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Abstract

Far from the static, idealized conformations deposited into structural databases, proteins are highly 

dynamic molecules that undergo conformational changes on temporal and spatial scales that may 

span several orders of magnitude. These conformational changes, often intimately connected to the 

functional roles that proteins play, may be obscured by traditional biophysical techniques. Over 

the past forty years, molecular dynamics (MD) simulations have complemented these techniques 

by providing the ‘hidden’ atomistic details that underlie protein dynamics. However, there are 

limitations of the degree to which molecular simulations accurately and quantitatively describe 

protein motions. Here we show that although four molecular dynamics simulation packages 

(AMBER, GROMACS, NAMD and ilmm) reproduced a variety of experimental observables for 

two different proteins (engrailed homeodomain and RNase H) equally well overall at room 

temperature, there were subtle differences in the underlying conformational distributions and the 

extent of conformational sampling obtained. This leads to ambiguity about which results are 

correct, as experiment cannot always provide the necessary detailed information to distinguish 

between the underlying conformational ensembles. However, the results with different packages 

diverged more when considering larger amplitude motion, for example the thermal unfolding 

process and conformational states sampled, with some packages failing to allow the protein to 

unfold at high temperature or providing results at odds with experiment. While most differences 

between MD simulations performed with different packages are attributed to the force fields 

themselves, there are many other factors that influence the outcome, including the water model, 
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algorithms that constrain motion, how atomic interactions are handled, and the simulation 

ensemble employed. Here four different MD packages were tested each using best practices as 

established by the developers, utilizing three different protein force fields and three different water 

models. Differences between the simulated protein behavior using two different packages but the 

same force field, as well as two different packages with different force fields but the same water 

models and approaches to restraining motion, show how other factors can influence the behavior, 

and it is incorrect to place all the blame for deviations and errors on force fields or to expect 

improvements in force fields alone to solve such problems.

Graphical Abstract

Introduction

Molecular dynamics (MD) simulations, “virtual molecular microscopes”, employ 

computational methods to probe the dynamical properties of atomistic systems and proffer 

insights into molecular behavior. Beginning with the report of a 9.2 picosecond simulation 

of bovine pancreatic trypsin inhibitor (BPTI) in 1977,1 MD simulations have provided the 

means to visualize proteins in action and to investigate that paradigmatic relationship 

between form and function.2,3 When taken in context with experimental results, MD 

simulations can drive discoveries in protein design,4,5 protein folding,6–9 and other spheres 

of protein science.10 However, two factors limit the predictive capabilities of MD: first, 

lengthy simulations may be required to correctly describe certain dynamical properties (i.e. 

the sampling problem11) second, insufficient mathematical descriptions of the physical and 

chemical forces that govern protein dynamics may yield biologically meaningless results 

(i.e. the accuracy problem12).13 To increase our confidence in the ability of MD simulations 

to provide meaningful results for arbitrary proteins and peptide systems, it is necessary to 

benchmark computational results against experimental data.

Improved computational infrastructure,14 software,15,16 and parallelization schemes17,18 

allow contemporary simulations to probe increasingly larger systems at timescales 

approaching those of experiment.19–22 However, the requisite simulation times to accurately 

measure dynamical properties are rarely known a priori; instead, simulations are deemed 

‘sufficiently long’ when some observable quantity has ‘converged’. In the context of 

molecular simulation, Sawle and Ghosh argue that convergence is a misnomer and show that 

the timescales required to satisfy the most stringent tests of ‘convergence’ or ‘self-

consistency’ vary from system to system and are dependent on the method used to assess 
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convergence.23 This behavior is mirrored in the analysis of MD simulations: we have shown 

that the overall level of insight into the dynamics of a system can be modulated by the type 

of analysis performed and the level of detail described.24 Thus, how long is ‘sufficiently 

long’ remains unanswered. A wealth of information can be obtained from simulations that 

probe native state dynamics as well as conformational changes that result in excursions from 

the native state. However, for slow dynamical processes like the folding of typical globular 

proteins and the non-folding of intrinsically disordered proteins,25,26 the requisite timescales 

remain out of reach for the time being, at least for conventional MD simulations.

Approximations built into the mathematical forms of MD force fields and their associated 

parameterizations give rise to the accuracy problem. These force fields are empirical and 

begin with parameters obtained from high-resolution experimental data and quantum 

mechanical calculations for small molecules, and then they are modified to reproduce 

different experimental properties or desired behaviors.27–36 Over time, modification of these 

parameters has yielded improved force fields with similar functional forms.37 In addition, it 

is important to note that while usually the focus, or blame, is on the force field, it is not just 

the potential energy function and associated parameters that determine the results of MD 

simulations. Protein dynamics are often more sensitive to the protocols used for integration 

of the equations of motion, treatment of nonbonded interactions and various unphysical 

approximations.

The most compelling measure of the accuracy of a force field is its ability to recapitulate and 

predict experimental observables. However, there are challenges associated with this method 

of validation.13 Namely, the experimental data used for validation are averages over space 

and time; the underlying distributions and timescales associated with these averages are 

often obscured. Consequently, correspondence between simulation and experiment does not 

necessarily constitute a validation of the conformational ensemble(s) produced by MD, i.e. 

multiple, and possibly diverse, ensembles may produce averages consistent with experiment. 

This is underscored by simulations that demonstrate how force fields can produce distinct 

pathways of the lid-opening mechanism of adenylate kinase that nevertheless sample the 

crystallographically identified ‘open’ and ‘closed’ conformers.38 Furthermore, extensive 

simulations of the villin headpiece demonstrated that while MD-derived folding rates and 

native state structures had good agreement with experiment, the folding pathways and 

denatured state properties were force-field dependent.39 In addition, experimental 

observables may be derived using relationships that are functions of molecular conformation 

and are themselves associated with some degree of error. For example, most chemical shift 

predictors produce chemical shifts from molecular structures via training against high-

resolution structural databases, not solely via calculations from first principles.

Here, we address the extent to which multiple simulations performed for 200 ns each agree 

with experimental data. Multiple short simulations yield better sampling of protein 

conformational space than a single simulation with total sampling time equal to the 

aggregate sampling time of multiple small simulations.40,41 As simulations see increased 

usage, particularly by those not trained in the method, it is important to place quantitative 

bounds on the extent to which these simulations agree with experimental data and to 

understand the limits of their ability to explain experimental findings. Consequently, we 
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have compared how three force fields (AMBER ff99SB-ILDN,42 Levitt et al.,43 and 

CHARMM3644) used within four MD packages (AMBER,45–47 in lucem molecular 

mechanics (ilmm),48 GROMACS,49 and NAMD50) agree with a diverse set of experimental 

data for two globular proteins with distinct topologies: the Engrailed homeodomain (EnHD) 

and Ribonuclease H (RNase H) (Figure 1). The Drosophila engrailed homeodomain has 54 

residues arranged into three α-helices (denoted HI-HIII) and constitutes the DNA-binding 

domain of the larger transcription factor in which it is found. RNase H is an endonuclease α/

β protein composed of 155 residues organized into five α-helices (denoted αA – αE) and a 

single, five-stranded β-sheet (denoted β1 – β5) that hydrolyzes the RNA strand in double 

stranded RNA-DNA hybrid.58

Methods

Molecular Dynamics Simulations

The initial coordinates for simulations of EnHD were obtained from the 2.1 Å resolution X-

ray crystal structure solved by Clarke et al. (PDB ID: 1ENH).59 The initial coordinates for 

simulations of RNase H were obtained from the 1.48 Å resolution crystal structure solved by 

Katayanagi et al. (PDB ID: 2RN2).58 Crystallographic solvent atoms were removed from 

these structures and then conventional molecular dynamics simulations were performed 

using four software package-force field combinations: in lucem molecular mechanics 

(ilmm)48 with the Levitt et al. force field,43 AMBER with the Amber ff99SB-ILDN force 

field,42 GROMACS49 with the Amber ff99SB-ILDN force field,42 and NAMD50 with the 

CHARMM36 force field.44,60,61 The simulations were performed under conditions 

consistent with those under which the experimental data were obtained. Simulations of 

EnHD were performed at neutral pH (7.0) at 298 K, and simulations of Rnase H were 

performed at acidic pH (5.5, histidine residues protonated) at 298 K. All simulations were 

performed in triplicate for 200 nanoseconds using periodic boundary conditions, explicit 

water molecules and ‘best practice parameters’, as determined by recent papers in the 

literature by authors of the software packages [AMBER,62–64 ilmm,65 GROMACS,66 and 

NAMD67] and their associated force fields typically contain many adjustable parameters. 

Here, we aimed to strike a balance between keeping these parameters consistent and 

adjusting them only when necessary for specific force fields/ MD package combinations. 

Within each package/force field combination, simulation methods were kept constant for the 

two proteins. Simulations of the native state were performed at 298 K and thermal unfolding 

was simulated at 498 K. Details for the initial preparation of the systems and the 298 K 

simulations for each force field follows. To promote the inclusion of simulation software 

parameterizations in ongoing and future force field evaluations, we have included the input 

files for each of our simulations in the supplementary information. We maintain that the 

algorithms used and associated input control parameters are as important as the force field 

per se in determining simulated behavior. This information may also be of use in meta 

analyses that evaluate force field/ MD software. Also, as there is some overlap in the protein 

(AMBER and GROMACS) and water (GROMACS and NAMD) force fields used by 

different programs, the simulations will be referred to throughout by the name of the 

simulation package used.
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AMBER—Simulations were performed with the AMBER14 package and ff99SB-ILDN 

force field.42 Explicit hydrogen atoms were modeled onto the X-ray structure using the leap 
module and each protein was solvated with explicit TIP4P-EW68 waters in a periodic, 

truncated octahedral box that extended 10 Å beyond any protein atom. Each system was then 

minimized in three stages. First, solvent atoms were minimized for 500 steps of steepest 

descent minimization followed by 500 steps of conjugate gradient minimization in the 

presence of 100 kcal mol−1 restraints on protein atoms. Second, solvent atoms and protein 

hydrogens were minimized for 500 steps of steepest descent minimization followed by 500 

steps of conjugate gradient minimization in the presence of 100 kcal mol−1 restraints on 

protein heavy atoms. Third, all atoms were minimized for 500 steps of steepest descent 

minimization followed by 500 steps of conjugate gradient minimization in the presence of 

25 kcal mol−1 restraints on protein Cα atoms. After minimization, systems were heated to 

298 K during 6 successive stages. In each stage, the system temperature was increased by 50 

K over 200 ps (25,000 steps) using the canonical NVT (constant number of particles, 

volume, and temperature) ensemble. (25 kcal mol−1 restraints on protein Cα atoms were 

present during each stage). After the system temperature reached 298 K, the systems were 

equilibrated over 7 successive stages. During the first 5 stages, the systems were minimized 

for 1000 steps (500 steps of steepest descent followed by 500 steps of conjugate gradient 

minimization) and restraints on protein Cα atoms were decreased from 5 kcal mol−1 to 1 

kcal mol-1. Next, the systems were equilibrated using the NVT ensemble for 500,000 steps 

(1 ns) and then the NPT ensemble for an additional 500,000 steps (1 ns) in the presence of 

0.5 kcal mol−1 restraints were present on protein Cα atoms. Production dynamics were then 

performed using the isobaric-isothermal NPT (constant Number of particles, Pressure, and 

Temperature) ensemble using a 2 fs time step and coordinates were saved every picosecond 

for analysis. The SHAKE algorithm was used to constrain the motion of hydrogen-

containing bonds.69,70 Long-range electrostatic interactions were calculated using the 

particle mesh Ewald (PME) method.

GROMACS—Simulations were performed with GROMACS version 5.0.649 and the 

AMBER ff99SB-ILDN42 force field. Hydrogen atoms were modeled onto the X-ray 

structure using pdb2gmx prior to solvation with TIP3P71 waters in periodic, cubic boxes that 

extended 10 Å beyond any protein atom. Solvent molecules were replaced with counter ions 

until the system was neutralized. Throughout the following stages, a Verlet cutoff scheme72 

was employed with a 10 Å cutoff for both electrostatic and van der Waals interactions and 

LINCS was employed to constrain bonds.73 Electrostatic interactions were calculated using 

PME. The solvated systems were minimized for 50,000 steps using steepest descent 

minimization. Systems were then equilibrated over two stages in the presence of positional 

restraints on protein atoms. First, systems were equilibrated in the NVT ensemble for 50,000 

steps followed by equilibration in the NPT ensemble for an additional 50,000 steps. Finally, 

production dynamics were performed in the NPT ensemble with a 2fs time step and 

coordinates were saved every picosecond for analysis.

ilmm—Simulations were performed with the in lucem molecular mechanics (ilmm) 

package and Levitt et al. force field43 using our standard protocols. Explicit hydrogen atoms 

were modeled onto the X-ray crystal structures prior to steepest descent minimization for 
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1000 steps. Each protein was solvated with explicit flexible 3-center (F3C)74 water 

molecules in a periodic, cubic box that extended 10 Å beyond any protein atom, with the 

solvent density set to the experimental value at 298 K (0.997 g mL−1).75 Solvent atoms were 

then minimized for 1000 steps and equilibrated for 500 steps (1 ps) prior to additional, 

separate minimization of the solvent (500 steps) and protein (500 steps) atoms. Conventional 

molecular dynamics simulations were then performed using the microcanonical NVE 

(constant Number of particles, Volume, and Energy) with a target temperature of 298 K. 

The equations of motion were propagated using a 2 fs time step with a 10 Å force-shifted 

nonbonded cutoff,43,76 and coordinates were saved every picosecond for analysis. In contrast 

to the other software packages described here, ilmm with the Levitt et al. force field43 

subscribes to a molecular-level representation and natural Boltzmann sampling through use 

of the NVE ensemble rather than trying to control macroscopic variables, such as 

temperature and pressure, in these microscopic systems. Such temperature and pressure 

coupling lead to very frequent scaling of the velocities, which in turn provides discontinuous 

trajectories. This may not be an issue if conformational sampling is desired as opposed to 

pathways for those conformational changes, but ilmm was developed with the objective of 

characterizing both ‘kinetic’ pathways and ‘equilibrium’ states. In addition, ilmm does not 

restrain atomic motion via algorithms such as LINCS and SHAKE nor introduce artificial 

periodicity into the molecular system via algorithms such as PME. 76

NAMD—Simulations were performed with NAMD version 2.1050 and the CHARMM36 

force field44. Hydrogen atoms were modeled onto the X-ray crystal structures using psfgen 
prior to solvation with TIP3P waters71 in a periodic box that extended 10 Å beyond any 

protein atom. Next, minimization was performed in two phases. In the first stage, 

minimization was performed for 20,000 steps with all hydrogen-containing bonds 

constrained and protein atoms fixed. In the second stage, minimization was performed for 

1000 steps with all protein backbone atoms fixed and an additional 1000 steps with no fixed 

atoms. After minimization, systems were heated to 298 K over 10,000 steps with harmonic 

restraints on backbone atoms that were gradually decreased from 5.0 to 0 kcal mol-1. After 

heating, systems were equilibrated for 100,000 steps (200 ps) in the NPT ensemble. Finally, 

production dynamics were performed in the NVT ensemble using a 2 fs time step. Van der 

Waals interactions were truncated with a switching potential and coordinates were saved 

every picosecond for analysis. Electrostatic interactions were calculated via PME 

summation and SHAKE was used to constrain bonds.

High Temperature Unfolding Simulations

In addition to the native state simulations described above, we also performed high 

temperature unfolding simulations of EnHD with the same force fields as for the native 

simulations. The high temperature unfolding protocols were similar to those for the native 

state simulations, with the following changes. The simulations were performed at 498 K in 

triplicate for 10 ns, non-bonded cutoffs were reduced by 2 Å, and structures were saved 

every 0.2 ps for analysis. To keep solvent molecules in the liquid state, the pressure was set 

to ~26 atm77 for simulations with GROMACS, AMBER, and NAMD; for ilmm, the solvent 

density was set to the experimental value at 498 K and ~26 atm (0.829 g ml−1).75,77 For 

AMBER, the two final equilibration phases were reversed, with NPT equilibration (500,000 
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steps) followed by NVT equilibration (500,000 steps), and the NVT ensemble was employed 

for production dynamics. For NAMD, the NPT ensemble was employed for production 

dynamics.

Analysis of MD Data

After production dynamics were completed, all trajectories were converted into an ilmm-

compatible format and analyses were performed identically for all trajectories. Unless 

otherwise specified, 298 K analyses were performed on an ensemble created by pooling all 

three replicate simulations and the first 20 ns of each simulation were excluded from 

analysis, yielding 5.4 × 105 structures in each ensemble.

Calculation of Gross Structural Changes and Dynamic Fluctuations

The root mean squared deviations (RMSDs) were calculated by aligning each frame to the 

crystal structure and fluctuations (RMSFs) were calculated by aligning each frame to the 

average structure calculated after the 20 ns equilibration period. The Cα atoms for all ‘core’ 

residues were included in the alignment and subsequent calculations. ‘Core’ residues refer to 

all residues except for flexible N- and C-terminal residues (EnHD: residues 8–53, RNase H: 

residues 5–142). Experimental Β-factors were compared with RMSFs via Equation 1, where 

B = experimental B-factors.78

RMSF = (3B/8π2)1/2
Equation 1

Calculation of NMR chemical shifts.

Simulated chemical shifts were calculated with the SHIFTX2 program.79 Experimental data 

for EnHD and RNase H were obtained from the Biological Magnetic Resonance Bank 

(BMRB)80 entries 1553681 and 1657,82 respectively. Chemical shifts were calculated for 1% 

of the ensemble (one frame every 100 ps). For RNase H, the re-referenced chemical shifts 

provided by the RefDB were used.83

Calculation of NMR scalar coupling constants

We calculated 3JHα,HN scalar coupling constants from MD simulations using the Karplus 

relation84 (Equation 2) by taking the average of the coupling constants calculated for each 

frame in the simulation. The coefficients for the Karplus equation (C0, C1, and C2) were 

obtained from the literature, and we used 7 different parameterizations.85–91 Experimental 

data for EnHD and RNase H were obtained from the BMRB entries 1553681 and 1657,82 

respectively.

3J(θ) = C0 + C1cosθ + C2cos2θ Equation 2
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Calculation of NOE satisfaction

Experimental nuclear Overhauser effect (NOE) values for EnHD and RNase H were 

obtained from the BMRB, entries 1553681 and 1657,82 with 654 and 1428 NOEs, 

respectively. NOEs were classified as satisfied in simulations based on the inequality in 

Equation 3, where r is the distance between a pair of protons, N is the number of frames, and 

rUB is either the experimental upper bound restraint distance or 5 Å, whichever is greater.

< r−6 > ≤ rUB Equation 3

Calculation of generalized amide S2 order parameters

Experimental order parameters for EnHD were obtained from BMRB entry 15336.81 

Experimental order parameters for RNase H were obtained from the supplemental 

information of Stafford et al.92 MD-derived NH bond order parameters were calculated 

using the method described by Wong and Daggett using a 250 ps window for EnHD and a 

10,000 ps window for RNase H given its ~9.7 ns tumbling time.93 Final order parameters are 

reported by averaging the results from the three replicate simulations.

Dihedral Angle Principal Component Analysis

Principal component analysis (PCA) is frequently employed to investigate protein dynamics 

by systematically reducing the dimensionality of complex motions into simpler components.
94 Here, we used PCA to investigate the dynamics of the Gly-rich loop in RNase H. 

Although Cartesian coordinates are normally employed in PCA calculations, we chose to 

use dihedral angle PCA of selected residues to investigate dynamics in the Gly-rich loop 

region of RNase H using the sine and cosine components of the ϕ and ψ dihedral angles of 

residues 11–22 as input.

Transition State Identification

The protein folding/unfolding transition states were identified from the high temperature 

unfolding simulations by using a previously established conformational clustering method.
95–97 Using this method, a pairwise Cα RMSD matrix describes the conformational 

similarity of all structures in n x n-dimensional space (where n = the number of frames in 

each simulation). This matrix is then projected into three dimensions such that frames with 

similar conformations are clustered in the reduced dimensional space. We then choose an 

ensemble of conformers prior to the onset of a significant conformational change to model 

the transition state structure.

Transition State Evaluation

To assess how well the putative transition state ensemble chosen from MD simulations 

agrees with experimental observations, we performed a comparative analysis between MD-

derived S values and ϕ-values.6 S values, or structure index values, are semi-quantitative 

equivalents of experimental ϕ-values98,99 and incorporate secondary and tertiary structure 

components. S values are defined as S = (S2°)(S3°), where S2° describes the secondary 
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structure component and S3° describes the tertiary structure component, and provide the 

fraction of native structure present in the transition state on a per-residue basis. The fraction 

of native secondary structure, S2°, for residue i is defined as the fraction of time that the 

dihedral angles of residues i - 1, i, and i + 1 spend within ± 35° of the values in the X-ray 

structure. The fraction of native tertiary structure, S3°, for residue i is defined as the number 

of tertiary contacts present in the transition state divided by the number of tertiary contacts 

present in the native state. Tertiary contacts were defined for interactions that heavy atoms in 

the residue of interest form with others separated by two or more residues. (≤ 5.4 Å for C-C 

contacts and ≤ 4.6 Å for all others).

Results & Discussion

Native State Sampling

The X-ray and NMR-derived structures deposited in the Protein Data Bank (PDB, 

www.rcsb.org)100 are averages over space and time, washing over the subtle and varied 

excursions from the native state frequently taken by globular proteins in solution.101 One of 

the chief goals of MD simulations is to explore such excursions beyond the native state. 

Before comparing the simulations against NMR observables, we first examined their 

conformational sampling relative to the starting native structures. We calculated the Cα 
RMSDs and RMSFs for EnHD and RNase H by aligning the core residues to either the 

starting structure (RMSD) or the average MD-ensemble structure (RMSF). For EnHD, the 

core residues were 8–53 and for RNase H, the core residues were 5–142 (Figure 1). For both 

proteins in all force fields, the Cα RMSDs reached stable values by 100 ns (Figure S1). 

Averaging over all three replicate simulations per MD package, we found that EnHD had 

average Cα RMSDs ranging from 0.6 Å (GROMACS and NAMD) to 0.8 Å (AMBER) to 

1.0 Å (ilmm) and that RNase H had average Cα RMSDs ranging from 1.3 Å (GROMACS) 

to 1.4 Å (NAMD) to 1.5 Å (AMBER) to 2.4 Å (ilmm) (Figure 2, Table 3). Independent of 

the protein system, GROMACS and NAMD produced narrow Cα RMSD distributions with 

little variation between replicate simulations, whereas AMBER and ilmm produced broader 

distributions with more variation between simulation replicates (Figure 2, Table 3).

We analyzed the per-residue contributions to the Cα RMSDs and found that for EnHD, all 

force fields consistently produced some deviation from the native conformation in two 

regions. The first region was HIII, the C-terminal helix that contains many DNA binding 

residues. In ilmm and AMBER, HIII frayed at the C-terminus; however, the nature of this 

local unfolding was force field dependent. In one ilmm simulation, HIII rotated away from 

the hydrophobic core, exposing W48 to solvent. After sampling this near-native 

conformation, HIII began to refold (Figure S2). In one AMBER simulation, the C-terminal 

residues lost helical structure (Figure S2). Partial loss of helical structure was also present 

for GROMACS and NAMD, but to a lesser extent (Figure S2). The second region with 

significant deviation from the native conformation was the loop connecting HI and HII. In 

ilmm, residues 24 and 25 underwent a dihedral transition, reducing the chain length of the 

HI-HII loop and producing a 1.9 Å Cα RMSD for residue 29. A similar event was observed 

with AMBER, however, instead of a single flip, multiple residues in the HI-HII loop 

experienced small dihedral angle shifts, resulting in a 2.7 Å Cα RMSD for residue 29 
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(Figure S3). The heightened degree of motion is supported by experiment. Stollar et al. 
found that the HI-HII loop undergoes conformational fluctuations on the μs-ms timescale.102 

These initial displacements seen in MD may be precursors to more significant 

conformational changes.102 For RNase H, the major contributions to the RMSD came from 

5 different regions of the protein: the Gly-rich loop (residues 11–22), the β2-β3 loop 

(residues 28–30), the αA-β4 loop (residue 59–63), the handle region (residues 81–101), and 

the β5-αE loop (residue 121–127) (Figure 1).

We then compared the simulated Cα RMSFs to crystallographic B-factors and found that 

AMBER and ilmm had substantially lower root-mean-squared error (RMSE) between the 

simulated and experimental values than GROMACS or NAMD (Table 1). The correlation 

coefficients were high for all force fields, ranging between 0.82 and 0.87. The lower RMSEs 

for AMBER and ilmm can be traced to the HII-HIII loop, N-terminal residues, and C-

terminal residues (Figure S4). The dynamics in the AMBER and ilmm simulations lead to 

the lower errors relative to GROMACS and NAMD. Lower correspondence between the B-

factors and simulation was observed for RNase H for all MD packages (correlation 

coefficients all below 0.7), but the associated RMSEs were low (less than 0.3 Å) (Table 2).

Comparison with NMR Observables

Next, we assessed the ability of MD simulations to reproduce four types of NMR 

observables: chemical shifts, nuclear Overhauser effect crosspeaks (NOEs), backbone NH 

order parameters, and scalar coupling constants.

Chemical Shifts—Chemical shifts report on the local electronic environments of distinct 

nuclei within proteins. We calculated the chemical shifts from our simulations using 

SHIFTX2.79 For the calculation, the first 20 ns of each trajectory was excluded and all three 

replicate simulations were combined into a single ensemble. To determine the level of 

sampling required to accurately report chemical shifts, we calculated the chemical shifts for 

run 1 of RNase H performed with AMBER using 1 ps, 10 ps, and 100 ps granularity and 

confirmed that subsampling the simulation at 100 ps resulted in predicted shifts that were 

nearly identical for the same calculation run at full granularity (Figure S5). All the MD 

packages in this study reproduced chemical shifts with errors comparable to those associated 

with SHIFTX2 (Figure 3, Figures S6–7, Tables 1–2). For comparison, we also calculated the 

agreement for the X-ray crystal structures for EnHD and RNase H. Prior to chemical shift 

calculations, hydrogens were modeled onto the crystal structure using ilmm and the 

hydrogen atoms were minimized for 1000 steps of steepest descent minimization. For some 

nuclei, the MD-generated ensembles produced better agreement than the X-ray 

conformations. For example, the X-ray conformation of K17 in EnHD did not agree well 

with the experimental data, especially for the N, Cα, Hα, and HN nuclei (Figure S8). In 

general, MD ensembles produced chemical shifts more consistent with the experimental data 

than the X-ray structure alone, particularly for the N and HN chemical shifts; however, little 

improvement was observed for Cα shifts (Figure S8). We investigated the origins of this 

discrepancy and found that K17 had distinct hydrogen bonding patterns within different 

force fields (Table S1). The rate of formation of a main chain hydrogen bond between K17 

(donor) and A14 (acceptor) may modulate the predicted chemical shift for the amide 
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hydrogen of K17 (Table S1). Wagner et al. and others have demonstrated that hydrogen bond 

geometry can influence the chemical shifts for HN nuclei and a subtle difference in hydrogen 

bonding patterns can contribute to enhanced correspondence between MD and experiment.
103 Additionally, there were a few instances where MD simulations produced worse 

agreement with the experimental data than the reference X-ray structure. Overall however, 

all the MD packages produced strong agreement with experimental chemical shifts, 

exhibited by the high correlation coefficients and low RMSEs (Figure 3, Tables 1–2, Figure 

S6, S7).

Nuclear Overhauser Effect Crosspeaks—Nuclear Overhauser effect crosspeaks 

(NOEs) relate to interproton distances and provide significant conformational information. 

We calculated NOEs from our simulations and stratified the results in two ways. First, we 

analyzed the percentage satisfaction for NOEs as a function of sequence separation: short-

range NOEs refer to NOEs arising from residues i → i + 1, i + 2; medium-range NOEs: i → 
i + 3, i + 4, i + 5; and long-range NOEs: i → i >i+5. Second, we analyzed the number of 

NOE violations, stratified by violation distance. For comparison, we also calculated the 

NOE satisfaction for the EnHD and RNase H crystal structures. For crystal structure 

analyses, we used the crystal structures containing hydrogens, as described above. For 

comparison, we also calculated the NOE satisfaction for the EnHD NMR ensemble (PDB 

ID: 2JWT). For EnHD (654 total NOEs), GROMACS, ilmm, and NAMD ensembles had 

marginally better agreement with the NOE data (96%, 97%, and 96%, respectively) than the 

crystal structure alone (95%), while AMBER had marginally worse agreement (94%) (Table 

S2). Deviations from the level of agreement with the crystal structure were small (< 2%) and 

there was little variation among replicate simulations. In addition, the total number of NOE 

violations was small. Across all force fields, the mean number of violations was 28 with an 

average violation distance of 0.625 Å. The number of severe NOE violations (i.e. those with 

a violation distance > 2 Å) was also small (AMBER: 2, mean distance = 2.6 Å; GROMACS: 

2, mean distance = 2.6 Å; ilmm: 1, mean distance = 2.7 Å; NAMD: 4, mean distance = 3.0 

Å); however, there were 12 severe violations in the first NAMD replicate (Table S2). For 

RNase H (1428 total NOEs), the X-ray structure had marginally better agreement with the 

experimental NOE data than any MD-generated ensemble (X-ray: 98%, AMBER: 97%, 

GROMACS: 97%, ilmm; 95%, NAMD: 97%) (Table S3). Again, deviations from the level 

of agreement with the crystal structure were small (< 3.5%) and there was little variation in 

the agreement among replicate simulations. Across all force fields, the mean number of 

violations was 47 with an average violation distance of 0.775 Å. There were a number of 

severe NOE violations (i.e. those with a violation distance > 2 Å): AMBER: 3, mean 

distance = 3.5 Å; GROMACS: 2, mean distance = 3.5 Å; ilmm: 5, mean distance = 2.9 Å; 

NAMD: 4, mean distance = 4.3 Å) (Table S3).

Next, we grouped NOEs by the residues with which they were associated and found that 

several residues had force field-dependent NOE satisfaction. For example, Leu 26 of EnHD, 

located in the HI-HII loop, is associated with 50 NOEs: 34 were satisfied by all MD 

simulations, the X-ray structure, and the NMR ensemble; 1 was never satisfied; and 15 had 

model-dependent satisfaction (Table S4). Of the 15 NOEs with model-dependent 

satisfaction, there were 4 NOEs satisfied by the X-ray structure and not the NMR ensemble 
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and 10 satisfied by the NMR ensemble and not the X-ray structure (Table S4). The 

satisfaction of these NOEs was dependent on the rotameric state of Leu 26, which was in the 

t, g+ conformation in the X-ray structure and the g-, t conformation in the NMR ensemble 

(Figure 4). In AMBER, GROMACS, and ilmm, Leu 26 alternated between these two 

conformations; however, simulations performed with NAMD largely retained the X-ray 

conformation for Leu 26, populating the t, g+ conformation for 97% of the simulation 

(Figure 4, Table S5). While no one model satisfied all the NOEs associated with Leu 26, 

AMBER, GROMACS, and ilmm had better agreement with the NOEs (and on par with the 

NMR ensemble) than the crystal structure or NAMD. In this instance, rotameric exchange 

was necessary to satisfy the NOEs that were not present in the crystal structure. The χ1 

torsional potentials for Ile, Leu, Asn, and Asp were modified in the ff99SB-ILDN force 

field, which we used in the AMBER and GROMACS simulations. The improvements made 

in this force field likely contributed to the modelling of L26 in the AMBER and GROMACS 

simulations; however, control simulations employing the ff99SB force field were not 

performed, so the degree of improvement cannot be quantified here. Although we found that 

3 of the 4 MD packages had better agreement than the crystal structure with respect to the 

solution behavior of L26, we cannot say which MD-generated ensemble best agreed with the 

‘true’ behavior of L26 in solution. We found that the force fields/packages had variable 

populations and lifetimes of the two primary rotamer conformations (Tables S5, S6). 

Furthermore, the HI-HII loop undergoes conformational exchange on the μs-ms timescale, 

indicating that the MD simulations may not have captured the full extent of dynamics 

associated with the side chain of this residue.102

Scalar Coupling Constants—Scalar coupling constants can be related to various 

dihedral angles via the Karplus relation (Equation 2). Here we calculated the 3JHN,Hα 
coupling constants, which are related to the ϕ dihedral angle, using seven different parameter 

sets obtained from the literature for the Karplus equation.85–91 Table S7 shows that the 

choice of Karplus parameters affects the level of agreement between simulation and 

experiment, with the Schmidt et al. and Smith et al. parameter sets consistently producing 

higher RMSEs. Overall, the Habeck parameter set, which was derived by applying Bayesian 

regression models to high-resolution data from ubiquitin, produced the best agreement, with 

correlation coefficients ranging from 0.80 to 0.89 and RMSDs ranging from 0.8 Hz to 0.98 

Hz (Table S7, Figure 5). While most residues had excellent agreement with the experimental 

data, some residues, such as E22, had poor agreement independent of force field or 

parameter set, and some residues, such as N41, had force-field dependent agreement (Figure 

S9). The N41 coupling constant was not described well in the X-ray structure, the AMBER 

ensemble, or the NAMD ensemble; however, both ilmm and GROMACS-derived ensembles 

had excellent agreement (ilmm error: 0.04 Hz, GROMACS error: 0.5 Hz). In all MD-

generated ensembles, N41 sampled two regions of Ramachandran space: one located in the 

PIIL basin and one located on the boundary between the β and PIIL basins (Figure S9). The 

ratio of sampling in these two regions dictated the ensemble-averaged value for ϕ and, in 

turn, the coupling constant. Upon further analysis, we found that, structurally, N41 functions 

as a dynamic helix cap, with both the backbone carbonyl and side chain carboxamide group 

forming multiple hydrogen bonds with the N-terminal residues of HIII (Figure S9, Table 

S8). These data suggest that force-field specific hydrogen bonding patterns for N41 may 
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have contributed to the level of agreement with experimental data; however, it is also 

possible that intrinsic ϕ/ψ preferences for individual amino acids, which are known to be 

force-field dependent,104 may have also influenced the agreement for N41. Ultimately, 

however, it is not possible to assess which MD-generated ensemble produced the best 

prediction for in-solution behavior, as numerous ϕ/ψ distributions can yield ensembles that 

satisfy the experimental data. The difficulties in evaluating simulated and experimental 

coupling constants are exacerbated by the fact that 2–4 ϕ values map to a single coupling 

constant and use of the Karplus relation itself can introduce error in the form of the three 

coefficients.

S2 Generalized Order Parameters—NMR-derived generalized S2 order parameters of 

NH groups report on the local extent of motion of the polypeptide chains. We calculated the 

backbone order parameters for EnHD and RNase H separately for each simulation and the 

reported values were averaged over the three replicates. For EnHD, there was good 

correspondence between the simulated and experimental values, with correlation coefficients 

ranging from 0.71 – 0.94 and RMSEs ranging from 0.7 – 1.3 (Figure 6, Table 1). Across all 

force fields, the N-terminal residues and turns had the greatest error. Furthermore, although 

ilmm had above-average errors for N-terminal residues, it produced better agreement for 

helical residues, particularly residues 10–14 and 48–51. (Figure 6, Figure S10) There was 

also good correspondence between simulation and experiment for RNase H (Table 2, Figure 

7). The level of agreement for Gly 15 was force field dependent, with ilmm producing the 

best agreement (Figure 7, Figure S11). Gly 15 is within the Gly-rich loop, which, along with 

the β5αE loop, coordinates the DNA/RNA hybrid prior to catalysis. We performed dPCA to 

explore the conformational distributions of the Gly-rich loop. Our analysis was aided by 

multiple X-ray and NMR structures of RNase H and several homologues. The following 

structures were included in our analysis: RNase H from E. coli (X-ray, PDB ID: 2RN2), 

RNase H from E. coli (NMR, PDB ID: 1RCH), RNase H from Thermus thermophilus (X-

ray, PDB ID: 1RIL), a stabilized RNase H variant from E. coli (X-ray, PDB ID: 1GOA), and 

two structures of RNase H D210N from Homo sapiens in complex with DNA/RNA hybrids 

(X-ray, PDB ID: 2QKB, in complex with a 20-mer DNA/RNA hybrid; X-ray, PDB ID: 

2QKK, in complex with a 14-mer DNA/RNA hybrid). The first two principal components 

described 53% and 12% of the variance within the dataset and Gly15 had strong weights. 

There were several highly populated regions in PC space (Figure 8). Of these, one 

corresponded to the unbound conformation of the Gly-rich loop observed in solution 

(denoted by a blue arrow in Figure 8) and another corresponded to the bound conformation 

of the loop observed in solution (denoted by the red arrow in Figure 8). Figure 8c breaks 

down the sampling of PC space by force field and simulation number. Visualization of the 

PC maps shows that ilmm was the only force field / MD package that sampled both the 

bound and unbound conformations; furthermore, the unbound solution conformations were 

the dominant conformers sampled by ilmm. In contrast, the remaining force fields primarily 

sampled the X-ray conformation and another region that was not observed in the 

experimental data (far left of Figure 8). Moreover, even with 600 ns of aggregate simulation 

time, AMBER, GROMACS, and NAMD were unable to achieve the level of sampling seen 

in ilmm with 300 ns of aggregate simulation time (i.e. ilmm reached this degree of sampling 

in < 100 ns). While there are dramatic differences in the sampling, there is a limit to the 
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extent to which we can determine the level of agreement between simulation and 

experiment, as the number, distribution, and interconversion rates of Gly-rich loop 

conformations cannot be derived from static structures alone.

Global Comparison with NMR Observables—To assess the overall agreement of the 

modeled dynamics with experimental observables, we calculated the χ2 statistic using the 

method of Panelopulos et al.105 χ2 was calculated using Equation 4, where N is the total 

number of types experimental observables, rmsdMD, Experiment is the RMSD between MD 

and experiment for a set of observables, and σ is the error associated with each individual 

measurement. Prior to calculation of the χ2 statistic, we excluded data for residues that were 

poorly modeled in at least 3 of the 4 force field/software package sets. Data were excluded 

on a per-protein, per-data-type basis. Residues were considered poorly modeled if the 

absolute value of the difference between the experimental and MD derived values was 

greater than a data-type specific cutoff. The cutoffs were set as twice the mean of the 

absolute value of the difference between the experimental and MD derived values for all data 

points. (Figure S12) The data associated with EnHD were organized into 8 types of 

observables: N chemical shifts, Cα chemical shifts, Cβ chemical shifts, C’ chemical shifts, 

Hα chemical shifts, HN chemical shifts, 3JHN,Hα coupling constants, and backbone NH order 

parameters. The data associated with RNase H were organized into 5 types of observables: N 

chemical shifts, Cα chemical shifts, Hα chemical shifts, HN chemical shifts, and backbone 

NH order parameters. A value of 0.78 was used for the error associated with the coupling 

constants, as determined by Beauchamp et al.106 A value of 0.1 was used for the error 

associated with the backbone NH order parameters. Nucleus-specific errors were used for 

the chemical shift data, based on the rms errors calculated for SHIFTX2: 0.44 ppm (Cα), 

0.52 ppm (Cβ), 0.53 ppm (C), 0.12 ppm (Hα), 0.17 ppm (HN), and 1.12 ppm (N). In the case 

of RNase H, the expected rms error for SHIFTX2 versus the chemical shifts in the RefDB83 

entry for 2RN2 were used for N, Cα, Hα, and HN chemical shifts (1.48, 0.79, 0.14, and 0.30 

ppm respectively). For EnHD and RNase H, the χ2 values fell within the expected 

distribution (Figure 9, Table S9).

χ2 = ∑i = 1
N rmsdi

MD, Experiment 2

σi
2 Equation 4

High Temperature Unfolding

High temperature simulations have been used to probe protein folding/unfolding pathways6,7 

and to aid in the design of thermostable protein variants.4 In prior studies, putative protein 

(un)folding transition states have been identified from high temperature simulations for 

multiple proteins including EnHD,107 c-Myb,107 chymotrypsin inhibitor 2,6 and barnase7,97 

and others. We evaluated the ability of the different MD packages and force fields to model 

known components of the (un)folding pathway of EnHD. First, we evaluated the sampling of 

the transition state of protein (un)folding by comparing MD-derived S-values to 

experimentally derived ϕ-values.107 The ϕ- and S-values reflect the degree of structure 

present in the transition state along the sequence. The S-values were calculated for the 
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putative transition state ensembles identified via conformational clustering (Figure S13), and 

the averages over the 3 replicates showed decent agreement with the experimentally derived 

ϕ-values for ilmm (R = 0.70) and moderate correspondence for AMBER (R = 0.48), 

GROMACS (R = 0.50) and NAMD (R = 0.35) (Table S10). Next, we examined whether any 

of the unfolding simulations sampled the known EnHD folding intermediate, the structure of 

which was first predicted computationally in 2000108,109 and later confirmed by NMR in 

2005.110 This intermediate structure was observed in simulations performed with ilmm, but 

not AMBER, GROMACS or NAMD. Finally, we examined whether the unfolding 

simulations sampled the denatured state after 10 ns at high temperature. Simulations 

performed with GROMACS and ilmm sampled highly denatured states, followed by 

AMBER, whereas simulations performed with NAMD retained significant native-like 

structure over the course of the simulation (Figure 10). The unfolding pathway of EnHD was 

strongly dependent on the choice of force field and simulation software. Only one force 

field/software combination, ilmm with the Levitt et al. force field, sampled transition state, 

intermediate state, denatured state structures, and kinetics of unfolding consistent with the 

experimental results for this system.108–110 While GROMACS sampled somewhat 

appropriate transition state-like conformations, significant helical structure was lost after 

passing through the transition state, resulting in increased sampling of denatured state 

conformers but without sampling the obligatory intermediate structures.109,110 NAMD also 

sampled transition-state like conformations, but in contrast to GROMACS, the protein never 

unfolded, preventing sampling of the intermediate and denatured states over the course of 

the simulations (Figure 10).

Summary and Outlook

The ultimate objective of MD simulations is to visualize dynamic behaviors and structural 

conformations that cannot be described by experimentally derived structures alone. Usually, 

the inability of MD simulations to produce conformational ensembles that are consistent 

with experiment is blamed on the force field. However, the force field is not the sole 

determinant of MD-simulated behavior or accuracy; if it were, the results from the 

simulations performed with GROMACS and AMBER would be more similar, as the same 

force field was used with both packages. To this end, we encourage authors of MD studies to 

include the standard input files used to model and perform any published simulations. This 

will facilitate meta-analyses and discussions of the impact of MD software-specific 

parameters on modeled behavior. Given the differences that we observed, ongoing and future 

validation efforts must account for both the force field parameterizations as well as the 

methods and approximations used to propagate systems in time without conflating the two. 

This includes approximations that may introduce artificial periodicity, such as PME (ref. 76 

and references therein), or overly constrain the simulated systems, such as LINCS and 

SHAKE. In addition, the choice of simulation ensemble can play a role in the dynamics, as 

suggested by the inability of AMBER, GROMACS and NAMD to reproduce the known 

unfolding behavior of EnHD. We believe that the improved ability of ilmm to sample 

conformational intermediates lies in the flexibility and conformational changes that are 

made possible when such approximations are not allowed to constrain or impede molecular 

motions. In addition, the force fields use different force constants on the dihedral angles; the 

Levitt et al., force field uses a value of 0 for the barrier to readily allow conformational 
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transitions subject to steric and electrostatic interactions. AMBER and CHARMM force 

fields use values of 1.13/1.88 kcal/mole and 1.36/1.46 kcal/mole for Φ/Ψ, respectively. 

These barriers, while relatively small, may also aid in retention of the starting structure such 

that native states are well maintained, and unfolding, even at high temperature is 

discouraged. Another possibility lies in the use of microcanonical ensemble in ilmm, which 

allows for Boltzmann sampling of an isoenergetic surface of the conformational landscape 

over continuous reaction pathways without frequent scaling of the velocities, which dampen 

motion.

In cases where dynamic behavior is required, restricted sampling results in worse agreement 

with experimental data that reflect protein dynamics in solution. We observed several 

instances of this in our simulations, particularly with NAMD. For example, simulations of 

EnHD performed with NAMD had the lowest Cα RMSDs relative to the crystal structure, 

but they were unable to recover NOEs associated with Leu 26 that were satisfied by the 

other MD packages. In addition, the coupling constant for N41 as predicted by NAMD was 

nearly identical to the value present in the X-ray structure. However, the X-ray structure is 

not in agreement with the solution behavior of N41, and ilmm, GROMACS and AMBER 

(both using the same protein force field but different TIP4P-EW and TIP3P water models, 

respectively) showed improved agreement with experiment. Finally, after 10 ns of simulation 

at 498 K, NAMD (using the CHARMM36 force field and TIP3P water model) was unable to 

produce significantly denatured structures comparable to those produced by the other MD 

packages and instead all three helices remained intact and packed. This highlights a more 

general issue. Many force field/MD packages have been developed to maintain the 

conformation of the starting crystal structure by attenuating or impeding dynamics in a 

variety of ways, and this is generally viewed as desirable. However, this becomes 

problematic if one is interested in characterizing larger scale native protein dynamics or 

protein unfolding.

Another crucial component to improving MD software is to establish more complex means 

of comparing experimental and computational results in a systematic and quantitative 

fashion. As we have shown here, when observables were evaluated at a coarse level of detail, 

these MD packages showed similar agreement with experiment with respect to the native 

state. However, when individual residues were examined in detail, significant differences 

were observed in native dynamics. A prominent difference was the behavior of L26 in 

EnHD. While three of the four MD packages recovered many NOEs missing from the 

crystal structure, the underlying dynamics of L26 (i.e. the populations and lifetimes of 

different rotameric states) varied significantly. This observation highlights not the 

shortcomings of MD, but the limitations of the data used to assess the computational results. 

That is, the available experimental data for L26, for example, are unable to identify which 

MD package best models the L26 dynamics. Recent studies examining different force fields 

(AMBER, CHARMM, and OPLS) and their ability to correctly model the strength of salt 

bridges111 and main chain propensities112 in simple model systems highlight how 

consideration of detailed interactions and behavior reveals dramatic differences between 

these force fields / MD packages. More broadly, however, the experimental data presented 

here are unable to distinguish, with high confidence, which MD-generated ensemble best 

approximates native protein behavior in solution. Starker differences were seen for protein 
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unfolding, in which case only one of the four MD packages produced unfolding trajectories 

consistent with experiment. Moving forward, access to the underlying distributions that give 

rise to the experimental observables will be necessary to improve the quality of MD and to 

better detect when a simulation does or does not appropriately model protein dynamics.

The results presented here, along with other recent force field validation efforts, show that 

contemporary force fields produce models that are in similar agreement with experimental 

results. Additionally, these results show that certain force fields agree better with certain 

observables than others. Considering these results, it is not possible to prescribe a ‘best’ 

model; instead, models should be selected based on the information sought. For example, 

simulations of intrinsically disordered proteins typically require significant alterations to 

model parameters to obtain accurate results, here is a case where it is undesirable to 

constrain conformational sampling. Along those lines, additional conformational sampling, 

obtained through longer or more numerous conventional MD simulations, may aid in the 

identification of an ‘optimal’ model, but it is not guaranteed to do so. Pantelopulos et al. 

found that longer simulation times yielded better agreement with experiment, independent of 

the force field chosen.107 In an evaluation of order parameter agreement, Bowman found 

that a larger aggregate sampling time yielded better agreement for side chain methyl group 

order parameters, but essentially no change in the level of agreement for backbone order 

parameters.113 That study also concluded that the aggregate simulation time and method 

used to calculate observables affected the level of agreement more than the force field.113 

However, these comparison were all between MD packages that constrain motion, and here 

we found that flexible molecular representations and simulation protocols that do not 

artificially restrain motion provide greater sampling of conformational space in shorter 

periods of time. Nonetheless, increased conformational sampling, whether obtained through 

longer or more numerous simulations or choice of MD/FF package, should facilitate model 

selection in cases where the data clearly indicate that observation of the dynamics across 

longer timescales is necessary.

Conclusions

Our results show that the MD programs and force fields studied here show comparable 

agreement overall with experimental data for the native state. However, we observed 

instances where the MD packages generated distinct conformational ensembles that agreed 

equally well with the experimental data. This underscores the fact that agreement with 

experimental data is necessary, but not sufficient, to validate atomistic simulations. The four 

MD package/force field combinations unquestionably produced distinct ensembles. For 

example, hydrogen bond networks, including both the residues engaged in the networks as 

well as the frequency of different interactions, were variable across the MD packages. While 

these differences in dynamics may be small in magnitude, such dynamic modes form the 

background over which more extensive conformational changes occur. Ultimately, 

quantitative comparisons between such rapid, small amplitude motions and experimental 

data should enhance our ability to isolate the ‘True’ ensembles present in solution.
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Figure 1. X-ray crystal structures of the engrailed homeodomain and ribonuclease H
(a) The simple tertiary structure, small size, and ability to fold autonomously without either 

disulfide bonds or ligands have made homeodomains the subject of numerous investigations 

into the mechanisms of protein folding. Here, the crystal structure and sequence of the 

engrailed homeodomain are shown. On the front view (left), the DNA binding residues in 

HIII are represented as balls and sticks; on the side view (right), the DNA binding residues 

on the N-terminus as well as four aromatic residues within the hydrophobic core are shown 

as balls and sticks. (b) RNase H functions in numerous biological processes including 
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inhibition of replication by removal of R-loops,51 removal of Okazaki fragments,52 synthesis 

of multicopy single-stranded DNA,53 and removal of misincorporated ribonucleotides.54 

Here the crystal structure and sequence of ribonuclease H are shown with the β-sheet 

colored tan, α-helices cyan, and functional regions burgundy. Four functional regions of 

RNase H have been identified that are critical for RNase H to bind and hydrolyze RNA-

DNA hybrids.55–57 These regions include αC and the loop between αC and αD (residues 81 

to 101, referred to as the handle region), the loop between β1 and β2 (residues 11 – 22, 

referred to as the glycine rich loop), the loop between β5 and αE α/β (residues 121–127 

referred to as the β5/αE loop), and the active site, which contains three conserved 

carboxylate residues (Asp10, Glu48, and Asp70) that coordinate divalent cations that are 

required for catalysis.
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Figure 2. The distribution of Cα root mean squared deviations for EnHD and RNase H
Overlaid histograms of Cα RMSDs were constructed for each of the three replicate 

simulations of EnHD (left) and RNase H (right) for simulations performed with AMBER 

(orange), GROMACS (green), ilmm (purple), and NAMD (blue) at 298 K.
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Figure 3. Comparison of the correspondence between MD-derived and experimental chemical 
shifts
The correlation coefficients (left column) and RMSEs (right column) for the chemical shift 

correspondence for EnHD (top row) and RNase H (bottom row) are shown, stratified by 

nucleus type.
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Figure 4. Conformational heterogeneity in Leu 26
(a) Leu 26 occupies distinct rotameric conformations in the X-ray structure and NMR 

ensemble of EnHD. In the X-ray crystal structure (left), L26 occupies the t, g+ conformation 

while it occupies the g-, t conformation in the NMR ensemble (right). (b) Side chain χ1 / χ2 

dihedral angle maps for the different MD packages. The red point denotes the conformation 

of L26 in the X-ray structure.
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Figure 5. MD simulations reproduce experimentally determined 3JHN,Hα coupling constants for 
EnHD
Simulated vs experimental coupling constants are plotted as a function of residue number. 

Here, the Habeck et al. parameters have been used.
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Figure 6. Correspondence between experimental and MD-derived order parameters for EnHD
The experimental (black points) and MD-derived order parameters (red points – AMBER, 

purple points – ilmm, green points – GROMACS, and blue points – NAMD) are plotted as a 

function of residue number for EnHD. Excellent correspondence was observed for all force 

fields except at the N-terminus. A larger number of simulations or significantly longer 

simulations are required for MD to reproduce the order parameters for highly flexible 

terminal residues that may become trapped in local minima.
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Figure 7. Correspondence between experimental and MD-derived order parameters for RNase H
The experimental (black points) and MD-derived order parameters (red points – AMBER, 

purple points – ilmm, green points – GROMACS, and blue points – NAMD) are plotted as a 

function of residue number for RNase H.
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Figure 8. Conformational heterogeneity in the Gly-rich loop
(a) The dPCA landscape for the residues in the Gly-rich loop, constructed using 

conformations aggregated from the experimental reference structures and MD simulations, 

maps the conformational heterogeneity in the Gly-rich loop. Black points denote the location 

of RNase H reference structures (2RN2, 1RIL, 1RCH, 1GOA, 2QKB, 2QK9, and 2QKK) 

within the dPCA landscape. The blue arrow denotes the region corresponding to the 

unbound conformation of the Gly-rich loop in solution (b, left). The red arrow denotes the 

region corresponding to the DNA/RNA bound conformation of the Gly-rich loop in solution 

(b, right). (c) Conformations sampled by the Gly-rich loop in MD simulations.
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Figure 9. Global correspondence between simulation and experiment as assessed by the χ2 

statistic.
Each plot shows the χ2 distribution (black curves) for the degrees of freedom associated 

with each comparison (8 degrees of freedom for EnHD, left; 5 degrees of freedom for RNase 

H, right). The vertical lines denote the χ2 value calculated for each force-field/software 

package combination (AMBER, red; GROMACS, green; ilmm, purple; NAMD, blue) as 

well as the expectation value for that distribution (black).
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Figure 10. Survey of conformations populated during high temperature unfolding of EnHD.
Native state: Five snapshots, extracted from simulation one of the 298 K simulations at 0 ns, 

50 ns, 100 ns, 150 ns, and 200 ns, serve as a visual reference of native state sampling. 

Transition state: For each of the four MD packages, the transition state is represented by 

three overlaid structures extracted from the simulation that best modeled the experimentally 

determined transition state. Intermediate state: One intermediate state structure was 

extracted from the ilmm simulation that best modeled the experimentally determined 

intermediate state. Model 1 of the experimentally determined intermediate state structure is 

shown as a transparent ribbon and aligned against the MD-derived intermediate structure. 

Final structure: To represent the extent of unfolding that occurred during high temperature 

MD, the most-disrupted final structures from the 498 K replicates are shown.
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