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Abstract: Current diagnosis of prostate cancer relies on histological analysis of tissue 
samples acquired by biopsy, which could benefit from real-time identification of suspicious 
lesions. Photoacoustic tomography has the potential to provide real-time targets for prostate 
biopsy guidance with chemical selectivity, but light delivered from the rectal cavity has been 
unable to penetrate to the anterior prostate. To overcome this barrier, a urethral device with 
cylindrical illumination is developed for whole-prostate imaging, and its performance as a 
function of angular light coupling is evaluated with a prostate-mimicking phantom. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Prostate cancer is the most incident cancer in men with an estimated 164,690 new cases 
diagnosed in 2018 [1]. To confirm the presence of prostate cancer after prostate specific 
antigen screening, initial tissue biopsies are now acquired using the magnetic resonance 
imaging (MRI) fusion-guided prostate biopsy protocol. For this approach annotated MRI 
images are overlaid on real-time US imaging to guide sampling of suspicious regions marked 
by uroradiologists, and additional biopsy samples are acquired via the templated transrectal 
ultrasound (US)-guided prostate biopsy protocol [2–6]. While this approach improves the 
sensitivity of the prostate biopsy, a real-time imaging method of identifying suspicious 
regions to biopsy could help overcome some of the pitfalls of the MRI fusion-guided prostate 
biopsy [7–9]. 

Photoacoustic tomography (PAT), a hybrid optical imaging technique, has high clinical 
translatability due to its increased imaging depth compared to pure optical imaging 
modalities. The photoacoustic (PA) signal is generated by photon absorption in biological 
tissue, which is subsequently released as heat. The resulting localized thermoelastic 
expansion generates an acoustic wave, which can then be detected by traditional clinical US 
transducer arrays [10–14]. In recent years, PAT has been applied to many clinical topics, such 
as the neurological system [15–18], breast cancer [19–23], the female reproductive tract [24–
26], the gastrointestinal system [27,28], atherosclerosis [29–33], prostate cancer [34–43], the 
urological system [44–50], melanoma [51–55], and fibrosis [56,57]. 

PAT can provide real-time imaging for the prostate cancer biopsy since the same US 
transducers used for the current biopsy protocol can be used to collect the PAT signal. The 
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combination of PAT and US imaging can then provide spectroscopic and anatomical 
information [34–40,42,43]. Angiogenesis and lipid accumulation have been shown to be 
increased in prostate cancer tumors [58,59]. In vivo [43] and ex vivo [34,35,41] imaging of 
human prostates have shown differences between malignant and benign prostate tissue using 
endogenous contrast. We have recently shown that successful prostate cancer biopsy targeting 
in ex vivo human prostates is possible using 1064 nm PAT and US imaging [34]. 

While PAT has the potential to provide real-time biopsy targets, current PAT setups have 
not yet demonstrated the ability to image the full posterior-anterior depth as observed from 
the rectum with the US transducer [34,35,41–43]. Two locations for the placement of the light 
delivery source for PAT have been investigated. The first location is placing the light delivery 
mechanism with the US transducer in the rectum. Simulation studies [60] along with in vivo 
[42,43] and ex vivo [34] PAT of human prostates have shown that the anterior regions of the 
prostate do not receive adequate light fluence to detect malignant and benign signal contrast 
when a rectally-located illumination source is used. The second location, which shows 
improved potential for PAT of the anterior prostate [60], is to deliver light via the prostatic 
urethra. A couple of transurethral light delivery designs have been employed for transrectal 
prostate PAT imaging, including a bevel-tipped fiber [61] and a fiber with a diffuser end [37]. 
While the recently published transurethral illumination device with diffuser end improved the 
illumination volume [37], neither of these transurethral light delivery designs has 
demonstrated the ability to deliver enough light uniformly for whole-prostate illumination, 
which is ideal since the detector and illumination source are separated. 

To illuminate the entire prostate via the prostatic urethra, cylindrical illumination is 
needed compared to light delivery methods that have limited axial thickness, e.g. bevel-tipped 
fibers [61]. One reason for needing a cylindrical illumination is that the urologist is manually 
controlling the US probe during the biopsy procedure [5]. Thus, alignment of the US 
transducer array’s acceptance plane and the region from which the PA signal is generated is 
difficult unless large volumes of the prostate generate PA signal. In addition, since the patient 
is awake for the prostate biopsy procedure, any rotation and/or pullback of the illumination 
device may cause patient discomfort. For these reasons a light delivery source with a 
cylindrical diffuser is needed. 

While cylindrical diffusers have been used for photodynamic therapy for decades [62,63], 
their application in PAT is just emerging [37,41,64]. The process of fabricating a cylindrical 
diffuser typically entails methods that use acid etching [37,64] or laser micro-machining with 
a uniform pattern created on the fiber surface [65]. Using the acid etching method, Ai et al. 
created a 3.0 cm long diffuser on the end of a 1.0 mm core multimode fiber (MMF). A 
maximum coupling energy of 40 mJ/pulse was demonstrated with two-thirds of the energy 
converted from forward firing to side firing. To increase the energy fluence to enable deep 
PAT, a parabolic mirror was incorporated to achieve an estimated 10 mJ/cm2 energy fluence 
at the tissue surface. The final diameter of the transurethral light delivery device was 25 
French or 8.33 mm, which includes the 1.0 mm core MMF diffuser, parabolic mirror and 
rigid cystoscope sheath. This design illuminates roughly one-fourth of the axial plane along 
the whole caudal-to-cranial axis of the prostate, which is an improvement over the bevel-
tipped MMF design [61]. Similarly, the laser micro-machining method used to create a 
diffusing fiber for treatment of urethral stricture demonstrated forward energy leakage from 
the end of the diffuser end, while the majority of the energy was converted to side firing [65]. 
Most recently, Li et al. demonstrated the ability to detect PA signal generated 1 cm from a 
cylindrically-diffusing MMF end made with acid etching. While the forward propagation to 
side firing energy conversion was not evaluated, this study shows that deep PAT imaging is 
possible using a cylindrically diffusing fiber end. Based on this prior literature, the efficient 
conversion of forward to side firing energy in cylindrically diffusing MMFs needs to be 
improved to enable illumination of the whole prostate for PAT. 
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2.4 Emission profile measurement of fiber diffuser end 

The same Gentec-EO energy sensor and console were used for all energy measurements to 
determine emission profiles. A 1 mm wide slit was created using razor blades. This slit was 
then attached to the energy sensor, which resulted in 1 mm by 25 mm slit, with the slit’s long 
axis parallel to the MMF’s long axis. The sensor with slit was mounted to a motorized 
rotational stage (PRM1Z8, Thorlabs, Newton, NJ, USA), which was then attached to two 
overlapping 25 mm 1-dimensional stages (423 Series, Newport Corporation, Irvine, CA, 
USA). The MMF’s diffuser end was positioned so that the energy sensor would be equidistant 
during all measurements. The radial emission profile was measured every 15°. To measure 
the longitudinal emission profile, the slit was rotated 90° and oriented perpendicular to the 
MMF’s long axis. The longitudinal emission was measured every 2 mm along the diffuser 
end. The plotted data is the average of 50 pulses. 

2.5 Determining energy fluence at the capillary tube-tissue interface 

First, the stability of the diffuser end’s longitudinal emission profiles was determined when 
the coupling energy changed. The pulse energy was modulated with neutral density (ND) 
filters (Thorlabs, Newton, NJ, USA), and then, the longitudinal emission profiles were 
measured as described above. The curves with ND filters applied were divided by the non-
filtered emission curves. These normalized curves should have little to no slope if the 
longitudinal emission profile does not change with pulse energy coupled. Also, the y-intercept 
should approximate the 1064 nm transmission data from the ND filters product information. 

After confirming the longitudinal emission profile stability when changing energy coupled 
into the MMF, the maximum coupled energy per pulse was determined to conform to the 
ANSI guidelines for tissue damage threshold, which is 100 mJ/cm2/pulse for 1064 nm and our 
laser’s pulse characteristics [66]. To do this the area under the curve (AUC) was calculated 
from the diffuser end’s longitudinal emission curves. Each longitudinal emission profile was 
normalized by its own maximum energy so that the normalized peak energy equaled 1 for 
each longitudinal emission profile. The x-axis of the normalized longitudinal emission 
profiles was divided by 5 cm, so that the resulting AUC values would range from 0 to 1. 
Then, a uniform longitudinal emission profile with an AUC value of 1 was initially assumed. 
For a maximum energy fluence of 100 mJ/pulse/cm2, the coupled pulse energy was then 
calculated to be 628.3 mJ/pulse based on a glass-capped diffuser end with 2 mm radius and 
50 mm length. Then, this value was divided by the ratio of side-fired energy to total energy 
coupled for each coupling angle to account for energy emitting from the tip of the diffuser 
end. These values were then multiplied by the AUC values for the normalized longitudinal 
emission profiles. 

2.6 Prostate tissue-mimicking phantom design, validation and fabrication 

To create a PA prostate tissue-mimicking phantom, the optical and acoustic properties need to 
be considered. For human prostate tissue, the optical properties at 1064 nm are 0.78 cm−1 for 
the absorption coefficient and 6.3 cm−1 for the reduced scattering coefficient [67]. For the 
acoustic properties, the speed of sound in human prostates is 1529 m/s, while the attenuation 
coefficient and slope at 5.0 MHz is 2.35 dB/cm and 0.72 dB/cm/MHz [68]. Based on these 
properties, 8% type A, 300-Bloom porcine gelatin (G2500, Sigma-Aldrich, St. Louis, MO, 
USA) was chosen for its similar acoustic properties, while being optically transparent [69,70]. 
To modify the optical properties of the phantom, Intralipid fat emulsion solution and black 
India ink have been well studied for tuning the optical properties of tissue-mimicking 
phantoms [69,71]. 

To determine the concentration of black India ink and Intralipid-20% fat emulsion 
solution to achieve optical properties similar to human prostate tissue, a spectrophotometer 
(DU 530, Beckman Coulter, Brea, CA, USA) was used to measure 1064 nm transmittance 
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through phantom components. Three independent measurements per phantom component 
concentration were collected. The sample volume loaded into the cuvette (14-955-129, Fisher 
Scientific, Hampton, NH, USA) was 300 μL and was kept constant over all measurements to 
minimize error. An air-filled cuvette was used as a blank reference to obtain a measurement 
value for ultrapure water to compare to literature. To correct for reflection differences 
between an air- and a water-filled cuvette, the Fresnel equations were employed with the 
light’s angle of incidence perpendicular to the interfaces [72]. The refractive indexes used 
were 1.00, 1.51, and 1.33 for air, the cuvette [73], and water respectively. The ratio of the 
theoretical transmission through an air-filled cuvette to a water-filled cuvette was calculated 
to be 0.92, which was then multiplied to the transmission data to correct for the reflection 
differences. The corrected transmission data was then used to calculate the reduced optical 
extinction coefficient (μt’) as 

 [ ]1
' lnt l

z
μ =  (1) 

where z is the path length through the cuvette in cm and I is the corrected fraction of light 
intensity transmitted through sample over light intensity transmitted through air in a 1 cm 
cuvette [69]. This calculation is valid for a diluted highly scattering media if the inverse of the 
reduced optical extinction coefficient is equal to or less than the sample length [69,74]. 

For the concentrations of black India ink and Intralipid-20% fat emulsion solution that 
give optical properties similar to human tissue, the reduced optical extinction coefficient, 
which is a summation of the reduced scattering (μs’) and the absorption coefficient (μa), 
reduces to the absorption coefficient for black India ink’s values and primarily to the reduced 
scattering coefficient for Intralipid-20% fat emulsion solution’s values [71]. Therefore, the 
optical extinction coefficient values for black India ink were plotted as absorption coefficient 
over concentration. For Intralipid-20% fat emulsion solution, the optical extinction coefficient 
value of water was subtracted from the data since this value is primarily comprised of 
absorption. The resulting values that had a mean free path less or equal to 1 cm, were then 
plotted as the reduced scattering coefficient over concentration. The linear fitting of these two 
plots were used to calculate the phantom components’ concentration to achieve optical 
properties that approximate human prostate tissue’s optical properties. 

The mold for the prostate phantom comprised of a 5 cm by 11 cm plastic container with 7 
cm depth (Ziploc medium rectangle, S. C. Johnson & Son, Racine, WI, USA). Holes were 
drilled into the sides of the container for the 4 mm outer diameter glass capillary tube (246 
040 080, Friedrich & Dimmock, Inc., Millville, NJ, USA) and 0.5 mm pencil leads, which 
were placed 1.5 cm from the surface of the capillary tube. After insertion of the capillary tube 
and pencil leads, epoxy was used to create a waterproof seal. The phantom mixture was 
prepared as previously described [69]. Then, the mixture was poured into the mold and 
allowed to incubate overnight in 4°C before imaging. The phantom was used within 3 days to 
ensure stability. 

3. Results 

3.1 Angular coupling enhances forward propagation to side emission conversion 
efficiency 

After aligning the coupling plane of the MMF to the axis of the rotational stage, the coupling 
stability when removing and reinstalling a MMF was confirmed to be stable between 
independent measurements without adjusting the stage position (Fig. 3(a)). The coupling 
efficiency between each installment of the MMF on the holder was consistent as the standard 
deviation was at most 1.1% for coupling angles from 5° to 20°. The coupling efficiency was 
then examined for coupling angles that covered all of the MMF’s acceptance angles, which is 
from 0° to 21.7° (Fig. 3(b)). The coupling efficiency is between 73.6% and 81.7% for the 
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for the 20° coupling angle, which correlates to the longitudinal emission profile (Fig. 4(d)). 
While the 10° coupling angle yields a maximum PAT pSNR that is approximately 25% lower 
than the maximum PAT pSNR for the 20° coupling angle, the peak is broader for the 10° 
coupling angle, allowing PAT signal to be more uniform over the length of the pencil leads. 
The 3-dimensional renderings of the PAT and US scans demonstrate the PA signal coinciding 
with the US signal from the pencil lead (Figs. 7(c)-7(f)). The PAT signal around the capillary 
tube is generated from the prostate tissue-mimicking phantom. 

4. Discussion 

4.1 Design of the transurethral illumination source and light coupling method 

The cylindrically-diffusing fiber end designed here was inspired by a laser micro-machined 
design [65]. The benefits of sandpaper abrasion compared to laser micro-machining are that 
the sensitive alignment of a laser is not needed, and the only equipment needed to make the 
diffuser fiber here is sandpaper. This fabrication method is also safer and faster compared to 
the use of etching agent for abrading the surface or creating tapered fiber ends [37,64]. 

With regard to performance, the sandpaper-abraded fiber diffuser presented here has a 
radially-uniform emission profile similar to the laser micro-machined fiber diffuser [65]. 
Additionally, the radial emission profiles of the acid-etched fiber diffusers qualitatively 
appear uniform, while the longitudinal emission profiles also appear to have a peak [37,64]. 
Based on these results, our cylindrically-diffusing MMF design has a similar performance 
regarding the emission profile at a low coupling angle. After considering ray optics, the 
improved forward to side propagation of light when the coupling angle is increased can be 
explained by a higher percentage of light interacting with the core surface at the diffuser end 
[75]. Therefore, we expect other cylindrically-diffusing MMF designs to have an improved 
forward propagating to side firing energy conversion when the coupling angle is increased. 
For example, incorporating angular coupling into Ai et al.’s transurethral illumination device 
could allow for reduction of the device’s diameter from 8.33 mm to 4 mm. This diameter 
reduction would reduce the acoustic shadowing of the anterior prostate. 

A pitfall to this current study is the rigidity of the MMF, which has a minimum short-term 
bending radius of 200 mm and minimum long-term bending radius of 400 mm. A more 
flexible fiber would be ideal, but does not limit clinical translation as rigid urological 
instrumentation with diameters up to 27 French or 9 mm are commonly inserted into the 
prostatic urethra [76]. The 2 mm diameter core MMF was chosen to allow for more energy 
per pulse to be delivered to the prostate phantom as up to 476 mJ/pulse can be delivered by 
our transurethral illumination source before tissue damage occurs when an 8° coupling angle 
is used. Besides increasing MMF’s core diameter, other methods exist to increase the pulse 
energy before fiber damage occurs. One method is to optimize the fiber end polishing method 
and incorporate “front face conditioning” [77]. Another method to reduce damage to the 
MMF is to reduce the “hot spots” in the spatial profile of the laser beam, which can be done 
using a beam homogenizer, which must be carefully aligned and designed to minimize 
diffraction effects [78], or by adjusting the laser’s internal alignment [79]. Lastly, the coupled 
energy can be increased by reducing the peak energy per pulse by using a laser with a longer 
pulse width, which can range from a few ns to 10s of ns for PA signal generation [80]. 

If a less rigid MMF is used with the angular coupling approach presented here, increased 
fiber bending may result in energy loss [75]. During the experiments in this study, fiber 
bending at or above the minimum long-term bending radius was present. No loss in coupled 
energy was observed, but the effect of fiber bending on the coupling energy and illumination 
profiles was not studied. Energy loss can be expected when higher coupling angles that 
approach the numerical aperture of the MMF and fiber bending are present [75]. If fiber 
bending results in energy loss, a couple approaches can be taken to minimize the energy loss. 
One method is to choose the minimum coupling angle that maximizes the forward 
propagating to side firing conversion of energy at the diffuser end. Here, we show that a 10° 
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coupling angle, which is 11.7° lower than the MMF’s maximum acceptance angle, fulfills the 
energy conversion requirement while providing longitudinal emission across the length of the 
fiber for prostate PAT. Another method to overcome the loss of energy due to fiber bending 
would be to choose a fiber with a higher numerical aperture, which equates to a larger angle 
to achieve total internal reflection for energy propagation within the MMF [75]. Large core 
MMFs with higher numerical apertures of are available, such as the 1.5 mm diameter core 
MMF with 0.5 numerical aperture available via Thorlabs, Inc. (PN: FP1500ERT). 

Another pitfall to the illumination design presented here is inherent to cylindrical 
transurethral light delivery. As the light penetrates the tissue in the radial direction from the 
diffuser end, the effective surface area increases. Therefore, the energy fluence attenuates 
over depth due to absorption and this increase in surface area. The maximum possible energy 
should be used to overcome this pitfall. 

4.2 Broader applications of the angle-coupled transurethral light diffuser 

The coupling angle-modulated cylindrical light diffuser presented here is optimized for 
transurethral light delivery for whole-prostate PAT. While this device was developed for use 
during the prostate biopsy procedure, another prostate-specific application could be intra-
operative PAT with da Vinci robotics [81]. Beyond illumination of the prostate for PAT, the 
light delivery device could be used or altered for other minimally-invasive applications. For 
instance, this MMF diffuser could be used for PAT of lower gastrointestinal diseases in 
animal models [57]. This MMF diffuser could also be applied for therapeutic purposes, such 
as antibiotic re-sensitization of bacteria with phototherapy in urinary tract infections [82]. 

5. Conclusions 

We developed a transurethral light delivery approach for whole-prostate illumination with 
sandpaper micro-machining of a MMF end. By controlling the coupling angle into the fiber, 
the energy is efficiently converted and distributed along the length of the diffuser end. The 
device is kept to an outer diameter of 4 mm, which minimizes anterior prostate acoustic 
shadowing. The whole-prostate illumination could potentially allow a urologist to freely 
move the US transducer to identify biopsy targets with PAT and US imaging while the 
illumination device is statically kept in place. 
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