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Abstract

Critical illness, a constellation of interrelated inflammatory and physiological derangements 

occurring subsequent to severe infection or injury, affects a large number of individuals in both 

developed and developing countries. The prototypical complex system embodied in critical illness 

has largely defied therapy beyond supportive care. We have focused on the utility of data-driven 

and mechanistic computational modelling to help address the complexity of critical illness and 

provide pathways towards discovering potential therapeutic options and combinations. Herein, we 

review recent progress in this field, with a focus on both animal and computational models of 

critical illness. We suggest that therapy for critical illness can be posed as a model-based dynamic 

control problem, and discuss novel theoretical and experimental approaches involving biohybrid 

devices aimed at reprogramming inflammation dynamically. Together, these advances offer the 

potential for Model-based Precision Medicine for critical illness.

Introduction

Critical illness refers to the constellation of acute inflammatory and pathophysiologic 

consequences that occur subsequent to sepsis, trauma/haemorrhage, and related events. 

Sepsis alone is responsible for more than 215,000 deaths in the United States per year and an 

annual healthcare cost of over $16 billion [1], whereas trauma/haemorrhage is the most 

common cause of death for young people in the United States, costing over $400 billion 

annually [2–4]. There is currently not a single drug approved by the U.S. Food and Drug 
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Administration that specifically targets pathophysiological processes resulting in the 

dysregulated inflammatory response in trauma and sepsis [5, *6]. This is in stark contrast 

with the series of inflammation-directed biologics for chronic inflammatory conditions, such 

as rheumatoid arthritis and inflammatory bowel disease, many of which have their origins as 

failed anti-sepsis drugs [7]. We suggest that it is the acute, dynamic nature of dysregulated 

acute inflammation seen in sepsis and trauma that calls for a more precise characterization 

of both the system’s dynamics and any putative control/therapy.

The acute inflammatory response is a key generative factor which drives outcomes in critical 

illness. Though properly regulated inflammation allows for timely recognition and effective 

reaction to injury or infection, the immune dysregulation that ensues can impair 

physiological function, leading to a progressive Multiple Organ Dysfunction Syndrome 

(MODS)1. Moreover, the acute inflammatory response is not in and of itself detrimental: 

well-regulated, self-resolving acute inflammation is necessary for the appropriate resolution 

of injury, and for maintenance of proper physiology and homeostasis. An evolving view of 

the acute inflammatory response presents the paradox of a beneficial, robust, evolutionarily 

conserved network, and yet the structure of which may lead to disease [8–10]. Increasingly, 

this structure is being viewed as an interplay among the initiating insult itself, the ensuing 

inflammatory response, and the intertwined activation of dendritic cells and attendant 

activation of lymphoid cells, leading to a self-sustaining positive feedback loop in which 

inflammation-induced damage drives additional inflammation: inflammation → damage → 
inflammation [*11, *12].

Inflammation is driven and regulated by context-dependent chemokines and cytokines [13, 

14], which are in turn negatively regulated via other cytokines [14] or via the production of 

cytokine antagonists [15]. The complex and paradoxical nature of the acute inflammatory 

response in critical illness has defied purely reductionist approaches to therapy. Though 

numerous promising candidate therapies have emerged from decades of pre-clinical studies, 

none have stood up under rigorous examination in the context of Phase III clinical trials as 

the therapy [5, 16]. We and others have hypothesized that the very features that make acute 

inflammation and critical illness a complex system are a key part of this failure, and that 

precision medicine for critical illness will necessitate the use of systems and computational 

biology approaches in order to arrive at effective treatment strategies [*6, 17–20]. 

Combining the tools of data-driven and mechanistic modelling with experimental studies has 

provided a deeper understanding of the dynamically changing nature of the acute 

inflammatory response and introduced methods for discovering effective control modalities 

[20–**26]. The synergy of these approaches reveals that one approach in isolation cannot 

provide what is needed to change the status quo in the treatment of acute illness. Here, we 

review the latest experimental and computational approaches in this endeavour, describe 

how they have yielded novel insights into the acute inflammatory response and its impact on 

critical illness, and suggest how these approaches can be combined to form a framework for 

Model-based Precision Medicine (Figure 1).

1Table 1 provides a listing of all acronyms used in the manuscript.
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Important Developments in Experimental Work

The use of animal models in pre-clinical sepsis research is a controversial topic, with some 

groups suggesting a discordance between the response of experimental animals and humans 

at the transcriptomic level [27], and others contradicting this finding [28]. However, to date, 

the fact of the matter is that preclinical animal models represent a necessary phase of drug 

discovery and development. Rather than focus on whether or not such experimental models 

completely reflect clinical disease (they do not), we would turn our attention to how the 

information generated by these experiments can be best leveraged to enhance clinical 

success, e.g. by serving to generate, calibrate, and validate dynamic computational models 

that, in turn, could be used to predict the actions of drugs in simulated clinical trials [10, 29].

Animal models of sepsis:

Sepsis is the systemic manifestation of an out of control infection, typically a bacterial 

infection (though fungal and viral infections can lead to sepsis as well). There are a variety 

of pathophysiological criteria for sepsis, regarding which consensus is at times difficult to 

achieve [*30, 31]. However, sepsis is most typically caused by Gram-negative bacteria such 

as E. coli, of which the main immunostimulant is endotoxin. Originally, this, combined with 

an attempt to reduce experimental variability, led to various animal models of endotoxemia 

in mice, rats, dogs, swine, and non-human primates due to its convenience and 

reproducibility [32, 33]. Endotoxemia has also been carried out experimentally in humans, 

thereby allowing for “docking” of pre-clinical to human data [34]. Endotoxemia has yielded 

many important insights about acute inflammation, some of which are also applicable to true 

Gram-negative sepsis; as discussed below, endotoxemia proved to be an invaluable starting 

point for computational modelling of acute inflammation. However, experimental models 

involving administration of Gram-negative bacteria either directly or encapsulated in fibrin 

clots to mimic the physiological setting can offer greater realism [35]. The “gold standard” 

for experimental polymicrobial sepsis, however, is the experimental model of cecal ligation 

and puncture (CLP), in which the cecum is ligated surgically and punctured with a syringe 

[32, 33]. This animal model has worked well for predicting which sepsis therapies might 

work and which will not (mostly the latter) [36]. However, even these more realistic 

experimental models do not necessarily consider chronic disease burden in addition to the 

infection or a traumatic injury. Moreover, aging – and the associated phenomenon of 

“inflammaging” – further complicates diagnosis and therapy of critical illness in the elderly 

[37–39], though computational modelling of sepsis has been carried out using data from 

both small- and large-animal models of sepsis as well as studies involving aged animals 

[40].

Animal models of traumatic injury:

Polytrauma refers to severe injury to multiple body parts as a consequence of motor vehicle 

accidents, falls, etc. as well as due to intentional injuries caused by firearms, explosives, etc. 

These injuries lead to critical illness characterized by dysregulated inflammation and MODS 

[2–4]. Polytrauma usually presents with haemorrhagic shock, and thus various animal 

models of trauma/haemorrhage have been developed in order to study the pathophysiology 

of this aspect of critical illness [41, 42]. As is the case for sepsis, animal models have 
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included mice, rats, dogs, swine, and (less commonly) non-human primates. Rodent models 

are the most common due to ease of manipulation and ability to obtain large numbers of 

experimental repeats. However, rodents typically do not exhibit MODS, whether following 

trauma/haemorrhage or models of sepsis described above; rather, they tend to exhibit an “all 

or none” phenomenon wherein the rodents survive increasingly severe trauma/haemorrhage 

until they die above a certain threshold. Thus, large animal models (especially non-human 

primate models) may better reflect the complex, individual-specific, and intertwined 

inflammatory and organ dysfunction phenotypes of humans [*6]. As mentioned above, age 

can also critically influence the response to traumatic injury [37, 38], though trauma patients 

are often fairly young and otherwise healthy, and yet still undergo a Systemic Inflammatory 

Response Syndrome and critical illness. Computational modelling of trauma/haemorrhage 

has also been carried out using data from both small and large animals, as well as humans.

Failure of therapies for acute inflammation in experimental critical illness:

The past several decades have seen a plethora of putative interventions for sepsis-induced 

(and to a lesser degree, trauma-induced) acute inflammation and MODS. While space 

constraints preclude a detailed discussion of these studies, these include numerous innate 

and adaptive immune pathways that culminate in the production of cytokines, chemokines, 

damage-associated molecular pattern molecules, oxygen and nitrogen free radicals, 

coagulation pathway intermediates, vasoactive peptides and lipids, and various organ-

supportive strategies spanning the gamut from fluid resuscitation to organ/organism 

hibernation. Additionally, pro-inflammatory therapies (e.g. GMCSF) have also been tested. 

As mentioned above, all of these therapies have failed clinically.

We suggest that this failure stems from the fact that acute inflammation evolves too rapidly, 

with too much individual variation to be modulated appropriately given the current 

constraints on time and lack of strategies necessary for proper diagnosis and administration 

of therapy, and we offer Model-based Precision Medicine (Figure 1) as a possible solution. 

In the context of inflammatory diseases, we suggest that the current therapeutic approach – 

extinguishing inflammation to the greatest degree possible – is misguided. Rather, the 

therapeutic goal should not be to abolish inflammation, but rather to attenuate the vicious 

positive feedback cycle of inflammation→damage→inflammation, in essence, 

accomplishing control aimed at exploiting the system response to guide it back to a state of 

health (Figure 1).

To accomplish this goal, we hypothesize that sepsis is driven by existing and programmed 

pathways performing in a disordered fashion. Given the complexity and internal robustness 

of the system, control strategies should aim at redirecting these entangled control structures 

towards configurations in which the evolutionarily selected-for beneficial effects of these 

systems can come to the fore, thus allowing the body to re-equilibrate its inflammatory 

response incrementally and gradually. As one potential instantiation of the Control Strategies 

outlined in Figure 1, we have developed a self-regulating device for patient-specific, 

incremental regulation of inflammation, which is predicated on the hypothesis that the most 

efficient mechanism for doing so involves using gene-modified cells that are active in an 
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extracorporeal support device and temporarily in exchange with the blood circulation via a 

bioreactor.

As a proof of concept, we targeted a key inflammatory cytokine involved in the 

aforementioned positive feedback loop, namely tumour necrosis factor-α (TNF-α). The 

bioreactor device was seeded with human HepG2 cells stably modified using lentiviral 

constructs to counter TNF-α through the constitutive or TNF-α-dependent production of 

soluble TNF-α receptor (sTNFR) [14]. Both constitutive and TNF-α-inducible sTNFR 

devices could reprogram dynamic networks of inflammation, and modulate key 

physiological outcomes in both endotoxemic [43] and septic [**44] rats.

Important Developments in Computational and Modelling Approaches in 

the Study of the Acute Inflammatory Response

Data-driven approaches in the context of the immunomodulatory bioreactor.

In earlier studies and in the bioreactor experimental work described above, several data-

driven approaches were employed. At their core, data-driven modelling approaches are not 

mechanistic [45]. However, in this era of “big data”, incorporating a data-driven component 

is a rational first step towards defining putative mechanisms (via hypothesis generation). As 

such, data-driven approaches are an integral component of the Scientific Cycle of 

Observation, Analysis/Hypothesis generation and Hypothesis Testing [46]. In addition, the 

data-drive approaches can also provide prognosis/disease classification/outcome prediction 

metrics that would aid in building a case for clinical validity/utility, since prognosis/

prediction need not account for mechanism.

Principal Component Analysis (PCA) was used in experimental trauma/haemorrhage in 

mice [47], endotoxemia in swine [48], and Gram-negative sepsis in rats [49] to define the 

subsets of mediators that are most strongly correlated with the inflammatory response under 

different experimental conditions, accounting for most of the variability seen in the dataset. 

This analysis was used to define the impact of experimental sepsis therapy using 

hemoadsorption [49], as well as the impact of inflammation-regulating bioreactors on 

endotoxemia and Gram-negative sepsis [**44]. PCA was also used as a data reduction tool 

to aid in the construction of a two-compartment, equation-based mechanistic model of 

endotoxin-induced inflammation in swine [48].

Data-driven methods often glean important information from network discovery methods. 

Dynamic Bayesian Network (DyBN) inference was used to identify the single most likely 

structure characterizing the dynamically changing inflammatory signalling network over all 

time points, including putative positive central nodes and negative feedback. This analysis 

suggested a potential “chemokine switch” architecture that might regulate the initial process 

of acute inflammation in humans [50]; proposed a novel role for the chemokine IP-10/

CXCL-10 in spinal cord injury-induced systemic inflammation [51]; highlighted the 

structural similarity in the dynamic inflammatory responses of traumatic brain injury 

survivors and non-survivors which also offered a rational pathway from data, through data-

driven modelling, to dynamic mechanistic models [*52]; and defined the dynamic 
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inflammatory responses in subsets of patients with Paediatric Acute Liver Failure (PALF) 

[53, 54]. In the context of the inflammation-regulating bioreactor, DyBN suggested that 

sTNFR was a central node in experimental endotoxemia as well as Gram-negative sepsis in 

rats [**44].

Another network discovery method, Dynamic Network Analysis (DyNA) [47], defines 

central network nodes but, unlike DyBN, can give more granular information about network 

evolution over distinct time intervals for different experimental groups. In the context of the 

acute inflammatory response, DyNA can help suggest how these networks of inflammatory 

mediators change in complexity or connectively over certain time intervals. Examples of the 

utility of DyNA for critical illness include defining key structural differences in the 

inflammatory responses of mice undergoing trauma/haemorrhage vs. trauma alone [47]; the 

finding that human blunt trauma non-survivors [*11] as well as PALF non-survivors [54] 

exhibit dynamic networks that suggest ever-amplifying inflammation; the finding that the 

chemokine MCP-1/CCL2 is a central driver of stress induced hepatocyte inflammation in 
vitro [55]; and the demonstration of divergent inflammatory responses in various subsets of 

highly matched trauma patients [56, 57].

Mechanistic modelling and theoretical control approaches in the context of critical illness.

The aforementioned dynamic data-driven modelling tools extract from time-course data the 

crucial connections and relationships between the various mediators involved in the complex 

acute inflammatory response and suggest how these may change over time. These insights 

can be integrated directly into the development or calibration of mathematical models built 

from first-principles of the biological processes, such as those based on ordinary differential 

equations (ODE) or agent-based/rule-based simulations, [48, *52, 58]. These models are the 

foundation of Model-based Precision Medicine (Figure 1). Modelling approaches can help 

augment the development or testing of hypotheses regarding the mechanisms behind the 

observed outcomes among various experimental groups, including the potential role of gene 

knockouts [59] and experimental therapies [48, 60, 61]. The models also provide an 

important in silico testing environment for evaluating clinical trial-like scenarios [62–64]. 

Indeed, mathematical models consisting of nonlinear ODE as well as agent-based models 

(ABM) were constructed to capture the evolution of the response based on interactions 

among various key cell populations and inflammatory cytokines involved in the acute 

inflammatory response to a generic Gram-negative bacteria or bacterial endotoxin as well as 

traumatic insult [62, 65–70]. Together, these models provide preliminary qualitative or 

quantitative understanding of the dynamics of the inflammatory response and the importance 

of the timing of mediators at different stages of the response.

Given the paucity of effective therapies to treat sepsis as well as the potential capabilities of 

mechanism-based simulations of sepsis, we consider the role of modelling in exploring 

putative beneficial interventions. Specifically, we seek a means of identifying sets of 

interventions that can alter a detrimental individual system trajectory into a beneficial one; in 

this fashion we consider a therapeutic regimen as a “control” strategy for the system. Our 

suite of mechanism-based models crosses a range of methods, some of which (e.g. the ODE 

models) are suitable to classical control theoretic analysis, while other more complex 
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stochastic models (e.g. the ABMs) can be subjected to optimization search methods that 

leverage advances in both high-performance computing platforms and machine-based 

learning algorithms.

The model-based control methodology of Model Predictive Control (MPC) was used to 

determine appropriate therapeutic inputs to correct dysfunctional immune responses in an in 
silico clinical trial of sepsis using heterogeneous virtual patients defined from an ODE 

model [22, 24], and in simulations with an ODE model of endotoxemia in rats [23]. In 

addition to control-theory based analysis, increased computational capabilities offered by 

advances in high performance computing (HPC) have now made feasible the application of 

simulation-based optimization and control discovery. Genetic algorithms, a computational 

method that employs synthetic genomes representing different potential therapeutic 

combinations and uses evolutionary principles to optimize control strategies, were applied to 

an ABM in the setting of an in silico clinical trial of sepsis [**26]. Also, by treating the 

management of sepsis as a “control game,” the advanced machine learning method known as 

deep reinforcement learning, which has previously been employed to train artificial 

intelligence (AI) systems to play games (most notably AlphaGo Zero [71]), has been used to 

train an AI to modulate the sepsis ABM to produce nearly 0% mortality across a simulated 

population [**25]. Results from these studies demonstrated that successful therapeutic 

strategies require targeting multiple mediators to varying degrees and at different times in 

order to modulate the complex, evolving inflammatory response to infection across 

heterogeneous simulations.

We note that these are proof-of-concept studies, as current experimental methodologies do 

not generate the data necessary to either comprehensively validate computational models 

and their associated uncertainties or sample combinatorically large spaces of treatment 

possibilities. These proof-of-concept studies highlight a role for mathematical models and 

control discovery methodologies in the pursuit of Model-based Precision Medicine (Figure 

1), intended here as a framework for addressing key issues about data limitations and model 

uncertainty. By utilizing an iterative process of model development, testing, and refinement, 

the added component of examining control structures/strategies can both 1) provide 

investigatory insight by examining system response to perturbation/intervention, as is the 

case in nearly all experimental biology; and 2) provide potential high-level insight into 

boundary conditions for clinically-relevant investigation.

Important Developments in Synergistic Combination of Approaches in the 

Study of the Acute Inflammatory Response

In the setting of Gram-negative sepsis, a novel and synergistic strategy to study the acute 

inflammatory response is realized in combining the theoretical groundwork from the 

mathematical modelling and dynamic control studies with the experimental inflammation-

regulating bioreactor protocol and represents an instantiation of Model-based Precision 

Medicine (Figure 1). The complex nonlinear dynamics of the immune response of the 

animal model (considered the ‘real system’) are captured by ABM and ODE model 

representations. These computational models are updated as often as possible with 
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measurements from the real system in order to refine parameter selections or state 

trajectories for better prediction of the real system to baseline infection initiation and/or 

changes in the feedforward actions of the bioreactor. To assist in tuning the output of the 

bioreactor for optimal adaptive modulation of the response of the real system, the dynamics 

of the bioreactor environment are represented by another ODE model. Control discovery 

strategies are then implemented on the models of the real system and that of the bioreactor 

to periodically determine how to best tune the bioreactor such that its feedforward actions to 

the real system drive its response closer to a resolution trajectory. In this way, the framework 

seeks to realize an optimized reprograming of dynamic inflammation networks in vivo. The 

MPC methodology utilized in [22–24] provides the model-based control architecture that 

can more robustly tune and implement the immunomodulatory device on a patient-to-patient 

basis. Additionally, the framework allows for a closer integration of the modelling work with 

the data, promoting the necessary iterative process described above and providing an 

enhanced understanding of the acute inflammatory response in Gram-negative sepsis.

Conclusions

The experimental and computational approaches discussed here all provide essential 

components of an interdisciplinary strategy required to drive forward our understanding and 

control of the acute inflammatory response and can be envisioned to advance research of 

other inflammatory diseases. The development of suitable mechanistic models requires an 

interactive and sometimes lengthy cycle of development, calibration, evaluation, and back 

again to development. However, despite taking longer to develop and implement than some 

of the data-driven modelling approaches, mechanistic modelling provides direct exploration 

of the dynamics of an evolving and complex response. Additionally, the plethora of prior 

work in the area of mechanistic models of critical illness has laid a solid foundation from 

which to more easily move forward. Moreover, the ability to apply mathematical and 

engineering methodologies on such models provides an additional set of tools to tackle the 

complex problem of successfully modulating diverse responses in a customized and 

individualized fashion. A rational integration of the experimental bioreactor device with the 

data-driven computational modelling and mechanistic modelling and control work provides 

an exciting opportunity to tailor theoretical work in a practical setting with potential for 

large impact on personalized solutions for critical care support. This interdisciplinary 

framework provides the components necessary to pave a path toward Model-based Precision 

Medicine for acute inflammatory diseases.
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Highlights

• Acute inflammation is a highly dynamic phenomenon that ensues as a 

response to infection or injury, and can be mimicked experimentally by the 

administration of agents such as Gram-negative bacterial endotoxin.

• The complexity of acute inflammation is a key reason for the lack of therapies 

for sepsis, traumatic injury, and related phenomena known as critical illness.

• Dynamic, data-driven approaches such as Principal Component Analysis, 

Dynamic Network Analysis, and Dynamic Bayesian Network inference, as 

well as dynamic mechanistic models using equations or agent-based rules, 

have been used to elucidate changes in complexity of inflammatory cytokine/

chemokine signalling networks both in experimental models of critical illness 

(trauma/haemorrhage, endotoxemia, and Gram-negative sepsis), as well as in 

human trauma patients.

• Mechanistic mathematical modelling of disease pathways – involving both 

equation- and agent-based frameworks – is based on first-principles biological 

knowledge. When combined with model-based control theoretic approaches 

and advanced computational methods such as genetic algorithms and deep 

reinforcement learning, such models may provide strategies for precision 

medicine in critical illness.

• A novel class of engineered biohybrid devices may allow for personalized, 

fine-grained dynamic control of acute inflammation, and could be improved 

iteratively via model-based control strategies formulated from computational 

modelling.
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Figure 1: 
This figure depicts the structure of what we term Model-based Precision Medicine: The right 

drugs in the right combinations at the right time for the right patient in order to control a 

disease trajectory back to a state of health. Model-based Precision Medicine starts with 

dynamic models as a proxy/surrogate of a real system (i.e. patient), informed by and updated 

with data streams coming from the patient as well as knowledge acquired from data-driven 

analyses. These dynamic models can be subjected to methods which allow the control 

discovery process to be formulated as an optimization problem not feasible/tractable for the 

real 97 elusive “golden bullet” world system. Subsequently, optimal therapeutic strategies/

policies are identified that can incorporate multi-modal agents being adjusted/adapted based 

on patient trajectories/responses.

Day et al. Page 15

Curr Opin Syst Biol. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Day et al. Page 16

Table 1

Listing of acronyms used in the manuscript.

Acronym Meaning

ABM Agent Based Model

AI Artificial Intelligence

CLP Cecal Ligation & Puncture

DRL Deep Reinforcement Learning

DyBN Dynamic Bayesian Network inference

DyNA Dynamic Network Analysis

HepG2 Human Hepatocytes

HPC High Performance Computing

MCP-1/CCL2 Monocyte Chemotactic Protein-1

MODS Multi Organ Dysfunction Syndrome

MPC Model Predictive Control

ODE Ordinary Differential Equations

PALF Paediatric Acute Liver Failure

PCA Principal Component Analysis

RL Reinforcement Learning

sTNFR soluble TNF-α receptor

TNF-α Tumour Necrosis Factor - alpha
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