awaited first-wave results from GWAS for the common cancers were reported. 

What was striking were the modest effect sizes of the top associations, for example, the RR 

of 1.26 for the top breast cancer risk locus (intron 2 of FGFR2)83,84. Subsequent, larger 

GWAS identified respectable slews of additional hits but confirmed the portentous power 

calculations of the early GWAS, namely that each tumour type has an underlying genomic 

architecture comprising several hundred of loci of progressively more modest 

contribution82,85–88. Initiatives, such as the Breast Cancer Association Consortium 

(BCAC), have delivered experiments of increasing magnitude, each time adding to the 

proportion of familial relative risk (FRR) explained 89–94. The most recent Oncoarray 

experiment from BCAC, involving some 140,000 cases and a similar number of controls was 

sufficiently empowered to show 18% of the FRR for breast cancer being attributable to 140 

risk SNPs. While statistical modelling indicates that ~40% of the FRR is likely to be 

enshrined in common variation, projections suggest that far larger sample sizes in excess of 

300,000 will be required to explain 80% of this component of the heritable risk of breast and 
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colorectal cancer91. Whilst large biobanks exist for some cancers, for many tumours is it 

likely prohibitive to assemble the magnitude of samples required to harvest a significant 

proportion of the FRR. Whilst issues of power may challenge clinical application of GWAS, 

this is not to detract from the wealth of insights GWAS has made to cancer biology which 

may in due course offer patient benefit95.

Rationalising strategies forwards informed by genomic architecture

As we reach the decade mark from rollout of both GWAS and HTS, it is imperative that we 

overlay our ‘real life genetic testing experiments’ from the clinic onto candid insights from 

our research endeavours.

Availability over the last few years of a ‘palette’ of long-awaited ‘second wave’ genes has 

impinged minimally on clinical care: a direct function of their risk-penetrance profile. Power 

analyses from initial exome sequencing endeavours in common cancers have made it likely 

that the ‘next wave’ susceptibility genes/rare alleles will be of equivalent or more modest 

risk-penetrance profile than the ‘second wave’ genes. Significant inroads towards 

identification of this ‘next wave’ of susceptibility genes/alleles will be achievable through 

exome/genome sequencing studies greater by scales of magnitude than those previously 

undertaken (likely >50,000 cases and 50,000 controls) 96,97. Furthermore, characterizing 

cancer association, penetrance and variant pathogenicity for any ‘next wave’ genes will be 

commensurately even more challenging than for ‘second wave’ genes.

Therefore, due to the immoveable truth of risk-penetrance function, clinical utility from 

germline genetic testing for cancer susceptibility has and will for the foreseeable future, be 

best effected through by identifying carriers of mutations in those stalwart ‘first wave’ 

genes, BRCA1, BRCA2, MLH1 and MSH2 (Fig 1). Hence, our clinical-research rhetoric 

and priorities should focus on leveraging full value from ‘first wave’ genes: (i) expanding 

identification of mutation carriers, (ii) improved statistical genetic epidemiologic studies of 

association, penetrance and variant pathogenicity and (iii) longitudinal biosampling to better 

understand cellular biology, pre-cancer states and tumourogenesis (Box 1).

Implementation of large-scale population-level genetic testing: ‘primetime’ 

is now

The threshold for testing of BRCA1/BRCA2 and MMR genes based on family history have 

been reduced progressively over the past two decades and ascertainment of families through 

‘mainstream’ testing at cancer diagnosis is becoming established. However, even in 

countries with well-developed genetics services, we have identified less than 10% of 

prevalent BRCA and MMR mutation carriers98. Even with expansion of testing in oncology, 

ascertainment of ‘the totality’ of prevalent BRCA1/BRCA2 and MMR mutations would take 

many decades under the current models98. Testing for BRCA1/BRCA2 founder mutations 

has been well demonstrated as economically and clinically effective: systematic rollout of 

founder testing in relevant subpopulations is long overdue98–103. Furthermore there is 

increasing clinical impetus and health economic evidence for offering testing to the general 

population for mutations in BRCA1/BRCA2 and MMR genes, even given the requirement 
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for more expansive analysis of the genes and lower mutation detection than in founder 

mutation population programs99,104.

For each given cancer, the predictive value of the ‘testable SNP set’ feasibly tractable by 

GWAS is also now becoming clear105–113 [98-105] and we are reaching ‘jump-time’ on 

rollout-trials for population SNP cancer risk profiling. Whilst not quite the catholicon 

initially anticipated, in certain tumours SNP risk-profiling applied at population level can 

offer valuable risk discrimination, particular when combined with a predictive set of non-

genetic risk factors114. Furthermore, intermediate penetrance susceptibility genes such as 

ATM, CHEK2 and BRIP1, whilst of equivocal use in the familial cancer clinic, although 

rare, add value in the context of population genetic risk stratification115,116.

The value proposition of genomic risk profiling is not solely based on discriminatory 

performance of the ‘prediction tool’ but is heavily predicated on factors such as disease 

frequency, disease mortality, disease natural history, biomarkers of tumour behaviour and 

interventions available for screening and prevention (Fig 2). Breast (-ovarian) and colorectal 

cancers would seem to emerge as prime candidates for population risk profiling. Each cancer 

is common with high burden of mortality. For each there is a plausible tripartite ‘prediction 

tool’ (comprising common variants, non-genetic factors and high/intermediate penetrance 

susceptibility genes). For each there are effective options for intervention - screening, 

chemoprophylaxis and surgery. Modelling, health economic and pilot implementation 

studies for population genetic testing for these cancers are urgently required.

Conclusion

Emergence of transformative new technologies has unsurprisingly fostered great expectation 

for gene discovery and delivery of new paradigms in genomic risk prediction for cancer. 

HTS offered both clinicians and researchers the promise of new clinic-ready CSGs with 

which to ‘diagnose’ our outstanding breast and colorectal cancer families. Instead, our HTS 

experiments to date have instead shown the genomic architecture of these common cancers 

to be much more complex than originally anticipated.

Testing dozens of genes of vanishingly low mutational frequency, poorly characterised risk 

and/or questionable association with disease has delivered limited gains. Instead guided by 

basic frequency-penetrance ‘economics’, we should re-embrace our ‘first wave’ genes and 

focus our efforts on identifying as many mutation carriers as possible. We should denounce 

the procrastination of awaiting additional future ‘new genes’ to ‘add value’ to the population 

screening proposition. The time is ripe for large-scale implementation studies of population 

BRCA and MMR gene testing (potentially combined ‘tripartite’ with risk profiling using 

common genetic and non-genetic factors). In parallel, we need to shift now to delivery-mode 

on proper ‘individualised’ precision prediction and management for mutation carriers. To 

deliver individualised risk and precision prevention, we require urgently clinical tools which 

integrate existing data on gene-, location-, and individual mutation-specific risk, common 

genetic and non-genetic modifiers, family history and context of ascertainment7,9,113.
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Whilst we have already made great progress on characterisation and clinical applications of 

these genes, to deliver fully their impact for cancer prevention, significant and sustained 

investment in research platforms will be required to deliver the necessary long-term 

epidemiological, biological and clinical studies (Box 2).
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Box 1

Priority research themes for BRCA and MMR: reaping new value from old 
hitters

(i) A pre-cancer atlas to deliver insights into premalignant cell biology, develop of 
biomarkers for surveillance and evolve precision chemoprevention

Large-scale serial collection of multiple biosamples from mutation carriers, development 

of engineered models, application of single cell technologies, multi-omic analyses, 

studies of the microenvironment and immunological approaches will accelerate our 

understanding of pre-cancer biology and tumourogenesis, as well described by Lipman 

and colleagues1. This will in turn facilitate discovery of biomarkers and development of 

chemotherapeutic agents, chemopreventative agents and vaccines. Animal experiments of 

rank-ligand inhibition have shown potential for chemoprevention in BRCA-carriers: 

clinical trials are in early rollout2,3. Chemoprevention for colorectal cancer is an under-

exploited area: exposition of the molecular basis for the protective effect of aspirin could 

yield additional benefit beyond MMR-carriers and beyond colorectal cancer. The 

predictable expressed epitopes of the MMR-deficient hypermutated tumours offer a 

tantalising model for immune modulation and cancer vaccines6. The distinctive 

hypermutated profile of MMR-deficient tumours, alongside their high a priori cancer 

risks, surely renders MMR-mutation carriers well-suited for early prospective studies of 

cDNA monitoring for CRC

(ii) Advanced clinical risk models and clinical interfaces for delivery of precision 
prediction

Early risk estimates derived from segregation analysis of early linkage families grouped 

together all MMR genes and BRCA1 with BRCA2. Through large consortia efforts (i) 

individual gene-level penetrance estimates (ii) variant-class and domain-specific cancer 

risks (iii) variant-specific cancer risks and (iv) risk-modifying common variants are being 

established. For example: (a) intriguing new profiles of disease association for the 

individual MMR genes reveal gene-specific indications for surgical management and 

screening7 (b) risk-modifying SNPs for BRCA1 and BRCA2 differentiate mutation 

carriers into clinically-meaningful different categories of risk8,9 (c) regions in both 

BRCA1 and BRCA2 have been delineated for which the comparative risks of breast and 

ovarian cancer differ significantly (BCCRs and OCCR) (d) For BRCA1, mutation-

specific risks clearly distinct from the generally deployed ‘pan-mutation’ risks are 

emerging11–13. Larger datasets, controlled for ascertainment, fully typed for genetic 

factors and well characterised for non-genetic factors are urgently required to better 

model risk. These will also enable more rigorous testing for non-multiplicative 

interactions between risk factors. We also need clinician and patient decision-support 

tools, well designed to present and translate this complex data on clinical risk (along with 

its bounds of uncertainty).

(iii) Variant interpretation paradigms designed for cancer susceptibility genetics
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Consistency in variant interpretation has been greatly advanced by (i) ClinVar emerging 

as the de facto centralised community variant classification repository (ii) ACMG 

standardisation of classification criteria15,16. However, the ACMG framework is best 

suited to rare dysmorphic syndromes: evolution of dedicated approaches for cancer 

susceptibility genes are in process. Each CSG is different both in terms of biology and 

mutational patterns. As currently being enacted by ENIGMA, InSIGHT and ClinGen 

expert groups, a combination of gene-specific expertise alongside universally consistent 

frameworks are required. Starting with wave 1 genes, such self-organising activities offer 

the prospect of consistent, systematic processing of genetic data, collaborative 

international deposition and comprehensive annotation. Furthermore, significant 

advances in the field are imminent from development of massively high-throughput 

functional assays, such as saturation editing of genomic BRCA1 regions by multiplex 

homology-directed repair and splicing assays such as MFASS (Multiplexed Functional 

Assay of Splicing using Sort-seq)18,19.
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Box 2

Research ‘Platforms’ for studying BRCA and MMR genes

To establish and expand biological, epidemiological and clinical trials ‘platforms’ will 

require (i) coordinated, systematic assembly of large cohorts of mutation carriers, (ii) 

flexible and considered structures of consent and (iii) long-term, sustainable funding. 

These include:

(i) Prospective cohorts to advance studies of penetrance and association 
(observational epidemiology), including longitudinal data linkage of 

germline genetic status to cancer occurrence, treatment and outcomes, with 

information on screening and preventative surgery and details of 
ascertainment.

(ii) Longitudinal acquisition of biological samples (‘pre-cancer’ and cancer 
atlases): Biomarker discovery and insights into pre-cancer biology will be 

accelerated through largescale serial collection from mutation carriers of 

multiple biosamples (e.g. blood, urine, saliva, normal colonic tissue, exhaled 

gases, lavage from breast ducts, peritoneal lavage, polyps, CIS and tumour 

tissue).

(iii) National infrastructure for clinical trials in CSG mutation carriers: 
comprehensive national networks of traceable, contactable mutation carriers, 

with which to deliver rapid enactment of well-powered trials of screening or 

chemoprophylaxis.
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Figure 1. Risk penetrance profile for genetic susceptibility factors for:
(a) Breast cancer; (b) Colorectal cancer
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Figure 2. Attributes for a precision prevention programme, by cancer
(1) Contribution by frequency-penetrance of high penetrance susceptibility genes
(2) Heritability and % excess familial risk explained by common (GWAS) alleles
(3) Receiver operator performance of totality of known lifestyle/non-genetic factors
(4) Incidence (Annual cases in UK: + <5,000; ++ 5,000-9,999; +++ 10,000-19,999; +++

+ 20,000-39,999; +++++, ≥40,000)117

(5) Mortality (10 year survival + >80%; ++ 60-80%; +++ 40-60%; ++++: 20-40%; +++++ 

<20%)117

(6) Natural history of disease is well understood (eg robust biomarkers to predict poor 

prognosis disease)

(7) Effective and acceptable screening tool and confirmatory test consistent with delivery 

of national screening programme.

(8) Effective and acceptable chemoprophylaxis eg breast cancer (tamoxifen, AIs, SERMS) 

and colorectal cancer (aspirin)

(9) Elective and acceptable option for presymptomatic surgical removal of organ at risk.
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