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Abstract

Protein therapeutics is a rapidly growing segment of the pharmaceutical market. Currently, the 

majority of protein therapeutics are manufactured in mammalian cells for their ability to generate 

safe and efficacious human-like glycoproteins. The high cost of using mammalian cells for 

manufacturing has motivated a constant search for alternative host platforms. Insect cells have 

begun to emerge as a promising candidate, largely due to the development of the baculovirus 

expression vector system. While there are continuing efforts to improve insect-baculovirus 

expression for producing protein therapeutics, key limitations including cell lysis and the lack of 

homogeneous humanized glycosylation still remain. The field has started to see a movement 

toward virus-less gene expression approaches, notably the use of clustered regularly interspaced 

short palindromic repeats to address these shortcomings. This review highlights recent 

technological advances that are realizing the transformative potential of insect cells for the 

manufacturing and development of protein therapeutics.

Abstract

1. PROMISES AND CHALLENGES

Protein therapeutics represents a rapidly growing segment of the pharmaceutical industry 

that is estimated to reach a market value of $316 billion by 2025.1,2 Protein therapeutics 

include a variety of products ranging from subunits of a single protein to complex virus-like 

particles (VLPs) consisting of multiple proteins.3–6 Unlike small-molecule drugs, which had 
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dominated the market prior to several biotechnological advances in the late 1900s7 (Figure 

1), protein therapeutics are necessarily manufactured using living cells because of common 

protein properties such as large size, complex structure, and, for some, post-translational 

modifications.2,3,7 By the end of 2014, ~60% of the U.S. Food and Drug Administration 

(FDA) and European Medicines Agency (EMA) approved recombinant protein therapeutics 

were produced in mammalian cell lines, mainly due to their natural ability to produce 

human-like glycoproteins.8,9 This ability is important when certain glycan structures affect 

the efficacy of the protein therapeutic or when foreign glycan structures induce undesired 

immune responses.10–12 Despite this advantage, mammalian cell lines are associated with 

high costs of maintenance and scale up.13 Therefore, more economical and scalable 

production hosts, such as yeast or bacteria, are used for manufacturing and account for the 

remaining ~40% of approved protein therapeutics in the market. In spite of much progress in 

genetic engineering, lower microbes have limited ability to express and fold proteins with 

co- and post-translational modifications, including glycosylation.14–16 Because nonhuman 

glycosylation poses concerns regarding safety and efficacy of protein therapeutics, there is a 

constant search in the field for an ideal production host with a fine balance between its 

glycosylation capabilities and cost effectiveness.

Having long been used as a model eukaryote in physiology and pathology research,17,18 

insect cells have begun to show promise as a potential candidate for manufacturing and 

developing protein therapeutics. The most widely used insect cell lines include S2 derived 

from Drosophila melanogaster, Sf9 from Spodoptera frugiperda, and High Five from 

Trichoplusia ni. These and other insect cell lines offer several manufacturing advantages 

over mammalian cells, including no CO2 requirement, lower energy requirement due to 

incubation at lower temperatures, and reduced biosafety requirements (BSL1).19–21 In 

addition, as a higher eukaryote, insect cells naturally produce more complex glycan 

structures than yeast or bacteria. Unfortunately, their potential as a manufacturing host to 

produce protein therapeutics has been unrealized because the initial genetic tools developed 

for engineering insect cells were time consuming and had low throughput. For example, 

protein expression in S2 cells has been primarily accomplished by transforming a plasmid 

encoding the gene of interest and an antibiotic selection marker, followed by selection and 

expansion of the high-expressing clones to obtain a stable cell line needed for large-scale 

protein production. This process, generally termed random integration, usually takes 2–3 

months.

The development of the baculovirus expression vector system (BEVS) in 1983 dramatically 

improved the potential and applicability of insect cells for producing protein 

therapeutics22,23 (Figure 1). BEVS gained popularity by enabling high yields of recombinant 

protein expression using the strong late viral polyhedrin (polh) promoter.24−26 Compared to 

early promoters (e.g., ie1 and ETL) used in BEVS, the polh promoter-induced expression is 

consistently higher.27–29 Moreover, BEVS has reduced the production timeline by more than 

half, bypassing the need for creating stable cell lines. Since the commercialization of BEVS-

based expression kits in the mid-1990s, BEVS has quickly established itself as a staple 

genetic tool for recombinant protein production in insect cells and has greatly accelerated 

their use for protein therapeutics development.30,31 The combined advantages of the 

baculovirus-insect cell system led to the approval of five veterinary vaccines between 2000–
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2009,31,32 followed by another four vaccines for human use in the past decade (Figure 1). 

Insect cell-derived protein therapeutics now constitute ~1% of all FDA/EMA approved 

protein therapeutics for human use, including a VLP-based vaccine against cervical cancer 

(Cervarix, the human papillomavirus L1 protein is purified from High Five),33 a cellular 

immunotherapy against prostate cancer (Provenge, the prostatic acid phosphatase is purified 

from Sf21),34,35 a gene therapy against familial lipoprotein lipase deficiency (Glybera, 

adenovirus vector is produced in Sf9),36 and a subunit vaccine for influenza (Flublok, 

hemagglutinin protein is produced in Sf9).37

To realize the full potential of insect cells in the manufacturing and development of protein 

therapeutics, two intrinsic limitations of the baculovirus-insect cell system must be 

addressed. First, because BEVS relies on the infection of cells with actively replicating 

viruses, large amounts of baculovirus progeny contaminate the culture along with cellular 

proteins and debris from lysed cells. These contaminants necessitate costly purification steps 

to meet pharmaceutical-grade purity for clinical applications.38−40 Second, insect cell-

derived recombinant proteins contain altered and less-complex glycan structures compared 

to the human and mammalian equivalents,30,41,42 which may impair their efficacy and 

safety. Therefore, engineering humanized glycosylation pathways in insect cells is essential.

While various strategies have been devised to address these limitations, targeted genome 

editing has the potential to bypass some of these challenges altogether. In this review, we 

highlight the most recent technological advances, with an emphasis on how they can 

effectively overcome these challenges and accelerate the adoption of insect cells for 

manufacturing and development of protein therapeutics.

2. CONTINUING EFFORTS TO IMPROVE THE BACULOVIRUS 

EXPRESSION VECTOR SYSTEM (BEVS)

For more than 30 years, BEVS has been the workhorse for recombinant protein expression 

and virus-like particle (VLP) production in Sf9 and High Five cells, which are more 

permissive to baculovirus infection and replication compared to other insect cell lines.
26,43,44 The most commonly used system, Bac-to-Bac, begins by cloning a gene of interest 

(GOI) into a transfer plasmid under a strong viral promoter such as the polh or p10 

promoters.24,26 After transforming the plasmid into a specialized strain of E. coli containing 

a shuttle vector (bacmid),45 the GOI is transposed into the baculovirus genome (Figure 2, 

Step A). The modified recombinant baculovirus genome is then transfected into insect cells 

resulting in viral replication to produce viral progeny (Figure 2, Step B). This initial low-

titer baculovirus stock harvested from the transfection step is then amplified to create the 

high-titer stock (Figure 2, Step C). Finally, protein expression is carried out on a larger scale 

by infecting insect cells with the high-titer baculovirus stock to achieve a high yield of the 

desired protein (Figure 2, Step D). Since the polh and p10 promoters are late-stage 

promoters, production of the target protein occurs late in the viral replication cycle (48–72 h 

postinfection) along with the expression of late viral apoptotic proteins leading to cell lysis 

(72–96 h postinfection).46,47
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The short time window between recombinant protein expression and cell lysis presents 

several challenges uniquely associated with BEVS. First, cell lysis releases large amounts of 

cellular debris, protein, and intact baculovirus particles, complicating downstream product 

purification of the target protein.40,46 Furthermore, degradation of the target protein by 

released proteases may occur before protein purification is completed.48 Additionally, there 

is insufficient time for the target protein to undergo complete processing of post-translational 

modifications.48 As a result, the target protein may exhibit a range of glycan structures at the 

time of harvest, affecting the efficacy and/or safety of the product. With the goal to simplify 

product purification or to promote homogeneous humanized glycosylation, several strategies 

have been developed to reduce cell lysis associated with BEVS (Figure 2).

2.1. Reducing Contaminants during Manufacturing.

Typically, the target protein is purified by a combination of membrane filtration and 

chromatography techniques where significant protein losses occur.40 To increase the overall 

yield and reduce manufacturing costs, several strategies have focused on delaying cell lysis 

(Figure 2, Step D). One strategy is to delete genes in the baculovirus genome that encode 

proteins involved in cell lysis. It has been shown that the deletion of both chitinase and v-

cathepsin resulted in significantly less degradation and overall improvement in the yield of 

the sporozoite surface protein p67, a potential subunit vaccine candidate.49 Another strategy 

to delay cell lysis is to increase the expression of antiapoptotic proteins. Viral ankyrins 

(vankyrins) derived from an insect polydnavirus have been identified as I-κB homologues 

that act on the NF-κB signaling pathway to block cellular apoptosis. By expressing and 

testing seven different vankyrins using BEVS, P-vank-1 and I2-vank-3 were shown to 

maintain cell viability to >90% about 96 h postinfection in both Sf9 and High Five cells.50 

In another experiment, expressing the ie1 transcriptional enhancer transactivated the 

promoter of p35, a suppressor of apoptosis. This not only led to a 4-fold increase in green 

fluorescent protein (GFP) production, but also extended cell viability to >50% about 120 h 

postinfection.51

When producing VLP in insect cells, the budded and occluded baculoviruses in the cell 

culture supernatant are often present in large excess (>10:1) compared to the VLP.52 In 

addition, many VLPs and baculoviruses are similar in size and density, making their 

separation a highly challenging task. To prevent the extensive contamination of baculovirus 

and facilitate easier VLP purification, engineering strategies have focused on deleting 

baculovirus genes involved in its replication cycle. VP80 is a baculovirus structural protein 

required for both virion packaging and release from the nucleus.53 The use of VP80-null 

baculovirus enabled expression of recombinant enhanced green fluorescent protein (EGFP) 

without producing any progeny virus.54 In a similar manner, the deletion of GP64, a major 

baculoviral protein involved in cell entry,55–57 has been shown to decrease the amount of 

baculovirus in the supernatant when producing HIV-1 Gag VLP.58

While deleting genes related to the viral replication cycle promotes cleaner expression, this 

strategy impairs amplification of the high-titer viral stocks required for efficient protein 

expression (Figure 2, Step C). To address this problem, a separate cell line can be engineered 

to functionally complement the deleted gene in the mutant baculovirus during viral 
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amplification. This strategy has been applied for the VP80-null baculovirus, but the resulting 

transcomplementation system was still ~25 times less effective in viral amplification than 

the wild-type baculovirus.54 The vesicular stomatitis virus G (VSV-G) protein, a functional 

analogue to GP64, has also been used to transcomplement the defect of the GP64-null 

baculovirus, resulting in 10- to 100-fold lower baculovirus titers.59 Further improvement of 

this transcomplementation strategy may be needed to restore the viral amplification to the 

wild-type level.

2.2. Engineering Humanized Glycosylation Pathways Using BEVS.

Asparagine-linked glycan (N-glycan) structures on insect cell-derived proteins have been 

well characterized and show significant differences from those produced in mammalian 

cells.41,60–62 Glycan structures from both types of cells share an internal paucimannose 

structure (Table 1; lines 1, 2). In mammalian cells, N-acetylglucosaminyltransferase adds a 

GlcNAc (N-acetylglucosamine) residue to both mannose branches, and additional 

glycotransferases elongate the branch with galactose followed by sialic acid residues (Table 

1; line 1). However, insect cells also express N-acetylglucosaminidase that removes GlcNAc 

residues and outcompetes the activity of N-acetylglucosaminyltransferase, preventing further 

elongation of both branches. Thus, while human proteins have biantennary (two branches) 

and terminally sialylated glycan structures, the majority (>90%) of insect proteins are 

terminally mannosylated (Table 1; line 2).63,64

These differences between insect and human glycosylation have been shown to directly 

affect the efficacy of protein therapeutics. Compared to the mammalian equivalents, human 

thyroid-stimulating hormone and human interferon-γ derived from insect cells were cleared 

more rapidly from the bloodstream in mouse and rabbit models, respectively.65,66 The 

reduced bioavailability of both proteins can be attributed to mannose receptor-mediated 

endocytosis by hepatic endothelial cells and macrophages (Kupffer cells).67–70 Studies have 

also suggested that the lower bioavailability of insect cell-derived proteins leads to reduced 

immune stimulation, as weaker humoral responses (i.e., lower neutralizing antibody titers 

and IgG1:IgG2a ratio) were observed in animal models vaccinated with influenza HA 

protein produced from Sf9 and S2 cells compared to HA produced from mammalian cells. 

This reduced humoral immune response resulted in less protection against H5N1 viral 

challenge.71,72 Insect cell N-glycan structures can also directly impair immune functions 

independent of reduced bioavailability. Immunosuppression of dendritic cell activity through 

mannose binding to the dendritic cell-specific intercellular adhesion molecule-3-grabbing 

nonintegrin (DC-SIGN) receptor was observed in vitro for both mannosylated HA and HIV 

gp120 proteins.72–74

While the lack of mammalian glycan structures reduces efficacy, some insect-specific N-

glycan structures found in certain insect cell lines pose safety concerns. Both insect and 

human glycoproteins share α−1,6-core fucosylation on the proximal GlcNAc group. 

However, High-Five and related cell lines derived from Trichoplusia ni produce 

glycoproteins with an additional α−1,3-core fucosylation on the same group (Table 1; line 

14).75,76 This is accomplished by fucosyl-transferase 8 (FUT8), which is absent in 

mammalian cells.9,12 The α−1,3-core fucose residue has been identified as an IgE epitope 
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for individuals allergic to honeybee venom and can cause severe reactions.75 Reduced 

efficacy and safety concerns associated with these insect glycan structures have thus 

motivated the engineering of insect cells to produce protein therapeutics with humanized 

glycosylation.

Expression of mammalian glycotransferases using BEVS has been the primary strategy to 

achieve humanized glycosylation in insect cells. Early efforts utilized coinfection of one 

baculovirus encoding mammalian glycotransferases and a second encoding the target 

protein. This was first accomplished in Sf9 cells infected with a baculovirus encoding the 

human N-acetylglucosaminyltransferase I (GlcNAc-TI) under the late p10 promoter, which 

added a terminal GlcNAc residue to influenza fowl plague virus hemagglutinin (HA) 

expressed from a second baculovirus.77 Although the overexpression of GlcNAc-TI resulted 

in a 4-fold increase in the amount of HA containing more complex N-glycan residues, only 

40% of the total HA contained the GlcNAc addition (Table 1; line 3).77

Several important factors likely contributed to the observed heterogeneous glycosylation. It 

is possible that not all cells were infected with both baculoviruses during coinfection, 

resulting in target protein expression without the glycotransferase or vice versa. To address 

this limitation of coinfection, baculovirus vectors have been designed to express both the 

glycotransferases and the target protein using a single baculovirus.78,79 Infection of a single 

baculovirus ensures that the infected cells express all proteins of interest, while also 

reducing cell lysis as less baculovirus is used. This singleinfection strategy has been 

facilitated by the development of the MultiBac system, a baculovirus vector that contains 

two cloning sites (LoxP and Tn7).80,81 Using this system, the genes encoding the heavy and 

light chains of the 3D6 antibody against the HIV-1 Gag protein were transposed into the Tn7 

site, while two glycotransferases (Caenorhabditis elegans N-acetylglucosaminyltransferase 

II (GlcNAc-TII) and bovine β−1,4-galactosyltransferase I (GalT) were recombined into the 

LoxP site. When High Five cells were infected with this engineered MultiBac vector, ~50% 

of the 3D6 antibodies produced contained biantennary terminal galactose residues (Table 1; 

line 15).82 Although there was a 25% reduction in 3D6 antibody expression with the 

coexpression of the glycotransferases, the resulting 3D6 antibody with more humanized 

glycosylation showed enhanced binding to human Fcγ receptors, indicating improved 

effector functionality.82

In addition to expressing mammalian glycotransferases, engineering efforts have focused on 

eliminating insect-specific glycan structures such as α–1,3 core fucose that are allergenic. 

To achieve this goal, a GDP-6-deoxy-D-lyxo-4-hexulose reductase (RMD) native to bacteria 

has been used to inhibit fucosylation by consuming the GDP-I-fucose precursor.83,84 When 

expressed by a tandem gp64-polh promoter with both early and late activity, fucosylation of 

soluble influenza HA was significantly reduced and showed as much as a 10-fold decrease 

in reactivity to IgE when tested against the sera of patients with honeybee allergy.83 

However, fucosylation was not completely eliminated. Another study used a baculovirus 

encoding RMD under the ie1 promoter and demonstrated an undetectable level of 

fucosylation on the target protein rituximab (CD20-IgG).84 Comparing these two studies, the 

choice of promoter may play a key role in the elimination of fucosylation.
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3. EMERGING VIRUS-LESS GENOME EDITING AND GENE EXPRESSION

While BEVS has played an instrumental role in catalyzing the field of insect cell-derived 

protein therapeutics, the issues associated with cell lysis as described in Section 2 are 

difficult to solve due to the lytic nature of BEVS. By implementing virus-less genetic 

modification strategies for heterologous gene expression, cell lysis can be dramatically 

reduced to simplify the purification process of protein therapeutics. To achieve virus-less 

expression of proteins with homogeneous humanized glycosylation in insect cells, the key is 

to develop an efficient genome editing tool with two important features: (1) high-level 

expression of mammalian glycotransferases as well as the target protein, and (2) efficient 

knockout of genes responsible for pathogenic glycan structures (e.g., α–1,3 core fucose) or 

preventing N-glycan elongation (e.g., N-acetylglucosaminidase).

Efforts based on random integration have achieved some success and enabled virus-less 

expression of up to nine heterologous genes in both S2 and Sf9 insect cells, producing target 

proteins with 40% of all glycan structures containing terminal sialic acid residues (Table 1; 

lines 5–13). However, screening for clones expressing glycotransferases or the target protein 

at high levels is difficult due to the low throughput and lengthy process of random 

integration. Furthermore, its random nature makes it inapplicable for knockout of a specific 

gene. Recent advances in genome editing have greater potential to address these challenges.

3.1. Flipase-Enabled Screening of High-Expressing Loci and Targeted Integration in Situ.

The location of an integrated gene within a chromosome has been shown to be a strong 

determinant of its transcriptional efficiency, leading to either no expression or variances of 

up to 1000-fold.85–89 Flipase-based recombination, discovered in Saccharomyces cerevisiae 
in 1982,90 has been used to screen high-expressing chromosomal loci to maximize the yield 

of protein therapeutics in E. coli91 and mammalian cells.92,93 This method has only been 

recently adopted in one of the insect cell lines, namely, Sf9, for the continuous expression of 

therapeutically relevant virus-like particles (VLPs).94,95 Flipase-based recombination 

integrates the target gene into the high-expressing locus through two rounds of integration: 

tagging followed by targeting.96,97 Flipase is an enzyme that recombines any two DNA 

sequences flanked by the 34-base pair flipase recognition sites. In the first tagging 

integration round, a reporter gene (e.g., GFP) flanked by the flipase recognition sites96,97 is 

randomly integrated, and high-expressing cells are isolated by fluorescence activated cell 

sorting (FACS) (Figure 3, weeks 1 and 2).96,97 The sorted cells thus contain high-expressing 

loci tagged with the flipase recognition sites. These cells are expanded to generate master 

cell lines (Figure 3, weeks 3–10) for further engineering of high-yield clones. In the second 

targeting integration round, cotransfection of (1) the gene of interest (GOI) flanked by the 

flipase recognition sites and (2) the flipase into the master cell lines allow for the targeted 

integration of the GOI into the high-expressing locus that has been tagged (Figure 3, weeks 

11 and 12).

One round of tagging integration as described above using GFP as a reporter gene created a 

master cell line with a high-expressing locus in the Sf9 genome tagged with the flipase 

recognition sites.96,97 Using this master cell line in the second targeting integration round, 

rotavirus capsid VP294 VLPs were produced in Sf9 cells at a yield comparable to that using 
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BEVS. More importantly, this stable Sf9 cell line showed significantly reduced cell lysis; 

cells continuously grew over more than a week to a density of up to ~1.2 × 107 per mL.

In theory, additional rounds of tagging and targeting integration could introduce more copies 

of the GOI (e.g., genes encoding multiple glycotransferases or target glycoprotein) into the 

genome to further enhance their expression level. This process can be time consuming since 

each round takes 12 weeks due to the lengthy random integration and selection steps (Figure 

3). However, once a master cell line with the tagged high-expressing loci is obtained, the 

timeline for future integrations is significantly reduced to 2 weeks, offering extraordinary 

flexibility to produce a variety of different protein therapeutics.

3.2. CRISPR-Enabled Site-Specific Modification.

While the flipase-based recombination achieves some degree of site-specific genome 

integration, it may be inefficient in exploring the chromatin landscape due to its reliance on 

random integration. Clustered regularly interspaced short palindromic repeats (CRISPR) 

represents a more efficient approach for site-specific genome editing. CRISPR has been used 

to perform not only gene insertions but also deletions and point mutations in many types of 

organisms (e.g., E. coli, yeast, plant, mammalian).98,99 Therefore, CRISPR possesses both 

features that are important for achieving virus-less expression of humanized proteins in 

insect cells. CRISPR uses an RNA-guided endonuclease to generate a double stranded break 

in the genome. The damaged genome induces cellular repair systems to fix the break 

resulting in either error-prone nonhomologous end joining (NHEJ) or homology-directed 

repair (HDR) if a homologous template is present. Whereas NHEJ is useful to knock out 

genes, HDR is required to efficiently integrate genes.

CRISPR has already been adopted in insect cells. Early studies have demonstrated that 

CRISPR can be used for gene knockout in the embryos and cell lines of Drosophila and 

Bombyx.100–104 The use of CRISPR for glycoengineering in insect cells was first 

demonstrated in the S2 cell line. Knockout of the N-acetylglucosaminidase gene enabled a 

4-fold increase in terminal GlcNAc residues on recombinant human erythropoietin (hEPO).
105 In Sf9 cells, this same gene knockout was enabled by the sequence identification of an 

Sf9-U6 promoter needed for the transcription of the guide RNA.106

The knockin of genes (~27–1800 nucleotides) has also been shown in S2 and Bombyx cells 

using CRISPR.102–104 Typical knockin efficiencies in insect cell lines were reported in the 

range of 1%−6%.102,103 To increase the knockin efficiency, one strategy is to inhibit the 

NHEJ pathway and promote HDR. RNAi-mediated knockdown of Ligase IV in S2 cells 

enhanced the efficiency of GFP (~1700 nucleotides) knockin at the phosphoglycerate kinase 

(PGK) locus to 35%.103 Gene knockin has not yet been accomplished in Sf9 or High Five 

cells due to the lack of the genome sequence. The recent publication of the Sf9 and High 

Five genomes107,108 opens many possibilities in the near future. For example, multiple 

copies of genes encoding mammalian glycotransferases can be knocked in to facilitate high-

level expression.109 Given the short timeline of genome editing using CRISPR (2 weeks as 

shown in Figure 3), glycoengineering of stable insect cell lines to produce humanized 

protein therapeutics is expected to be greatly accelerated.
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4. CONCLUSIONS AND OUTLOOK

Compared to BEVS, virus-less genetic engineering of insect cells has demonstrated several 

advantages for the development and manufacturing of protein therapeutics, most notably the 

significant reduction of cell lysis during protein expression. Nevertheless, both approaches 

face the challenge of glyco-engineering insect cells to produce protein therapeutics with 

humanized glycosylation, which is critical to ensure product efficacy and safety. The recent 

successful demonstration of CRISPR in Sf9, the publication of the Sf9 and High Five 

genomes, and the foundational CRISPR developments in Drosophila and Bombyx point to a 

new and exciting direction for virus-less engineering of insect cells. CRISPR has been 

innovatively adopted in a wide range of cell types and is expected to initiate a rapid 

expansion of engineering strategies to achieve high-level expression of multiple genes in 

insect cells. This is a timely development necessitated by the equally rapid growing protein 

therapeutics market. These most recent and anticipated future advances in engineering insect 

cells for high-yield production of humanized proteins are dissolving perceived disadvantages 

to bring about the coming age of insect cells for the manufacturing and development of 

protein therapeutics.
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ABBREVIATIONS

BEVS Baculovirus Expression Vector System

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats

Sf9 Spodoptera frugiperda cell line

polh polyhedrin promoter

p10 p10 promoter

VLP Virus-Like Particle

β4GalT β-1,4-galactosyltransferase

ST6Gal α-2,6-sialyltransferase

ST3Gal α-2,3-sialyltransferase

GlcNAc-TI N-acetylglucosaminyltransferase I

GlcNAc-TII N-acetylglucosaminyltransferase II
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Figure 1. 
Timeline of approvals made by the FDA and EMA for recombinant protein therapeutics for 

human use overlaid with significant technological advances and regulation events.2,110–114
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Figure 2. 
Overview of the BEVS and strategies to address issues associated with product 

contamination and glycosylation. BEVS includes four major steps: (A) Cloning the gene of 

interest (GOI) into a transfer plasmid and transposing into the baculovirus genome in a 

specialized E. coli strain (DH10Bac). (B) Transfection of the purified recombinant 

baculovirus genome in insect cells to form recombinant baculovirus progeny (Note: direct 

homologous recombination in insect cells could also be used but is not shown for 

simplicity). (C) Amplification to generate high-titer viral stocks. (D) Expression of the target 

protein. The six strategies listed have been applied at one of the four steps.
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Figure 3. 
Comparison of the flipase-based recombination method and CRISPR for creating a stable 

cell line. Flipase-based recombination first requires the “tagging” integration of a reporter 

gene into a random location of the genome. High-expressing clones are isolated and 

expanded as master cell lines. A “targeting” integration exchanges the reporter with the 

target protein cassette(s) through the use of flipase. CRISPR in theory requires one round of 

site-specific integration of the target protein; thus, it could accelerate the creation of stable 

cell lines.
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