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Abstract

Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder characterized by vary-

ing degrees of intellectual disability, severely delayed language development and specific

facial features, and is caused by a deletion within chromosome 22q13.3. SHANK3, which is

located at the terminal end of this region, has been repeatedly implicated in other neurodeve-

lopmental disorders and deletion of this gene specifically is thought to cause much of the neu-

rologic symptoms characteristic of PMS. However, it is still unclear to what extent SHANK3

deletions contribute to the PMS phenotype, and what other genes nearby are causal to the

neurologic disease. In an effort to better understand the functional landscape of the PMS

region during normal neurodevelopment, we assessed RNA-sequencing (RNA-seq) expres-

sion data collected from post-mortem brain tissue from developmentally normal subjects

over the course of prenatal to adolescent age and analyzed expression changes of 65 genes

on 22q13. We found that the majority of genes within this region were expressed in the brain,

with ATNX10, MLC1, MAPK8IP2, and SULT4A1 having the highest overall expression. Anal-

ysis of the temporal profiles of the highest expressed genes revealed a trend towards peak

expression during the early post-natal period, followed by a drop in expression later in devel-

opment. Spatial analysis revealed significant region specific differences in the expression of

SHANK3, MAPK8IP2, and SULT4A1. Region specific expression over time revealed a con-

sistently unique gene expression profile within the cerebellum, providing evidence for a dis-

tinct developmental program within this region. Exon-specific expression of SHANK3

showed higher expression within exons contributing to known brain specific functional iso-

forms. Overall, we provide an updated roadmap of the PMS region, implicating several genes

and time periods as important during neurodevelopment, with the hope that this information

can help us better understand the phenotypic heterogeneity of PMS.
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Introduction

Phelan-McDermid Syndrome (PMS) is a rare genetic disorder, characterized predominately

by a neurodevelopmental phenotype. The disorder is typically considered in children with

varying degrees of intellectual disability, severely delayed language development, and a typical

facies that may include dolichocephaly, full brows, and a flat midface among other features [1–

4]. However, the phenotypic spectrum is wide and thus, the diagnosis is made with laboratory

testing to establish a deletion at chromosome 22q13.3. Relatively little is known about the rela-

tionship between genotype and corresponding phenotype in PMS, especially as it relates to the

neurologic manifestations of the disease. There is evidence to suggest that larger deletions on

22q13 tend to be associated with a more severe phenotype [5–10], however the relationship is

not consistent, as patients with similar size deletions can have varied disease presentations [1,

10–12]. SHANK3, located at the terminal end of the Phelan-McDermid region, has been

repeatedly implicated in the pathogenesis of neurodevelopmental disorders such as autism and

intellectual disability [13], as well as psychiatric diseases such as schizophrenia [14, 15] and

bipolar disorder [16]; its protein product known to play an important role in synaptic plasticity

and maintenance of long term potentiation [17, 18]. While several groups have implicated

SHANK3 as the causative gene for the neurologic deficits in Phelan-McDermid patients [7–9,

12, 19–22], a deletion or variant in this gene is not considered necessary for diagnosis [11, 23].

It is likely that other genes also influence the neurologic sequelae of PMS as patients with

similar neurologic phenotypes and 22q13 deletions proximal to SHANK3 have been reported

[11, 24–28]. MAPK8IP2, located about 70 kb proximal to SHANK3, and frequently co-deleted

in PMS, is one such gene that has been implicated due to the high expressivity of the protein

product in the brain at the post synaptic density, and studies showing mice with absence of

MAPK8IP2 have abnormal dendritic morphology, as well as motor and cognitive deficits [29].

Despite this work, it is still unclear how deletions in SHANK3 and MAPK8IP2 specifically, con-

tribute to the neurologic phenotype of PMS and what other genes or combination of genes

contribute to the complex and varied symptomology. In an attempt to better characterize the

functional landscape of the 22q13 region, we assessed the expression patterns of genes mapped

within the Phelan-McDermid region in neurologically normal human brain samples over

developmental time. Our results provide insight into the importance of 22q13 during normal

human neurodevelopment and suggest other genes, with similar expression patterns to MAP-
K8IP2 and SHANK3, that may contribute the neurologic phenotype in PMS.

Materials and methods

Developing human brain transcriptome data

The BrainSpan transcriptional atlas was downloaded from http://www.brainspan.org, where

specific details regarding tissue acquisition and processing can be found [30, 31]. The online

dataset contains next-generation RNA-sequencing data obtained from 41 donors ranging from

pre-natal development (8 postconception weeks) to adulthood (40 years of age). All donor

brains came from patients who until time of death were considered to be neurologically and

developmentally normal. For each donor, sequencing data is available from several distinct

brain regions (maximum 16 regions), however several donors have missing data from certain

brain regions, and donors with more than 6 regions missing were excluded. For those donors

with six or less missing brain regions, the missing data was imputed using a nearest neighbor

approach, as we previously described [32]. After excluding the donors with missing data, a total

of 30 brains with sequencing data for 16 brain regions were analyzed: cerebellar cortex, medial

dorsal nucleus of thalamus, striatum, amygdala, hippocampus, and 11 regions of the neocortex.
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For comparative purposes, we binned the 30 brain samples into 7 discrete developmental time

periods (16 post-conception weeks– 17 post-conception weeks, 19 post-conception weeks– 24

post-conception weeks, 4 months– 1 year, 2 years– 4 years, 8 years– 13 years, 15 years– 21 years,

23 years– 40 years) as has been previously used to analyze this dataset [32–35]. The resulting

dataset consisted of RNA-sequencing expression values for 524 tissue samples given in units of

reads per kilobase of exon model per million mapped reads (RPKM) [36].

22q13 gene set

The UCSC Genome Browser, genome assembly GRCh38/hg38 released December 2013

(https://genome.ucsc.edu/)), was used to identify genes within the PMS 22q13 region (coordi-

nates: hg 19 chr22: 37,600,001–51,304,566) [37]. After exclusion of genes and other RNA spe-

cies not present in the BrainSpan dataset, 65 protein-coding genes remained for inclusion in

the final dataset (S3 Table). Average RPKM per gene was calculated for all developmental time

periods and all brain regions. An extensive literature search was performed on all genes with at

least one read greater than five RPKM (S1 and S2 Tables), which we considered to be biologi-

cally significant brain expression [32]. The four genes with the highest expression were further

analyzed. The expression profile of SHANK3 was also analyzed given the importance of this

gene in the neurologic manifestations of disease.

Analysis of highly expressed genes

Total average expression per gene per developmental time period was calculated and one-way

analysis of variance (ANOVA) were run to assess significance. Pre-natal and post-natal expres-

sion were compared using student t-test analysis, with p<0.05 set as significant. Region spe-

cific expression (total and over developmental time) was also calculated and ANOVA analyses

were performed to test difference between region. Expression was assessed specifically in the

amygdala, cerebellar cortex, hippocampus, dorsolateral prefrontal cortex, ventrolateral pre-

frontal cortex, and striatum as these regions have been consistently implicated in neurodeve-

lopmental disorders [38–42]. Additionally, for the SHANK3 gene, average RPKM was

calculated for each exon and compared.

Results

Expression of genes on 22q13 reveals subset with high brain tissue specific

expression

The average expression value (in RPKM) for each of the 65 genes used in the analysis was cal-

culated over all developmental time periods and all brain regions assessed (Fig 1). Six (9%) of

the genes did not have at least one read greater than five RPKM, and gene expression of those

genes was interpreted as noise, as reported previously [32]. The mean total expression for

SHANK3 was 15.82 RPKM (standard deviation (SD) = 12.10) vs 9.59 (SD = 13.60) for the

entire set of 65 genes over all time periods and brain regions. Four genes, ATXN10 (mean (M)

= 48.24, SD = 17.30), MAPK8IP2 (M = 60.61, SD = 26.40), MLC1 (M = 45.40, SD = 56.38), and

SULT4A1 (M = 61.81, SD = 50.15), had average expression at least two standard deviations

above the average expression for the entire gene set (Figs 1 and 2).

Expression of highly expressed genes reveals shared temporal profile with

SHANK3
Average expression of ATXN10, MAPK8IP2, MLC1, SULT4A1 and SHANK3, incorporating all

brain regions, over developmental time was calculated (Fig 3). Overall the tendency was for a
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bimodal pattern, with highest expression during infancy and a decrease in expression over

early childhood, followed by gradual increase and eventual plateau later in childhood to adult-

hood. Notably, MLC1 and ATXN10 expression did not follow a bimodal pattern, expression

did not increase later in childhood. Additionally, MLC1 showed a delay in peak expression,

with highest expression being in early childhood, while ATXN10 showed early peak expres-

sion, with highest expression during gestation.

Fig 1. Average expression of 22q13 genes. The average expression value for each of the 65 genes on 22q13 is shown, arranged from most proximal (left) to

most distal (right) on chromosome. Error bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pone.0213921.g001

Fig 2. 22q13 region. The location of the highest expressed genes in relation to SHANK3 is shown.

https://doi.org/10.1371/journal.pone.0213921.g002
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One-way ANOVA test showed a significant main effect of developmental time on gene

expression for all five genes assessed, p-value <0.05 (S4 Table). When pre-natal vs post-natal

expression was compared, post-natal expression was found to be significantly higher than pre-

natal expression for SHANK3, MAPK8IP2, and SULT4A1. Pre-natal expression was signifi-

cantly higher than post-natal expression for ATXN10, while no significant difference between

pre- and post-natal expression was found for MLC1 (S4 Table).

Expression of highly expressed genes reveals unique spatial profiles

Average brain region specific expression of the four highest expressed genes as well as

SHANK3 was analyzed (S5 Table). Expression of SHANK3, MAPK8IP2, and SULT4A1 was sig-

nificantly different between brain regions when all developmental time periods were included.

SHANK3 showed highest expression in the cerebellum, while MAPK8IP2 and SULT4A1
showed highest expression in the dorsolateral prefrontal cortex. We also assessed region spe-

cific expression over developmental time. Overall, spatial patterns of expression over time

were largely consistent with average expression over time, although gene specific expression

within the cerebellum did not seem to follow this trend (Fig 4).

Expression of SHANK3 exons

SHANK3 exon-specific average expression was calculated for all regions and all time periods

(Fig 5). Notably, 5/25 exons (Exons 1, 11, 12, 20, and 24) did not reach five RPKM of average

expression. The exons with the highest brain specific expression were 14, 15 and 25.

Discussion

Patients with Phelan-McDermid Syndrome can present with a wide range of neurologic symp-

toms of varying severity, making clinical diagnosis difficult. Appropriate diagnosis relies upon

Fig 3. Average expression across developmental time. The average expression of each gene assessed across seven

developmental stages is shown (1: 16 pcw– 17 pcw, 2: 19 pcw– 24 pcw, 3: 4 mos– 1 yr, 4: 2 yrs– 4 yrs, 5:8 yrs– 13 yrs, 6: 15 yrs–

21 yrs, 7: 23 yrs– 40 yrs). Error bars represent the standard error of the mean. pcw = post-conception years; mos = months;

yrs = years.

https://doi.org/10.1371/journal.pone.0213921.g003
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molecular testing to confirm a deletion on 22q13. While evidence supports the role of

SHANK3 in the neuropathogenesis of the disease, it is unclear how other genes on 22q13 also

contribute to the neurologic phenotype [7, 8, 10, 11, 21, 26, 28]. Traditional approaches have

relied on rodent knock-out models to study the correlation between genotype and phenotype,

however these studies are cumbersome and the subtle neurologic symptoms typical of PMS

are not ideally suited for animal behavioral models [17, 18, 29]. More recently, candidate genes

have been identified with detailed phenotype mapping, using array comparative genome

hybridization data to correlate deletions of a specific location and size with clinical symptoms

[11, 43]. While, this approach results in the identification of many candidate genes, in the

Fig 4. Average expression across time and space. The expression profile for each candidate gene across developmental time in six different

brain regions (AMY, CBC, HIP, DLPFC, VLPFC, STR) is shown in a-e (a: ATXN10, b: MLC1, c: SULT4A1, d: MAPK8IP2, e: SHANK3). The

black vertical line represents birth. Error bars represent the standard error of the mean. AMY = amygdala, CBC = cerebellum,

HIP = hippocampus, DLPFC = dorsolateral prefrontal cortex, VLPFC = ventrolateral prefrontal cortex, STR = striatum.

https://doi.org/10.1371/journal.pone.0213921.g004

Functional genomics analysis of the Phelan-McDermid region

PLOS ONE | https://doi.org/10.1371/journal.pone.0213921 March 15, 2019 6 / 13

https://doi.org/10.1371/journal.pone.0213921.g004
https://doi.org/10.1371/journal.pone.0213921


absence of tissue specific data, the developmental context and significance of these genes in the

pathology of human diseases remains unknown. In this manuscript we describe a complemen-

tary approach; we use gene expression data to examine the Phelan-McDermid region during

normal development, which we show provides insight into the functional landscape of this

region.

Our analysis of gene expression trends over developmental time revealed specific expres-

sion patterns of known functional significance. The gene ATXN10 showed a pattern of

increased gene expression during gestation and decreased expression after birth, while

SULT4A1, SHANK3, and MAPK8IP2 expression remained high throughout fetal life and

infancy. Interestingly, large genome-wide transcriptome analyses have shown these distinct

patterns of gene expression have functional significance, and specifically, enrich for genes

related to axonal growth and synaptic function, respectively, highlighting the importance of

the PMS region during normal neurodevelopment [44]. Notably, in a detailed review of

22q13.3 genes likely to be haploinsufficient, Mitz et al. also identified SULT4A, MAPK8IP2,

and ATXN10 as likely candidates for the PMS phenotype. [45].

Our analysis of gene expression trends over developmental time also provide insight into

potential mechanisms of disease pathogenesis. For instance, the gene MLC1 showed a delayed

pattern of peak gene expression, with highest expression profiles during early childhood, a

period typically characterized by decreased overall expression in the brain [44]. We can specu-

late that this pattern of expression may explain, in part, the childhood developmental

Fig 5. Average expression of SHANK3 exons. The average expression of each individual SHANK3 exon across all brain regions and developmental

time periods is shown. Error bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pone.0213921.g005
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regression typical of megalencephalic leukoencephalopathy (MLC), a disorder caused by vari-

ants in MLC1 [46]. Moreover, as childhood developmental regression is described in up to

50% of PMS patients [47], future work may focus on further characterizing the relationship

between MLC1 deletions and regression symptoms in PMS patients.

Spatial analysis revealed that in most of the genes assessed, there was significantly different

region-specific expression. This is likely a product of differences in function between brain

regions, however it highlights the importance of spatial context for understanding normal neu-

rodevelopment. Overall, region specific gene expression showed largely conserved trends in

gene expression over developmental time, with the exception of the cerebellum. This finding

however, is not unique to our study, as several groups have shown whole genome cerebellar

expression to be distinct as compared to other brain regions [48, 49]. Additionally, while the

cerebellum is consistently implicated in neurodevelopmental disorders and as having a role in

higher cognitive function, how the unique developmental timeline of this region plays a role in

the pathology of such diseases is still unknown [50, 51].

Given the importance of SHANK3 in the pathogenesis of PMS and known complex cell

type and region specific transcriptional regulation, we analyzed exon specific expression,

which confirmed high brain-specific expression of known functional isoforms [52]. Exons

encoding known functional domains that act at the post-synaptic density (PSD), notably

ankryrin repeat domain (exons 4–7), the PSD protein/Drosophila disc large tumor suppressor/

zonula occludens-1 protein (PDZ; exons 13–16), and the Homer binding domain (exon 21),

were all highly expressed [17, 53, 54].

For this study we specifically chose to analyze the expression of genes within the PMS

region with the highest overall gene expression however it is likely that genes with lower base-

line expression also contribute to the pathophysiology of PMS, and we have reviewed these

genes in the supplemental information (S1 and S2 Tables). For instance, the gene ARSA, which

had a total average gene expression of 5.6 RPKM, encodes the enzyme arylsulfatase A and is

situated near SHANK3 at the terminal end of the chromosome 22q13.33, a region commonly

in deleted in PMS [21]. However as variants in this gene lead to metachromatic leukodystro-

phy, a devastating disease characterized by severe neurologic symptoms including progressive

mental deterioration, hypotonia, weakness and seizures, how exactly deletions in this gene

may contribute to the neurological sequelae of PMS should be further explored [55].

Our manuscript is limited by our hypothesis generating approach. However, it is our inten-

tion that our data be used to draw insight into the developmental and spatial relationships of

genes within the PMS region, which may then be used to test hypotheses using traditional

functional studies. Additionally, while we focus on protein-coding genes specifically, non-cod-

ing RNAs (ncRNAs) are known to play an active role in transcriptional regulation during neu-

rodevelopment and so understanding the dynamic expression of these genes in the PMS

region and how they modulate the local transcriptional landscape will be important and

deserves further study [34].

Conclusion

The broad Phelan-McDermid phenotype encompasses a range of neurologic symptoms of

varying severity and consequence; the etiology of which remains poorly understood. In this

brief report we use gene expression data from normal controls to glean insight into the func-

tional landscape of the 22q13.3 region. This work begins to show how the PMS region is

involved in normal neurodevelopment, and specifically how dynamic temporal and spatial

expression profiles may hint at gene function and mechanisms of disease, and moreover may

be used to guide future functional studies.
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Supporting information

S1 Table. Gene function and clinical phenotypes associated with the 31 protein-coding

genes with average whole brain expression over 5 RPKM.

(DOCX)

S2 Table. Gene function and clinical phenotypes associated with the 18 protein-coding

genes with more than one read > 5 RPKM but with overall average gene expression <5.

Developmental time period when RPKM>5 also shown. (1: 16 pcw– 17 pcw, 2: 19 pcw– 24

pcw, 3: 4 mos– 1 yr, 4: 2 yrs– 4 yrs, 5:8 yrs– 13 yrs, 6: 15 yrs– 21 yrs, 7: 23 yrs– 40 yrs).

(pcw = post-conception weeks, mos = months, yrs = years).

(DOCX)

S3 Table. Expression of genes within 22q13 region. The average expression in RPKM and

SD of each of the 65 protein coding genes within the PMS region is shown. Genes are ordered

by most proximal to most distal on chromosome.

(DOCX)

S4 Table. Expression data over developmental time. Average expression of each gene

assessed by developmental stage shown. Results of ANOVA testing and t-test also displayed.

(1: 16 pcw– 17 pcw, 2: 19 pcw– 24 pcw, 3: 4 mos– 1 yr, 4: 2 yrs– 4 yrs, 5:8 yrs– 13 yrs, 6: 15 yrs–

21 yrs, 7: 23 yrs– 40 yrs). (pcw = post-conception weeks, mos = months, yrs = years).

(DOCX)

S5 Table. Expression data per region. Average brain region specific expression of each gene

assessed is shown. Results of ANOVA testing is also displayed. Significant p-values are bolded.

(AMY = amygdala, CBC = cerebellum, HIP = hippocampus, DLPFC = dorsolateral prefrontal

cortex, VLPFC = ventrolateral prefrontal cortex, STR = striatum).

(DOCX)
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