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Abstract: We combine a generative adversarial network (GAN) with light microscopy to 
achieve deep learning super-resolution under a large field of view (FOV). By appropriately 
adopting prior microscopy data in an adversarial training, the neural network can recover a 
high-resolution, accurate image of new specimen from its single low-resolution measurement. 
Its capacity has been broadly demonstrated via imaging various types of samples, such as 
USAF resolution target, human pathological slides, fluorescence-labelled fibroblast cells, and 
deep tissues in transgenic mouse brain, by both wide-field and light-sheet microscopes. The 
gigapixel, multi-color reconstruction of these samples verifies a successful GAN-based single 
image super-resolution procedure. We also propose an image degrading model to generate 
low resolution images for training, making our approach free from the complex image 
registration during training data set preparation. After a well-trained network has been 
created, this deep learning-based imaging approach is capable of recovering a large FOV (~95 
mm2) enhanced resolution of ~1.7 μm at high speed (within 1 second), while not necessarily 
introducing any changes to the setup of existing microscopes. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
The imaging throughput of a conventional optical microscope is typically limited to 
megapixels, regardless of the magnification and numerical aperture used [1,2]. As a result, 
compromise often exists between achieving a high resolution and maintaining a large field-of-
view (FOV). However, nowadays high-resolution mapping of entire large specimens is 
increasingly desirable for life science applications such as tissue pathology, hematology, 
digital histology and neuron science [3,4]. In order to precisely interpret cellular events 
throughout entire samples, global structures and local details spanning from micro- to meso-
scale need to be continuously measured and quantitatively analyzed at the same time [5]. 
Development of sophisticated mechanical scanning microscope is a commonly-used way to 
address this challenge, artificially increasing the throughput of the microscope by stitching 
multiple high-resolution tiles into a panoramic image [6]. Besides this mechanical approach 
that requires precise control over actuation and optical alignment, recent super resolution 
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(SR) techniques present a computational way to increase the space-bandwidth product of a 
microscope platform [1,7–19] For instance, pixel super resolution (PSR) represents a class of 
spatial domain techniques that can fuse multiple large FOV, low resolution measurements 
with sub-pixel shifts into a high resolution image [17,18]. On the other hand, several 
frequency domain methods, e.g., Fourier ptychographic microscopy (FPM) [1], synthetic 
aperture microscopy [7–10] and structured-illumination microscopy [20,21], produce a 
resolution-enhanced image by stitching together a number of variably illuminated, low-
resolution images in Fourier domain. Despite offering unique imaging capabilities with 
scalable SBP, these methods, however, all require special hardware setup and complex 
computation on multiple frames. Nevertheless, another type of technique, named single image 
super resolution (SISR), has been widely applied in microscopy without these constraints. It 
aims at the reconstruction of a high-resolution (HR) images with rich details from single low-
resolution (LR) image. For this technique, the conventional widely used method is the 
example-based approach [22,23], which works by replacing the LR information with the HR 
patches searched out in the example dictionary. Although SISR requires neither high-
resolution imaging hardware architecture nor intensive computation resource, the quality of 
reconstructed images remains suboptimal as compared to the multi-frame methods. The 
recent advent of deep learning neural network is providing another way to realize more 
effective SISR. Apart from its success in medical diagnosis like carcinoma detection, gliomas 
grading, histopathological segmenting and classifying [24–26], deep learning has been used 
in the super-resolution in bright-field microscopy [27,28] as well as fluorescence microscopy 
[29–32]. The most recent model that utilizes the generative adversarial network (GAN) for 
better visual details enhancement, has reached remarkable resolution enhancement [29,32]. 
However these methods require an extra image registration between high-resolution and low-
resolution training pairs captured under different magnifications. Considering a pixel-wise 
error function is the most common practice in super resolution, the accuracy of registration 
could affect the performance of the neural network. 

Here we present a deep learning-based super resolution approach that is free from 
registration during training process, meanwhile capable of providing significant resolution 
enhancement for conventional microscopy, without the need of acquiring a plurality of frames 
or retrofitting existing optical systems [33]. This imaging method uses data sets that consist of 
high-resolution measurements and their low-resolution simulations to train a GAN model. We 
carefully model the image degradation of the microscope system to generate low-resolution 
trial images from measured high-resolution source images, thereby eliminating the need of 
complicated alignment between the high- and low-resolution pairs. As long as the network 
training is accomplished, the network is capable of using single low-resolution measurement 
of a new specimen to recover its high-resolution, large FOV image. We demonstrate the 
efficiency of this registration-free GAN microscopy (RFGANM) method with bright-field 
image of USAF resolution target, color image of whole pathological slides, dual-channel 
fluorescence image of fibroblast cells, and light-sheet fluorescence image of a whole mouse 
brain, verifying that it’s widely applicable to various microscopy data. By taking a few 
example images as the references and applying a GAN deep-learning procedure, we can 
transform a conventional optical microscope into a high-resolution (~1.7 μm), wide-FOV 
(~95 mm2) microscope with a final effective SBP of 0.13 gigapixels. Furthermore, unlike the 
training stage that must be performed on GPUs to greatly reduce the time cost, reconstructing 
procedure can work readily with an ordinary CPU device in still acceptable time of several 
minutes per image. This underlying advantage renders RFGANM a robust platform that 
allows multiple applications to be followed once after a well-trained SR artificial intelligence 
based system is established. In the following, we will briefly describe the RFGANM 
operation and experimental set-up, discuss how to perform the network training and inference 
process, discuss its imaging applications in a variety of biomedical samples, and demonstrate 
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how RFGANM can benefit bio-medical analysis such as cancer diagnosis, cell counting in 
pathological section images and neuron profiling in light sheet image of mouse brain. 

2. Results 

2.1 Deep learning based image super resolution reconstruction 

A classic GAN model [34] that consists of a generator and a discriminator, is used to “learn” 
the various types of microscopy data from scratch. Figure 1 illustrates the network training 
and inference process. We establish its capability of mapping from a LR image to a HR 
reconstruction as shown in Fig. 1(a). Firstly multiple HR images of the example specimen are 
captured under high-magnification objective (Fig. 1(a), step 1), then through accurately 
modeling the transfer function of the microscope system, we can obtain the down-sampled, 
blurred images of the example specimen directly via simulation (Fig. 1(a), step 2). Based on 
its currently-learned parameters, the generator creates resolution-enhanced reconstructions of 
LR simulations in each training iteration (Fig. 1(a), step 3). The differences between the 
generator outputs and the realistic HR images are calculated using the mean squared error 
(MSE), denoted as the content loss function of the generator (Fig. 1(a), step 4). Besides the 
generator, GAN includes an additional discriminator that aims to evaluate the reliability of the 
generator. This discriminator makes a judgement on whether an image is a reconstruction by 
the generator or a realistic high-resolution measurement, after they are randomly input (Fig. 
1(a), step 5). An adversarial loss is created to estimate the accuracy of the discriminator’s 
judgement. It iteratively optimizes the discriminator, aiming at an enhanced capability on 
making correct decision. Also, the adversarial loss together with the content loss are used to 
optimize the generator, pushing it towards the direction that generates more perceptually 
realistic outputs which can further fool the discriminator. This adversarial training process 
thereby promotes the accuracy of both the generator and the discriminator. The training 
process can be terminated when the generator produces results that the discriminator can 
hardly tell from the realistic HR images. Then in the inference phase, a LR measurement of 
sample, which is excluded from the training data set, is divided into several patches and fed 
into the well-trained generator (Fig. 1(b), step 6). The generator is capable of recovering high 
frequency information for each patch, based on the prior GAN training. These quality-
improved patches are finally stitched into one gigapixel image of the sample that 
encompasses high-resolution details as well as large FOV (Fig. 1(b), step 7). The 
aforementioned image reconstruction process is illustrated in Fig. 1(b), and the overall 
implementation process of our approach is illustrated in Fig. 5(a). It is noteworthy that usually 
the GAN training is required only once, and then applicable to the recovery of multiple 
samples with similar type of signals. 
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Fig. 1. Principle of RFGANM procedure. A modified GAN is used to iteratively learn the 
microscopy data till the goal of high-quality output is reached. (a) The training process of the 
RFGAN. (b) The RFGANM reconstruction procedure, using a large-FOV, low-resolution 
measurement of new sample. 

2.2 Image degrading model 

It is widely accepted that the performance of a neural network relies heavily on the training 
data set, where there are LR images as inputs and HR images as targets for super resolution 
task. These LR and HR image pairs for training can be obtained in two ways. Most 
intuitively, both LR and HR images are experimentally captured with microscope. However, 
since the LR and HR image pairs are taken under different magnifications, image cutting and 
registration techniques must be used to match the FOV and remove the unavoidable 
distortion. Therefore, the performance of image registration is the key to the quality of 
training data, which is mainly based on feature detection and matching. Unfortunately, in 
cases of cell, tissue and brain imaging, a great deal of feature details is lost in LR images 
compared with the corresponding HR images due to the down-sampling process, leading to a 
high failure rate of image registration. Even though we have used a decent and standard 
image registration procedure, the mismatch between LR and HR images happens a lot, which 
significantly deteriorates the quality of training data set. 

Instead of capturing LR and HR images under different magnifications and then aligning 
them, we can apply an image degrading model to the captured HR images to generate the 
simulated LR images. In a nutshell, the LR images for training are directly down-sampled 
from the HR images, so we can guarantee that the two images share the same FOV. To make 
sure that our model trained on the simulated LR images can still well super-resolve the 
experimentally captured LR images, the image degrading model we used should be able to 
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Besides using the GAN framework to encourage perceptual similarity, we further used the 
special feature reconstruction loss function proposed by Johnson et al. [37]. Let

( ) j j jW H C

j x Rφ × ×∈ be the activations of the jth convolution layer of the VGG19 network 

described in Simonyan and Zisserman [38] when processing the image. Then the feature 
reconstruction loss is defined by the Euclidean distance between the feature representations of 

the reconstructed image ( )( )
G

HR
nG Iθ Δ and the reference image HRI : 
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where j in our experiments was set to 12. 
In addition to the losses described so far, we also need to add the adversarial component 

of our GAN for the generative side to the perceptual loss. It is defined based on the 
probabilities of the discriminator over the reconstructed samples as: 

 ( )( )( ) ( )( )( )log
G D G

G HR HR
adv n nG I D G Iθ θ θΔ = − Δ  (5) 

where
D

Dθ is the discriminator parameterized by Dθ . For better gradient computation stability 

[34], we minimize ( )( )( )log
D G

HR
nD G Iθ θ− Δ instead of ( )( )( )( )log 1

D G

HR
nD G Iθ θ− − Δ . 

As for the discriminator, It first contains 8 convolutional layers with 4 x 4 kernels 
followed by BN layers and LeakyReLU (α = 0.2) activation (except that the first 
convolutional layer does not come with BN). Through these 8 layers, the feature map 
dimension first increases gradually by a factor of 2 from 64 to 2048, then decreases by the 
same factor to 512. Strided convolutions with stride of 2 are used to reduce the image 
resolution each time the number of features is doubled. Afterwards, the network is followed 
by a residual block that contains three convolutional layers followed by BN and LeakyReLU 
activation. Finally, the resulted 512 feature maps are flattened and connected by one dense 
layer and a sigmoid activation function to obtain the final probability over whether the input 
image is natural or not. The network is trained by minimizing the following loss function: 

 ( )( ) ( )( )( )( )( )
1

1
log log 1

D D G

N
D HR HR

n n
n

D I D G I
N θ θ θ

=

= − − − Δ  (6) 
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Fig. 4. The architecture of GAN. (a) The architecture of the generator. Conv and ResNet is the 
abbreviation of Convolutional layer and Residual network block. The parameters of the 
convolutional layers is given in the format ”k-s-n”, where k is the kernel size, s is the strides 
and n is the number of feature maps (i.e. the output channels of the layer). The depth of each 
convolutional layer roughly denotes the number of its feature maps, and the lateral dimensions 
denotes the size of its input. Totally, there are 16 residual blocks in the generator. (b) The 
architecture of the discriminator. Each convolutional layer in the discriminator is the 
combination of a convolution layer, a batch normalization operation and a ReLU activation 
function. 

2.4 Characterization of super-resolution GAN 

The capability of GAN is first characterized through imaging a negative USAF resolution 
target (Thorlabs R3L3S1N) with highest resolution of 228 line pairs per mm (lpm). We 
captured HR and corresponding LR images under a macro microscope (Olympus MVX10) 
with 10 × and 2 × total magnifications, respectively. Due to the simple pattern of the test 
target, an image registration was applied to match their corresponding FOV, forming strictly 
aligned HR and LR pairs for the GAN training. Considering the limited number of 
experimentally obtained samples, we applied a geometric transformation, such as translation 
and rotation, to these paired images to further expand the data set. Finally, 1008 groups of HR 
and LR pairs were imported into the GAN network for training. Another large FOV, LR 
measurement was used to validate the converged network (Fig. 5(b)). As shown in Fig. 5(c), 
(d), the 5x-enhanced reconstructions have a significant improvement compared to the raw 
images. Due to the small magnification factor as well as limited numerical aperture, the raw 2 
× image can hardly discern the high-frequency stripes in USAF target (Fig. 5(b), cyan box for 
114, and orange box for 228 lpm). The RFGANM reconstruction, in contrast, has resolved the 
finest part of USAF target (Fig. 5(d2), 228 lpm). The GAN-reconstruction results are further 
compared with the realistic measurement under a 10 × magnification (Figs. 5(c3) and 5(d3)), 
showing a good structural similarity (SSIM) to the high-resolution ground truth. The linecuts 
through the resolved line pairs (Fig. 5(d)) by each method are quantified in Fig. 5(e), 
revealing a substantially improved resolution by GAN. 
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alternative to conventional histology imaging approaches. However, even for current LSFM, 
the optical throughput of the system optics remains insufficient to intoto map the cellular 
information throughout a specimen of large volume size; for example, for visualization of the 
fine neuronal networks across a mouse brain. Tile imaging is the commonly-used approach to 
artificially increase the SBP, and realize high-resolution imaging of large specimens [41,42]. 
Despite the compromised speed induced by repetitive mechanical stitching, the high 
illumination/ detection NA configuration in tile imaging greatly limits the fluorescence 
extraction from deep tissue of the thick specimens. We demonstrate, instead of commonly-
used tile stitching, which significantly sacrifices the throughput and limit the signal extraction 
from deep tissue, the integration of RFGANM with light-sheet imaging can achieve high-
resolution imaging of selective sectional planes in a whole adult mouse brain. We first 
constructed a macro-view light-sheet geometry with wide laser-sheet illumination and large-
FOV detection (Fig. 8(a)), which can fully cover an optically-cleared P30 mouse brain (Tg: 
Thy1-GFP-M). 200 consecutively-illuminated transverse planes in the middle of the brain 
(depth 2 to 3 mm) were recorded (Fig. 8(b)), with their maximum-intensity-projection (MIPs) 
showing the global distribution of the neurons. The raw plane images simply accept the 
limited resolution from the macro-view LSFM system optics, hence the densely-packed 
neuronal fibers remain dim. The super-resolved image is then instantly obtained by 
RFGANM, with a reconstructed pixel size of 0.53 μm (Figs. 8(c)-8(h)). The -result is 
furthermore compared to higher-magnification light-sheet measurements (6.4 × detection) to 
confirm the authenticity of the computation. In Fig. 8(d3), the neuronal dendrites identified by 
each method reveal substantially improved resolution from RFGANM. Therefore, besides 
conventional epifluorescence methods, RFGANM is proven to be the same efficient to the 
LSFM imaging, which together are capable of rapidly obtaining the high-resolution signals 
from arbitrary planes of intact large tissues. Furthermore, in the light of the strong 3-D 
imaging capability of LSFM, RFGAN-LSFM is possibly to be extended to the third 
dimension in the future, to achieve high-throughput, high-resolution volumetric mapping of 
whole specimens, such us intact organs, and whole embryos. 
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and HR counterparts. Theoretically a network trained by one type of sample images should be 
also applicable to similar types of samples. For example, we can reasonably speculate that a 
GAN generator well-trained by healthy prostate data can work with the prostate cancer tissue 
as well. To test this underlying robustness, we blindly apply the network trained by healthy 
prostate tissue images to reconstruct a low-resolution image of prostate cancer tissue. Its 
outputs are compared with those from a real prostate-cancer-data-trained network, as shown 
in Fig. 9 below. Both networks recover highly similar structures with similar qualities 
presented, capable of resolving high-resolution cellular details, such as the nucleus and 
textures. It strongly suggests that GAN network could be highly robust, implying that 
RFGANM can go further with being applied to the reconstruction of a variety of samples 
merely with single type of data training. 

2.10 Histopathological diagnosis and cell counting by RFGANM 

Large-scale quantitative analyses are further enabled based on RFGANM imaging, as shown 
in Fig. 10. In the four segmented encephalic regions of a whole mouse brain section (Fig. 
10(a)), the neurons are identified and calculated with populations (Imaris visualization 
software, Fig. 10(b)) using 1.6 × LR, 6.4 × HR and RFGANM images, respectively. The 
counting results are plotted as Fig. 10(c). Due to a severe structure details decimation, 1.6 × 
LR results fail to precisely count the numbers of neurons recognized. Even denoised using a 
widely accepted BD3M algorithm [44,45], the results of 1.6 × are still far away from HR 
ground truth. In contrast, the counted numbers of neurons in RFGANM images are very close 
to those of the 6.4 × HR measurements. Figures 10(d)-10(i) further show the cell nuclei 
counting of the healthy prostate tissue and the prostate cancer tissue images. Figure 10(d) 
shows the normal prostate gland, which has a lobular architecture. The glands are grouped 
and often have folded contour. Figure 10(f) shows the glands of prostate cancer invasion, 
which has predominant cribriform glands, lack of the component of well-formed glands. 
Unlike the raw low-resolution measurement which is not able to discern the single cell nuclei 
in detail, GANM image here enables fairly accurate cell number counting within the micro-
tumor, which is beneficial to the doctor for more specific rating of the cancer invasion. With 
the integration of RFGANM into biomedical application, which is featured by the 
combination of sing-cell resolution and centimeter large field view at seconds high 
throughput, biological research or clinical work efficiency can be considerably improved for 
quantitatively checking of large mass surgical specimens. 
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the blue-fluorescent DNA stain DAPI. The pathological tissue slides for bright-field 
microscopy were healthy human prostate tissue and human prostate cancer tissue, 
respectively, stained with hematoxylin-eosin after paraffin-embedding and automatic slicing. 
For light sheet imaging, an uDISCO cleared P30 mouse brain is used. 

3.2 Training implementations 

Our model is implemented based on Google’s deep learning framework, TensorFlow (version 
r1.8), and trained on an Inspur server with two NVidia Tesla P100 GPUs. The source code 
together with a small example data set is available on GitHub 
(https://github.com/xinDW/RFGANM). Initiating with a batch size of 16 and a fixed learning 
rate of 10−4, we trained the network for 200 epochs, which took about 48 hours. 

3.3 Inference process 

In the inference phase after network training, the experimentally captured LR images for 
validation are cut into a bunch of small pieces with overlaps with each other, and then input 
into the network for super-resolved reconstruction piece by piece. Afterwards, all these output 
pieces are stitched into one whole image that possesses both large FOV and high resolution. 
The stitching process is achieved by matching the overlapped regions, which is very robust 
and accurate. The inference process is quite fast. An image piece of 100 × 100 pixels size 
takes less than 0.01 second to be super-resolved into a 400 × 400 pixels image, even on an 
ordinary Windows laptop with Intel Core i5 CPU. 

3.4 Imaging setups 

There are several kinds of microscopy images in our experiment: the bright-field grayscale 
resolution test target images, the dual-color fluorescent BPAE images, the bright-field color 
images of two types of tissue slides, and the light sheet images of mouse brain. Images of 
resolution target were recorded by a Photometrics IRIS15 camera (pitch size 4.25 μm), with 
the HR and LR images taken under 10 × and 2 × magnifications of an Olympus MVX10 
microscope, respectively. The BPAE cells were imaged under an Olympus IX73 microscope 
equipped with a HAMAMATSU ORCA-Flash 4.0-V2 camera (pitch size 4.25 μm). In both 
fluorescent channels, the HR training images and LR validation images were taken under a 2 
× 20 × /0.45 and 4 × /0.1 objective, respectively. For pathology slide imaging, a QHY247C 
color camera (pitch size is 3.9 μm) was used on the Olympus MVX 10 microscope to capture 
the healthy prostate/prostate cancer tissues stained with hematoxylin-eosin. The HR training 
and LR validation images were then taken under 10 × and 2.5 × magnifications, respectively. 
The sectional images of intact mouse brain were obtained by a macro-view light-sheet 
system, which comprised a self-made dual-side laser-sheet illumination and large-FOV wide-
field detection by Olympus MVX10 microscope body. The images were sequentially 
recorded using Photometrics IRIS15 camera under 1.6 × and 6.4 × magnifications. 

4. Conclusion 
We have demonstrated a deep learning-based microscopy method without the requirement of 
extra registration procedure in training course, which can significantly improve the resolution 
of conventional wide-field and cutting-edge light-sheet fluorescence microscopes, and greatly 
increase the imaging throughput for whole biomedical specimens. We apply a state-of-the-art 
GAN network to deeply learn how to map from the low-resolution microscopy images to their 
high-resolution counterparts. For cell and tissue images that contain complicated patterns, 
their low-resolution training data are artificially generated and intrinsically registered to the 
high-resolution training images via a degradation model. This step has simplified the data 
preprocessing and improved the robustness of the GAN network. Once the model training 
being accomplished, the well-established AI agent is capable of quickly reconstructing a large 
FOV, super-resolution image of new sample based on a single low-resolution snapshot taken 
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by an ordinary optical microscope. Besides the improved resolution that has been verified by 
imaging of resolution target and PSNR analysis, the structure similarity to the sample ground 
truth has also been quantified, at a high level of over 90%. Currently we have proven 
RFGANM method could be beneficial to biomedical applications such as cell counting and 
histopathological diagnoses. At the same time, the artifacts existing in some minor regions 
still need to be refined in future work, by upgrading the network structure as well as the 
training algorithm. We also prove that this RFGANM method is very robust, readily 
applicable to most forms of microscopy data such as bright-field images, epifluorescence 
images, and light-sheet fluorescence images. It significantly extends the SBP of these 
microscope systems neither at the cost of acquiring multiple frames nor relying on the retrofit 
of conventional microscope system. Therefore, RFGANM has a high temporal performance, 
but shows a much better image quality that is comparable to those multi-frame SR methods. 
As a reference point, it produces a 0.38 gigapixel digital pathology slide at 1 μm resolution, 
with an acquisition time of 0.01 second and computation time of less than 1 second. This 
high-resolution combined with high-throughput capability renders RFGANM a valuable tool 
for many applications, such as tissue pathology and neuroanatomy. Furthermore, though 
currently we demonstrate the combination of deep learning and convolutional neural network 
with optical microscopy in form of 2-D imaging of exvivo samples, we can reasonably expect 
that provided its superior spatial-temporal performance, this methodology will be also 
applicable to both 3-D microscopy and highly dynamic process. 
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