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Abstract

Using Kinect sensors to monitor and provide feedback to patients performing intervention or 

rehabilitation exercises is an upcoming trend in healthcare. However, the joint positions measured 

by the Kinect sensor are often unreliable, especially for joints that are occluded by other parts of 

the body. Motion capture (MOCAP) systems using multiple cameras from different view angles 

can accurately track marker positions on the patient. But such systems are costly and inconvenient 

to patients. In this work, we simultaneously capture the joint positions using both a Kinect sensor 

and a MOCAP system during a training stage and train a Gaussian Process regression model to 

map the noisy Kinect measurements to the more accurate MOCAP measurements. To deal with 

the inherent variations in limb lengths and body postures among different people, we further 

propose a joint standardization method, which translates the raw joint positions of different people 

into a standard coordinate, where the distance between each pair of adjacent joints is kept at a 

reference distance. Our experiments show that the denoised Kinect measurements by the proposed 

method are more accurate than several benchmark methods.
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1 INTRODUCTION

Having patients performing prescribed exercises is an important clinical intervention for 

many health conditions such as chronic pain management, post-surgery rehab, and physical 

therapy after a sports injury. Using sensor-based systems to automatically track patients’ 

movements during their exercises and to provide instant feedback to the patients regarding 

the “correctness” of their movements holds great promise in reducing the cost for such 

interventions and increasing their effectiveness.

Generally, a gold standard for motion sensing is the so-called Motion Capture (MOCAP) 

system. It consists of multiple cameras positioned in a specially designed room to capture 

the 3D positions of reflective markers put on an actor’s clothing. Such system can track 

human action accurately but it is not a practical solution for clinical use since users have to 

wear tight suits with markers and such systems are very expensive [1]. Compared with the 

expensive motion capture system, the Kinect sensor by Microsoft (or similar sensors such as 

Realsense by Intel) is more affordable and convenient to most of the clinics or even in 

patients’ home. Kinect contains an RGB camera, an infrared sensor and infrared emitters 

which can be used to track joint positions in the 3D domain and perform motion analysis. 

However, because Kinect derives the 3D position from a single view point, the estimated 

positions of some joints are not accurate, when these joints are occluded or partially 

occluded. A number of works have been reported for stabilizing the joint tracking and 

improving pose reconstruction. Shum et al. proposed an optimized data driven method to 

solve posture reconstruction problem. Instead of using the MOCAP postures as ground truth 

to reconstruct movement directly, the authors first remove the similar postures by 

thresholding the sum of squared differences of body parts positions. Then they use Principle 

Component Analysis (PCA) to reduce dimensions of postures. Once Kinect captures a noisy 

posture, the system does back projection PCA basis to reconstruct postures. The 

reconstruction results heavily depend on the database [2]. Wei et al. formulated this problem 

into a Maximum A Posteriori (MAP) based on Kinect depth image. Although the proposed 

algorithm is multithreading and can be implemented on GPU to accelerate the speed, it 

needs to initialize the starting pose manually and it sometimes will be stuck at the local 

minimum which makes reconstruction fail [3]. Tripathy et al. use Kalman filter with a bone 

length constraint for the body segment between every two connected joints. This algorithm 

can make the joints trajectories smoother and preserve the joints’ kinematic characteristics. 

However, because the algorithm considers one segment at a time, it does not effectively 

exploit the relationship among multiple joints during a human action [4].

In our work, we first capture the joint movement traces of different people performing the 

same exercise by using a motion capture system and a Kinect V2 sensor simultaneously. 

Second, we convert each captured trace to a standardized domain which can eliminate the 

bias due to the different body sizes of the users. Then, we train a Gaussian process 

regression model that can predict the MOCAP measurement (consisting of 3D positions of 

all joints of interests) from the Kinect measurement at each sampling time. To reduce the 

computation time for prediction we cluster all the MOCAP samples and correspondingly the 

Kinect samples in the training set into a smaller number of groups, and form a reduced 

training dataset using the group centroids.
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The rest of this paper is organized as follows. In Section 2, we describe the data acquisition 

and preprocessing. Then in section 3, we present our proposed clustered Gaussian process 

regression method. Experimental results to demonstrate the effectiveness of the proposed 

algorithm is shown in Section 4. We conclude this paper in Section 5

2 DATA CAPTURE and STANDARDIZATION

For the data recording, we used a motion capture system consisting of 14 cameras in NYU-

X lab called “Motive” [5] to record the marker positions of a human actor. The markers are 

put at 25 positions in the upper body part as shown in Fig. 2. We also place a Kinect V2 

sensor in front of the actor to record an RGB image and depth map of the actor, from which 

the joint positions are derived using the Kinect SDK 2.0. The MOCAP joint trace and the 

Kinect joint trace are captured simultaneously while the actor is performing a certain 

exercise. Both systems capture the joint positions at 30 frames/sec. Fig. 1 illustrates the data 

capture system set up.

2.1 Convert MOCAP Data to Kinect-Like Data

For capturing human motion by using the motion capture system, we need to put several 

reflective markers on the user body in the positions shown in Fig. 2. These positions differ 

from the joints captured by Kinect shown in Fig. 3. To deal with this problem, we map the 

joint positions captured by the MOCAP system into the Kinect-like joint positions by 

considering the human Anthropometry feature [6].

2.2 Mapping the MOCAP and Kinect Data into a Standardized Domain

Since different users have different body sizes, it is hard to train a single regression model 

applicable for all people using raw training data. To deal with this problem, we mapped all 

the Kinect and MOCAP data into a standardized domain so that the distance between every 

two connected joints is fixed at some reference length. For time sample t, for joint i with 

position Pi(t) and its neighborhood joint j with position Pi(t), the standardized vector 

between joint i and joint j is

Veci j(t) =
Pi(t) − P j(t)

‖Pi(t) − P j(t)‖2
(1)

If we set position of joint j as the reference position, then the mapped position of joint i will 

be

Pi′(t) = P j(t) + Veci j(t) × Li j (2)

where Lij is the reference length between joints i and j. In this paper, we set the spine base 

position captured by Kinect as a reference position first; then apply (1) to generate the 

standardized vector between spine base and spine middle, and then use (2) with the assigned 
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segment length between spine base and spine middle to generate the standardized spine 

middle position. We then use this position as a new reference position to generate the spine 

shoulder position, and so on, until we reach the left wrist and right wrist, respectively. Fig. 4 

shows the raw joint positions and the standardized ones for a sample pair of Kinect and 

MOCAP measurements. We argue that training the denoising algorithm in the standardized 

domain is more effective, as it will not be affected by the variations in the limb lengths of 

different people. It also aligns the MOCAP and Kinect data, although there is still a certain 

bias between the MOCAP and Kinect captured positions for the same joint. The bias for the 

same joint varies depending on the action pose. Because the bias is relatively small, 

compared to the limb length, we ignore such biases and consider the standardized MOCAP 

positions as the target denoised positions for the Kinect measurements in the standardized 

domain.

Once the denoised positions are determined in the standardized domain, we can bring them 

back to the raw data domain for each person, by reversing the process using the length 

between every two connected joints for this person, which can be captured during a short 

training process in the beginning of an exercise. This inverse standardization process is 

necessary since we want to overlay the denoised joint positions on the RGB pictures of the 

user performing the exercise. Note that the joint position denoising and pose recognition (not 

considered in this paper) only need to be accomplished in the standardized domain.

3 PROPOSED METHOD

3.1 Denoising Using Gaussian Process Regression Model

As described in section 2, during the training stage, we capture joint traces of multiple 

volunteer actors performing different exercises with both a motion capture system and a 

Kinect sensor simultaneously. Let xi = [xi,1, xi,2,....xi,N]T represent the vector that contains 

the i-th Kinect measurement sample, where xi,n = [xi,n,x, xi,n,y, xi,n,z]T is the 3D position of 

the n-th joint being tracked, and N is the total number of joints. Similarly, let yi = [yi,1, yi,

2,....yi,N]T represent the vector that contains the i-th MOCAP measurement sample. We will 

regard yi as the output corresponding to the input xi. Note that each sample for an exercise 

contains the measured positions of all joints of an actor at a single sampling time. We model 

all possible output values yt (in each joint and each of the x, y, z coordinate) corresponding 

to all possible input variables xt (consisting of all joint positions at the same time) as a 

Gaussian Process [8]. Let X = [x1, x2, …, xI]T be the input data matrix (I by N) consisting all 

Kinect measurement samples, where I is the total number of the training samples and Y = 

[y1, y2, …, yn]T be the output data matrix (I by N). We train a Gaussian regression model 

using the training data and Y. Inspired by the example given in [8], we define the covariance 

between the i-th and j-th samples as:

K xi, xj = θ1exp( −
‖xi − x j‖2

2

2l1
2 ) + θ2exp( −

‖xi − x j‖2
2

2l2
2 ) + σn

2δi j (3)
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The first term is intended to model the general behavior of the input and output relationship, 

and the second term is used to describe the output variation among similar input samples. 

Note that l1 and l2 are length-scale, θ1 and θ2 are signal variance and the σn
2 is the output 

noise variance. The covariance matrix is defined as k(X, X) = [k(xi, xj)]. We learn the hyper-

parameter (θ1, θ2, l1, l2, σn
2) in (3) by maximizing the log marginal likelihood [8]:

log (p(Y ∣ X)) = − 1
2YTK−1Y − 1

2 log ∣ K ∣ − n
2 log (2π) (4)

After obtaining the hyper-parameters from the training process, we can apply this model to 

predict the output y* (unavailable MOCAP measurement) corresponding to any input 

(Kinect measurement) x*, based on the conditional probability distribution

p(y∗ ∣ x∗, X, Y) N(μ∗, σ∗
2) (5)

where μ* = K(x*, X)K(X, X)−1Y and σ∗
2 = K(x∗, x∗) − K(x∗, X)K(X, X)−1K(X, x∗). In our 

denoising algorithm, we take the mean μ* as the denoised joint positions corresponding to 

the Kinect measurement at any particular time x*. Note that M = K(X, X)−1Y is an I by N 
matrix, and can be pre-computed during the training process. At the denoising stage, we 

only need to compute K(x*, X), which is a 1 by I vector, and the multiplication of K(x*, X) 

and M.

3.2 Incorporating the Limb Length Constraint

The denoising algorithm described in Sec. 3.1 will be applied to standardized Kinect 

measurements, using the model parameters trained using the standardized Kinect and 

MOCAP data. Because the regression model does not consider the segment length explicitly, 

the resulting joint positions may still violate the predefined reference lengths for some 

segments. To enforce such length constrain, we apply the standardization method, described 

in Sec. 2.2, to the resulting joint positions, so that the distance between every two connected 

joints follows the reference length. Note that even though we standardize the joint positions 

sequentially, from spine base to wrist, because large measurement error usually only occurs 

in the elbow joints and wrist joints, the sequential standardized process does not suffer from 

serious error propagation issue.

3.3 Clustered Gaussian Processing

Once the GPR model is trained, the matrix M = K(X, X)−1Y can be precomputed. During the 

denoising time, given each Kinect sample x*, we only need to compute K(x*, X) and the 

matrix multiplication of K(x*, X) and M Therefore, the computsation time for denoising is 

linearly increasing with the number of the training samples. Our training data consists of 

around 22000 samples for each exercise, making the denoising process very slow. If we want 

to build a real-time intervention system, then we need to find some way to reduce the size of 
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the training set. In sparse Gaussian Process model, a subset of training samples are chosen 

following some optimization criterion [9], or a set of pseudo input samples are derived along 

with other model parameters [10]. In our work, we apply the classical K-means method to 

separate the original motion capture data samples into Q different clusters. Based on the 

correspondence between the Kinect and MOCAP data, the Kinect data will also be separated 

into different clusters. Instead of utilizing all Kinect and motion capture training data in the 

training process, we use the centroids of all clusters Xcenter = [xcenter
1 , xcenter

2 , …, xcenter
Q ] and 

Ycenter = [ycenter
1 , ycenter

2 , …, ycenter
Q ] to train the Gaussian process regression model. The 

performance using this approach under different cluster numbers is shown in Fig. 5. As 

expected, the regression error (for exercise 4 in Table 2) decreases as the cluster number 

increase. But we found that Q = 800 is a sweet spot, obtaining a local minimum in the 

regression error, and yet having a relatively short computation time. The computation time 

here is measured when the algorithm runs on a Windows 7 computer with Intel i5-4570 CPU 

and 16GB RAM.

4 EXPERIMENTAL RESULTS

4.1 Training and Testing Data Sets

We have a total of 14 volunteers participating in training data collection. Each person 

performs a subset of the lymphatic exercise in a room set up with simultaneous recording by 

a Kinect sensor and the “Motive” MOCAP system described earlier. Each person records 

each exercise 3~7 time. The motion capture is done at 30 frames/sec. After deleting some 

damaged recordings, we have around 70 Kinect and MOCAP pairs of motion traces for each 

exercise. Each trace includes 400~900 samples. For detail, please check Table 1.

The lymphatic exercise is developed by Co-Author Fu known as The Optimal Lymph Flow 

(TOLF) exercise. It contains a set of exercises that have been shown to improve lymph flow, 

lessen symptom severity, and reduce the risk for chronic breast-cancer-related lymphedema 

[11]. Currently, we only focused on a subset of the TOLF exercises that require the tracking 

of the upper body joints, specifically left/right shoulder, left/right elbow, left/right wrist and 

spine shoulder.

Given the measured joint positions at any time, we first convert them to the standardized 

positions following the description of Sec. 2.2. This is done for both the Kinect and MOCAP 

measurements. Because the joint movements are coordinated during an exercise, it is 

important to consider them together as a multi-variable input and multi-variable output. So 

our input sample and output sample are both 21 dimensional, consisting of the x-y-z 

coordinate of 7 joints (left shoulder, right shoulder, Left elbow, right elbow, left wrist, right 

wrist and spine shoulder). When training the Gaussian Process regression model, we only 

use the reliable samples (i.e. those samples where the Kinect measurements for all 7 joints 

are considered reliable). A joint measurement is considered reliable if its reliability score 

(see Sec. 4.2) is larger than a certain threshold; in this paper, we set the threshold as 0.7. 

Table 1 provides the details about the training and testing data for four different exercises.
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4.2 Reliability

In order to train the GPR using only reliable data samples, we define the reliability for each 

joint position reported by the Kinect. Three factors are considered and are combined to set 

the overall reliability.

4.2.1 Kinematic Reliability—For the kinematic part, we consider the length between 

every joint and its neighboring joints. For example, spine shoulder connects with spine 

middle, neck, left shoulder and right shoulder. For each recording, we ask each user first 

pose in the “T-pose” as shown in Fig. 1(b). Then we capture the joint positions and calculate 

each connected joint pair’s length as a reference segment length for this person. We define 

the kinematic reliability of joint i in frame t as follows:

ΔLi j(t) =
abs(‖xi(t) − x j(t)‖2 − ref _leni j)

ref _leni j
(6)

Reli
k(t) = 1 −

∑ j ∈ Ni
ΔLi j(t)

size o f Ni
(7)

where xi(t) denotes the positions of joint i in frame t, and Ni denotes the set of all 

neighboring joints for joint i.

4.2.2 Temporal Reliability—Through our experiment, we have found that Kinect only 

makes large measurement error when a joint is occluded, which usually happens over a short 

time period. When sampling at 30 frames/sec, the large error in a joint usually only appears 

in one frame and goes back to the relatively correct position in the next frame. Let xi(t) 
denote the measured position of joint i at time t, we can define two distances:

d1 = ‖xi(t) − xi(t − 2)‖2 (8)

d2 = ‖xi(t) − xi(t − 1)‖2 (9)

When xi(t − 1) is erroneous, usually d2 is large, but d1 is small. Based on this observation, 

we define the temporal reliability as follows:
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Reli
tmp(t) =

1, i f (d1 < T)

max
1 − 4 ∗ (d2 − T)

T , 0 , i f (d1 > T)and (d2 > T)

1, i f (d1 > T) and (d2 < T)

(10)

where T is a threshold, set to 0.03 in our experiment.

4.2.3 Reliability of Kinect tracking—Kinect provides the tracking state information for 

all the body joints to indicate whether a joint is tracked, not tracked, or inferred from other 

joints. We define the reliability of Kinect tracking as follows:

Reli
trk(t) =

1, i f tracked
0, i f not tracked

N /A, i f inferred
(11)

4.2.4 Overall Reliability Score—We combine the previously defined three reliability 

terms to generate the overall reliability score as follows.

Ri(t) = ∑
t − 1

t
w(τ) ∗ min (Reli

k(τ), Reli
tmp(τ), Reli

trk(τ)) (12)

The overall reliability score is a weighted average of the reliability for both current frame t 
and previous frame t − 1 We use weighting factors w(t) =0.7, and w(t − 1) =0.3.

4.3 Results and Discussion

In Fig. 6, we show the skeleton captured by Kinect originally and the denoised skeleton 

using the proposed method (consisting of four steps: standardization, clustered Gaussian 

Process regression, projection based on segment length constraint, inverse standardization). 

It is very clear to see that when the hands are close to the chest (Fig. 6(a)), the Kinect 

tracking result for the wrists can be very unreliable, even outside the human body. In Fig. 

6(b), Kinect failed to accurately detect the positions of both elbows and wrists. The proposed 

method is able to correct these errors successfully.

As a benchmark for evaluation, we have implemented the method described in [12] and 

applied it to our standardized data. Table 2 compares the reconstruction error of the 

proposed method and the method of [12]. The reconstruction error is defined as the average 

Euclidean distance per joint between the converted MOCAP measured position (which we 

consider as the ground truth) and the denoised position from the Kinect data. We report the 

average error both over all test samples as well as the unreliable test samples. We can see 

that the proposed method provided more accurate joint position estimation than [12] method. 

Table 3 shows the reconstruction error in each joint. For the left and right shoulder, because 
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they are never occluded and do not move much in the TOLF exercises, the reconstruction 

error is extremely small. On the other hand, the wrist joints have the largest error because 

when they are too close to the chest, Kinect has trouble separating it from the chest when 

observed from the front.

In Fig. 7(a), we show the trace of the left wrist when an actor is doing the push-down-

pumping exercise. In the middle of this exercise, the actor closes his hands in front of the 

chest. In this pose, the wrists are very close to the chest and the Kinect sensor has difficulty 

in telling the difference in the depth of the wrists and the chest. The estimated position of the 

wrists by the Kinect sensor is wrong as shown on the blue line. This self-occlusion causes 

the joint vibration in the Kinect detection result. In Fig. 7(b) we show the trace of the left 

elbow when an actor is doing the over-head-pumping exercise. In this exercise the elbow is 

not blocked by other body part, so the trajectory is relatively smooth, but the measured 

position by Kinect has a consistent bias from the “true” position. Compared with the raw 

Kinect data and denoising result of method [12], our proposed method can eliminate most of 

the errors in the Kinect measurement and make the trajectory smooth and close to the 

ground truth (the MOCAP data).

5 CONCLUSION

In this paper, we propose a novel approach for denoising the joint traces captured by a 

Kinect sensor. The core of our algorithm is the Gaussian Process regression model that can 

predict the MOCAP measurements (the target denoised data) from the Kinect measurements, 

learned from training data consisting of joint traces captured by both a Kinect sensor and a 

MOCAP system. To circumvent the difficulty caused by the high variance of the joint 

positions due to the variety of human body sizes, we map the measured joint positions into a 

standardized domain and learn the regression model in this domain. We further modify the 

denoised results by Gaussian process regression so that the length of each segment between 

connected joints is preserved. To reduce the computation with the regression model, we 

cluster all the training samples into a small number of groups and use the cluster centroids as 

the reduced training set. Our experiments show that the proposed method can effectively 

correct the errors in Kinect measurements due to self-occlusion, and performs better than a 

benchmark system, which also makes use of the correspondence between the MOCAP and 

Kinect measurements.
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Figure 1. 
Data capture system set up
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Figure 2. 
Motion capture system marker positions: (a) front upper body, (b) back upper body [5].
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Figure 3. 
Kinect V2 Joint position [7].
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Figure 4. 
Sample upper body skeletons. (a) raw Kinect data and raw MOCAP data. (b) standardized 

Kinect data and MOCAP data.
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Figure 5. 
(a) Average computation time per time sample with different cluster number, (b) error per 

joint with different cluster number.
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Figure 6. 
The raw captured skeleton by Kinect (green) and the denoised skeleton by the proposed 

method (red) overlaid on the RGB image. (a) push-down-pumping exercise; (b) over-the-

head-pumping exercise.
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Figure 7. 
Trajectory of the joint during the exercise. (a) Trajectory of left wrist when doing the push-

down-pumping exercise. (The red region is when the wrist close to the chest) (b) Trajectory 

of left elbow when doing the over-head-pumping exercise.
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Table 1

Training and testing data set

Name of the data set Number of training samples Number of testing samples

Reliable data unreliable data

muscle-tightening deep breathing (Exercise 1) 22252 5564 3514

clasp and spread (Exercise 2) 22425 5607 2436

over-the-head-pumping(Exercise 3) 21664 5416 3222

push-down-pumping(Exercise 4) 22600 5651 4400
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