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Abstract

Background: Alterations in reward processing are a central feature of depression and may be 

influenced by inflammation. Indeed, inflammation is associated with deficits in reward-related 

processes in animal models and with dysregulation in reward-related neural circuitry in humans. 

However, the downstream behavioral manifestations of such impairments are rarely examined in 

humans.

Methods: The influenza vaccination was used to elicit a mild inflammatory response in 41 

healthy young adults (age range: 18–22, 30 female). Participants provided blood samples and 

completed behavioral measures of three key aspects of reward—reward motivation, reward 

learning, and reward sensitivity—before and 1 day after receiving the influenza vaccine.

Results: The influenza vaccine led to mild but significant increases in circulating levels of the 

pro-inflammatory cytokine interleukin-6 (IL-6) (p < .001). Consistent with hypotheses, increases 

in IL-6 predicted lower reward motivation (p = .029). However, contrary to hypotheses, increases 
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in IL-6 predicted increased performance on a reward learning task (p = .043) and were not 

associated with changes in reward sensitivity (p’s > .288).

Conclusions: These findings contribute to an emerging literature on the nuanced associations 

between inflammation and reward and demonstrate that even mild alterations in inflammation are 

associated with multiple facets of reward processing.
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1. Introduction

Depression is a debilitating, chronic, and widespread condition characterized by a 

constellation of affective, cognitive, and behavioral symptoms (Hasler et al., 2004; Kessler et 

al., 2012). Compelling evidence links dysregulated inflammatory biology to depression 

broadly (Dantzer et al., 2008; Valkanova et al., 2013), but less is known about specific 

dimensions of depression that are sensitive to alterations in inflammation. One critical 

dimension is reward processing, with reward dysfunction linked to anhedonia (Craske et al., 

2016). Commonly defined as reduced ability to experience pleasure, anhedonia actually 

reflects a broad array of potential deficits in reward-related processes, including reward 

motivation, reward learning, and reward sensitivity (Treadway and Zald, 2013). 

Inflammation has been shown to disrupt neural reward processing (Capuron et al., 2012; 

Eisenberger et al., 2010b; Harrison et al., 2016), although the facets of reward tested vary. 

By contrast, effects of inflammation on behavioral measures of reward processing have 

rarely been studied, and no study, to date, has tested the associations between inflammation 

and multiple reward domains. Thus, the overarching goal of this study was to examine the 

extent to which changes in inflammation were related to changes in three domains of reward 

processing: motivation, learning, and sensitivity.

Reward motivation refers to the willingness to exert effort to achieve a reward. In animal 

models, inducing inflammation reliably reduces reward motivation (La Garza, 2005), which 

is frequently measured by manipulating the amount of effort required to obtain palatable 

food (Der-Avakian and Markou, 2012). To the best of our knowledge, only two previous 

studies have examined inflammation and reward motivation in humans, with conflicting 

results. Using endotoxin to elicit an acute inflammatory response in a sample of men, Draper 

et al. (2017) found lower reward motivation as assessed by a novel “effort-stake” task in 

which participants could select to reject or work for offers of reward at varying levels of 

monetary value and physical effort expenditure. By contrast, in a mixed sex sample, Lasselin 

and colleagues (2016) found higher reward motivation following endotoxin versus saline, 

but only when the probability of receiving the reward was high. This study assessed reward 

motivation with the Effort Expenditure for Rewards task (EEfRT) (Treadway et al., 2009), 

which is based on animal models of depression and reward motivation, and requires 

participants to choose between working at lower versus higher levels of physical effort for 

monetary reward. Patients with major depressive disorder have been shown to work less hard 

than healthy controls on the EEfRT (Treadway et al., 2012). Further, EEfRT performance 
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has also been linked to trait anhedonia (Geaney et al., 2015) and is sensitive to psychological 

(Anand et al., 2015) and pharmacological (e.g., Wardle et al., 2011) manipulation.

Reward learning, including the ability to respond to positive reinforcement, is a core 

component of motivated behavior and consists of both explicit and implicit processes 

(Thomsen, 2015). There is some evidence that inflammation is associated with decreased 

explicit reward learning in humans. Specifically, one study found decreased ventral striatal 

encoding of reward prediction error during an instrumental learning task following typhoid 

vaccine versus placebo control (Harrison et al., 2016). A similar pattern, though 

correlational, was observed in association with stress-induced inflammatory responses 

(Treadway et al., 2017). Much work on reward learning in the context of depression has 

relied on the Probabilistic Reward Task (PRT), which assesses implicit reinforcement 

learning (Goldstein and Klein, 2014; Pizzagalli et al., 2005). Higher depressive symptoms 

(particularly anhedonic symptoms) are associated with blunted response to reward on the 

PRT (Fletcher et al., 2015; Vrieze et al., 2013). Moreover, there is evidence for reduced 

reward responsiveness on the PRT in both rats and humans following acute stress and 

pharmacological challenges hypothesized to decrease dopamine (e.g., Der-Avakian et al., 

2013, 2017; Bogdan and Pizzagalli, 2006; Pizzagalli et al., 2008a). However, the 

relationship between inflammation and implicit reward learning has not yet been tested.

Reward sensitivity refers to the hedonic impact of reward, and is comparable to the 

consummatory reward response, or “liking” (Dantzer et al., 2014; Huys et al., 2013). 

Inducing inflammation decreases reward sensitivity in animal models, as measured by 

preference for palatable substances or intracranial self-stimulation (Koo et al., 2008; La 

Garza, 2005; Van Heesch et al., 2013; Yirmiya et al., 2000; but cf. Vichaya et al., 2014). 

Indices of reward sensitivity can be derived from learning tasks like the PRT, particularly 

when used in conjunction with computational modeling that parses participants’ 

performance into learning rate (i.e., the ability to learn from and accumulate rewards over 

time) and reward sensitivity (i.e., the immediate behavioral impact of rewards) (Huys et al., 

2013). To date, no studies have examined the relationship between inflammation and these 

components of the PRT. By contrast, both Draper et al. (2017) and Lasselin et al. (2016) 

assessed reward sensitivity in the context of reward motivation. Interestingly, neither of 

those studies found an effect of inflammation on reward sensitivity; in the placebo and 

control conditions, increases in hedonic value (e.g., more money) predicted similar increases 

in effort.

The current study used a mild inflammatory stimulus to interrogate within-subject 

associations between inflammation and behavioral measures of reward motivation, learning 

and sensitivity. To do so, we recruited healthy undergraduate students to complete behavioral 

reward tasks before and after receiving the annual influenza vaccine, which elicits mild 

increases in peripheral levels of IL-6 (e.g., Bucasas et al., 2011; Christian et al., 2013; 

Kuhlman et al., 2018; Tsai et al., 2005). This within-subjects design was appropriate given 

past research demonstrating significant within-person associations between the magnitude of 

the induced inflammatory response and the degree of change in mood and behavior 

following administration of endotoxin (Eisenberger et al., 2010a; 2009; Grigoleit et al., 

2011) and typhoid vaccine (Harrison et al., 2009). Notably, most past studies assessing 
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reward have utilized more potent inflammatory challenges, such as typhoid vaccine, 

endotoxin and interferon-alpha therapy, which can provoke increases in inflammation 

ranging from 250% (e.g., typhoid vaccine, Harrison et al., 2015) to 49,900% (e.g., 

endotoxin, Lasselin et al., 2016) (Dooley et al., 2018). Here, we were interested in 

examining smaller increases in inflammation, more comparable to those induced by 

psychological stress (Gruenewald et al., 2009; Muscatell et al., 2015; Rohleder, 2014), given 

the strong association between stress and depression (Hammen, 2005; Slavich et al., 2009). 

In addition, we used behavioral tasks commonly used in the depression literature to focus on 

three domains of reward. Based primarily on preclinical evidence, we predicted that 

increases in IL-6 following the vaccine would be associated with decreased reward 

motivation (using the EEfRT), implicit reward learning (using the PRT), and reward 

sensitivity (using indices derived from both the EEfRT and the PRT) from pre- to post-

vaccine.

2. Methods and Materials

2.1. Participants and Procedure

Forty-one undergraduate students at the University of California, Los Angeles (UCLA) 

participated in a study investigating the affective, cognitive, and behavioral effects of 

inflammatory activation following influenza vaccination (Kuhlman et al., 2018). Participants 

were recruited during the Fall of 2015 and 2016 through flyers posted on the university 

campus. Participants were eligible if they were age 18 to 22 and had not yet received the 

annual influenza vaccine. Exclusion criteria were current illness, presence of a major 

medical condition, use of tobacco products, or use of mood or immune-altering medications. 

Out of 46 eligible and enrolled individuals, three withdrew due to illness and two were 

unable to provide blood samples.

After providing informed consent, eligible participants completed questionnaires and 

behavioral reward tasks during an in-person baseline visit. Participants then completed 1 

week of daily diaries before a second in-person visit, when they provided a morning blood 

sample and received the influenza vaccine (between 7am and 12pm). Results for daily diary 

analysis of changes in mood, social disconnection, sleep and physical symptoms are 

reported in Kuhlman et al. (2018). The next day, at the expected peak of the inflammatory 

response (Carty et al., 2006; Christian et al., 2013; Tsai et al., 2005), participants returned to 

the lab and completed a morning blood draw and behavioral reward tasks. The post-vaccine 

blood draw and behavioral tasks occurred between 21 and 29 hours after the vaccination (M 

= 24:35, SD = 2:10); of note, sampling time was not correlated with levels of IL-6 at pre- or 

post-vaccine (all p ’s > .453).

Data were collected over a 2-year period with two cohorts (October-November 2015 and 

October-November 2016). The two cohorts did not differ in terms of age (p = .589), sex (p 
= .303), body mass index (BMI; p = .257), baseline levels of IL-6 (p = .764) or change in 

IL-6 (p = .062). There were more IL-6 non-responders (i.e., showing no change or a 

decrease in IL-6 from pre to post-vaccine) in cohort 1 (n = 6) compared to cohort 2 (n = 2), 

χ2 = 4.61, p = .032. The influenza vaccine was trivalent and, for cohort 1, included A/

Califomia/7/2009 (H1N1) pdm09-like virus, A/Switzerland/9715293/2013 (H3N2)-like 
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virus, and B/Phuket/3073/2013. The vaccine for cohort 2 included A/California/7/2009 

(H1N1) pdm09-like virus, A/Hong Kong/4801/2014 (H3N2)-like virus, and B/Brisbane/

60/2008-like virus (B/Victoria lineage). Participants were compensated up to $200.00. 

Performance on the EEfRT and the PRT was incentivized with raffle tickets for $50 gift 

cards rather than immediate compensation. All participants, regardless of performance, 

received the same compensation. All study procedures were approved by the UCLA 

Institutional Review Board.

2.2. Measures

2.2.1. Inflammation.—IL-6 was selected as a marker of inflammation based on previous 

studies demonstrating increases in IL-6 following the influenza vaccine (Christian et al., 

2013; Tsai et al., 2005) and correlations of within-person changes in IL-6 with changes in 

mood following typhoid vaccine (Harrison et al., 2009) and endotoxin administration 

(Grigoleit et al., 2011). Further, meta-analyses demonstrate that individuals with depression 

have elevated levels of IL-6 (e.g., Valkanova et al., Haapakoski et al., 2015). In the current 

study, blood samples were collected between 8:21 am and 12:45pm (M = 9:59am, SD = 

1:04) by venipuncture into EDTA tubes, placed on ice, centrifuged for acquisition of plasma, 

and stored at −80 C for subsequent batch testing at study completion for each cohort. 

Samples were assayed in duplicate using a high sensitivity ELISA (R&D Systems, 

Minneapolis, Minnesota) at the UCLA Inflammatory Biology Core (inter- and intra-assay 

CVs <9%). The lower limit of detection was 0.20pg/mL and there were no undetectable 

values.

2.2.2. Effort Expenditure for Rewards Task.—The computerized EEfRT was used to 

examine reward motivation and reward sensitivity at post-vaccine (Treadway et al., 2009). 

Lower motivation for reward is operationalized as less willingness to exert greater effort for 

higher monetary reward. Lower sensitivity to reward is operationalized as an attenuated 

association between the extent to which variations in potential monetary reward predict the 

decision to exert effort for reward (Lasselin et al., 2016; Treadway et al., 2012). During the 

task, participants were presented with a series of trials in which they chose between an easy 

task (worth $1.00) and a hard task (worth between $1.24-$4.30). For the current study, easy 

trials required 30 button presses using the non-dominant index finger in 7 seconds, while 

hard trials required 100 button presses with the pinky finger of the dominant hand in 21 

seconds. Of note, the EEfRT typically uses the non-dominant hand for the hard trials1. 

Participants were told that only some of the successfully completed trials would be 

rewarded, and that the monetary reward would be converted to raffle tickets. Each trial 

presented the probability that a successful response would be rewarded (12%, 50%, 88% 

probability). No one reward value was paired with a given probability more than once. 

Participants had 5 seconds to choose to work for a hard or easy trial; if they did not make a 

choice they were randomly assigned to a hard or easy trial. In the current study, the EEfRT 

duration was shortened from 20 minutes to 10 minutes due to the number of tasks 

administered.

1This modification was made to facilitate comparison with an unrelated study conducted by our group in which participants were 
expected to have an indwelling catheter in their dominant arm, which may have rendered “easy trials” less attractive.

Boyle et al. Page 5

Psychoneuroendocrinology. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2.3. Probabilistic Reward Task.—The PRT is a 15-min computerized task derived 

from signal detection theory (Pizzagalli et al., 2005; adapted from Tripp and Alsop, 1999). 

Performance on the PRT encompasses both implicit learning rate and reward sensitivity 
components (e.g., Huys et al., 2013), which together have been termed reward 
responsiveness (e.g., Bogdan and Pizzagalli, 2006). In the current study, participants 

completed a total of 240 trials, with a 30-sec break every 80 trials. In each trial, participants 

were asked to identify which of two difficult-to-differentiate stimuli were presented. The 

stimuli were cartoon faces with one of two straight mouths (10mm short mouth versus 

11mm long mouth). Each trial presented a fixation cross [750ms], followed by a mouthless 

cartoon face [500ms], and then a face with a mouth [100ms]. Participants made their choice 

of mouths by pressing the ‘c’ or ‘m’ key and were then presented with either feedback or a 

blank screen [1750ms]. The feedback was “Congratulations! You just won 1 ticket!” While 

both the long and short stimuli were presented equally often, an asymmetric (3:1) pseudo-

randomized reinforcement schedule was used to induce a response bias toward the more 

frequently rewarded stimuli across the 240 trials. Participants were not presented with more 

than three instances of the same stimulus consecutively, and if they did not make a correct 

response on a trial scheduled for reward, reward feedback was delayed until the next correct 

identification of that stimulus. Under this differential reinforcement schedule, healthy 

controls reliably develop a response bias favoring the more frequently rewarded stimulus 

(e.g., Pizzagalli et al., 2005, Bogdan and Pizzagalli, 2006); the degree to which the 

magnitude of this response bias changed from pre- to post-vaccine was used to 

operationalize reward responsiveness. Computational analyses of trial-level responses using 

the Bayesian model developed by Huys and colleagues (2013) were then used to derive for 

each participant two parameters: learning rate and reward sensitivity. Participants completed 

10 practice trials to familiarize themselves with the task. Post-vaccine, all participants 

completed a different version of the PRT in which they had to choose between a long 

(5.31mm) and short (5.00mm) nose.

2.3. Analytic Approach

Analyses were carried out using Stata version 13.1. All analyses controlled for sex, cohort, 

and BMI. IL-6 values were positively skewed and log transformed prior to analyses, and one 

post-vaccine IL-6 value that was more than 4 standard deviations above the mean was 

winsorized. Change in IL-6 was operationalized as a single change score (post-vaccine 

minus pre-vaccine), with higher values indicating a greater increase in IL-6.

2.3.1. Data Reduction for the EEfRT and PRT.—For the EEfRT analyses, trials in 

which the participant did not choose between an easy or hard task were excluded (0.39% of 

all trials). In the current study, participants successfully completed 96% of all trials on 

average, which is consistent with previous studies (Treadway et al., 2009). For the PRT, in 

line with prior work and current recommendations, inclusion criteria were: accuracy greater 

than 50%, ratio of rewards received greater than 2.4, more than 80% trials within valid range 

(between 150ms and 1500ms), and fewer than 16 outliers at each administration. This 

procedure excluded 8 participants (19.5%) which is consistent with some studies (e.g., 

Fletcher et al., 2015) but higher than others (e.g., Kaiser et al., 2017).
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2.3.2. Assessment of Reward Motivation and Sensitivity with the EEfRT.—The 

association between reward motivation (likelihood of choosing high-effort trials during the 

EEfRT) and change in IL-6 was tested with generalized estimating equations (GEEs) with a 

binary logistic model and exchangeable working correlation structure. GEEs are a typical 

approach for the EEfRT (Treadway et al., 2009), account for correlated data, and are 

appropriate for a binary dependent variable. In the current study, predictors included 

experimental session (0 = pre-vaccine, 1 = post-vaccine), sex (0 = male; 1 = female), cohort 

(0 = cohort 1; 1 = cohort 2), BMI, and change in IL-6. Consistent with previous studies 

(Treadway et al., 2009), the following task-specific variables were included as continuous 

time-varying covariates: reward magnitude, probability, expected value (reward magnitude X 

probability), and trial number. The dependent variable was hard trial choice (0 = no, 1 = 

yes). Reward sensitivity on the EEfRT was tested as the interaction between change in IL-6 

and reward magnitude. A significant interaction would indicate that reward magnitude 

predicted hard trial choice differently depending on levels of IL-6; reduced reward 

sensitivity was operationalized as an attenuated association between reward magnitude and 

hard trial choice. Exploratory analyses tested for two-way interactions between change in 

IL-6 and other task specific variables (probability, expected value), consistent with previous 

studies (Treadway et al., 2009). All models converged successfully.

2.3.3. Assessment of Reward Responsiveness (Learning Rate and 
Sensitivity) with the PRT.—The association between change in IL-6 and change in 

reward responsiveness (total response bias) was examined using regression analysis with 

robust standard errors. First, a total response bias score across the 240 trials at each 

administration was calculated with the following formula, with “Rich” referring to

Response bias:logb

= 1
2log

(Richcorrect + 0.5) * (Leanincorrect + 0 . 5)

(Richincorrect + 0 . 5) * Leancorrect + 0 . 5
.

the more frequently rewarded stimulus, and “Lean” referring to the less frequently rewarded 

stimulus:

Change in reward responsiveness was calculated as change in total response bias 

(subtracting the total response bias at pre-vaccine from the total response bias at post-

vaccine).

To further probe reward responsiveness and parse the contribution of learning rate (which 

operationalizes participants’ ability to learn from reward feedback) and reward sensitivity 

(which operationalizes reduction in consummatory pleasure) on PRT performance, a 

computational model of trial-level performance was implemented. A series of 

reinforcement-learning models were fitted to the PRT choice data (Huys et al., 2013) using 

an empirical Bayesian random-effects approach that ultimately yielded a parameter 

assessing learning rate, or participants’ ability to accumulate rewards over time and learn 

from the rewards, and a parameter assessing reward sensitivity , or the immediate behavioral 

impact of rewards. These parameters were analyzed in the transformed space to prevent 
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issues with non-Gaussianity (detailed information on the computational modeling approach 

is provided in the supplementary material). Once coefficients representing learning rate and 

reward sensitivity at each administration were derived, change scores were created by 

subtracting pre-vaccine scores from postvaccine scores. These difference scores were then 

examined in regression analysis with robust standard errors. Thus, we conducted three 

separate analyses to assess change in 1) reward responsiveness; 2) learning rate; 3) reward 

sensitivity.

3. Results

3.1. Participant Characteristics

Participants were 41 undergraduate students, predominantly female (n = 30), and ranged in 

age from 18 to 22 (M = 18.5, SD = .75). Participants self-identified as Asian (n = 25), non-

Hispanic White (n = 7), and Hispanic (n = 9). BMI ranged from 19.05 to 41.34, with average 

BMI in the normal weight category (M = 23.96, SD = 3.87). The influenza vaccine led to 

mild but significant increases in circulating levels of IL-6 (Mpre = 1.14, SD = 0.95; Mpost = 

1.46, SD = 1.22; t(40) = −4.79,p < .001; Cohen’s d = 0.75)2. Thirty-three of 41 participants 

(80%) had an increase in IL-6, and average ΔIL-6 was 0.28 pg/mL (SD = 0.57; range - 1.44 

to 2.70 pg/mL; see Kuhlman et al., 2018 for additional details).

3.2. Effort Expenditure for Rewards Task - Reward Motivation and Sensitivity

On average, participants completed between 24 and 44 trials on the EEfRT (M = 33.3, SD = 

4.92), and the overall proportion of hard trials chosen was .56. Higher reward magnitude and 

expected value each predicted higher likelihood of choosing a hard trial in the GEE model, 

indicating that participants worked harder for trials that offered greater potential reward, 

which is consistent with prior studies (e.g., Treadway et al., 2009) (see Table 1). In support 

of our hypothesis, AIL-6 significantly predicted lower likelihood of choosing a hard trial, b 
= −0.65, p = .029, OR = 0.52. Thus, greater increases in IL-6 were associated with lower 

reward motivation, over and above the effects of administration session (pre- vs. post-

vaccine), task variables, sex, cohort, and BMI (see Figure 1, Table 1). To examine the 

influence of contextual factors on trial choice, exploratory analyses tested for 2-way 

interactions between ΔIL-6 and task-specific variables, including probability and expected 

value. However, these were not significant (see Supplemental Tables 1 and 2).

Next, we examined reward sensitivity with the EEfRT task by testing the significance of the 

interaction between changes in reward magnitude and ΔIL-6. There was no interaction 

between reward magnitude and ΔIL-6 in the prediction of hard trial choice (b = .14, p = .

344), suggesting that ΔIL-6 was not associated with alterations in reward sensitivity on the 

EEfRT (see Supplemental Table 3)3.

2Raw IL-6 values are presented for descriptive statistics; log-transformed IL-6 was used for inferential statistics. Note that one post-
vaccine IL-6 value was winsorized from 6.31 to 4.82 pg/mL.
3Results for the EEfRT were similar using other analytic approaches (e.g., controlling for baseline levels of IL-6, modeling IL-6 as a 
time-varying covariate) and are available in Supplemental Tables 6a-c and Table 10/figure 1.
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3.3. Probabilistic Reward Task - Reward Responsiveness (Learning Rate and Reward 
Sensitivity)

On average, there were no significant differences in total response bias, sensitivity, or 

learning from pre- to post-vaccine on the PRT for the 33 participants who provided 

evaluable PRT data (all p’s > .085; see Supplementary Table 4), though there was substantial 

individual variability in these changes. Our primary analysis examined whether individual 

differences in ΔIL-6 were associated with the magnitude of change in total response bias 

(reward responsiveness) from pre- to post-vaccine. Contrary to hypotheses, ΔIL-6 was 

associated with increases in reward responsiveness (see Table 2, Figure 2a). Specifically, an 

increase in IL-6 was associated with an increase in total response bias from pre-to post-

vaccine, b = 0.32, SE = 0.15, p = .043, ß = .44, over and above the effects of sex, cohort, and 

BMI. Of note, when we repeated this analysis with all 41 participants included we found 

similar effects, b = 0.29, SE = 0.15, p = .054, ß = .38.

We next conducted regression analysis with the learning rate parameter derived from the 

computational analyses. Greater increases in IL-6 were not associated with significantly 

greater increases in learning rate, b = 1.06, SE = 0.95, p = .274, ß = .21 (see Table 3, Figure 

2b). Similarly, greater increases in IL-6 were not significantly associated with greater 

increases in sensitivity, b = 0.31, SE = 0.28, p = .288, ß = .18 (see Table 3, Figure 2c). Thus, 

greater increases in IL-6 from pre-to post-vaccine were associated with increases in reward 

responsiveness on the PRT, but we were unable to determine if this was primarily due to 

changes in learning rate or reward sensitivity. See Table 4 for correlations between ΔIL-6, 

IL-6 at pre-and post-vaccine, and performance on the PRT, and supplementary material 

(Tables 5, 7–9) for analyses controlling for baseline levels of IL-6 and reward task 

performance.

4. Discussion

This study examined the association between inflammation and reward processing using 

influenza vaccination as a mild inflammatory stimulus. We focused on three key dimensions 

of reward processing: reward motivation, reward learning, and reward sensitivity. Consistent 

with hypotheses, we found that larger increases in circulating concentrations of the pro-

inflammatory cytokine IL-6 following vaccination were associated with lower reward 

motivation. Contrary to hypotheses, we found that greater increases in IL-6 were associated 

with increased reward responsiveness on the reward learning task; however, computational 

analyses were not able to clarify whether this was attributable to effects of learning rate or 

reward sensitivity, possibly due to the sample size.

Past literature has linked inflammation to reward motivation, particularly in animal models. 

Further, inflammation alters dopaminergic function and is associated with activity in neural 

areas associated with reward (Capuron et al., 2012; Eisenberger et al., 2012; Felger and 

Treadway, 2017). Elevated inflammation may signal an organism to prioritize resources 

toward the facilitation of healing (Dantzer et al., 2008) and, in turn, shift priorities away 

from physical mobilization to attain reward. Consistent with this perspective, the current 

study found an association between increased inflammation and lower reward motivation; 

participants with a larger IL-6 response from pre- to 1 day post influenza vaccination 
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selected fewer hard trial choices on the EEfRT. A similar pattern was evident in Draper et al. 

(2017), who, using a far more potent inflammatory challenge, found lower acceptance of 

high effort trials following endotoxin administration. We found no evidence that the context 

of the task moderated the association between increased IL-6 and reward motivation, in 

contrast to results of Lasselin et al. (2016). Specifically, their results suggested that higher 

levels of inflammation shifted priorities toward reward that was more likely to be attained 

(i.e., higher probability reward) rather than causing a global reduction in reward motivation. 

This shift was attributable to symptoms of sleepiness following endotoxin. It is possible that 

the levels of inflammation induced in the current study, which were not associated with 

notable sickness symptoms (Kuhlman et al., 2018), were not sufficient to elicit such a shift. 

Furthermore, our modifications to the EEfRT (specifically, instructing participants to use 

their dominant hand for hard trials) may have rendered hard trials less physically effortful. 

Thus, while these three studies converge in terms of linking inflammation to reward 

motivation, additional work is needed to clarify the relationship.

Consistent with both Draper et al., (2017) and Lasselin et al., (2016), there was little 

evidence that reward sensitivity on the EEfRT was altered in tandem with changes in 

inflammation. Specifically, the relationship between reward magnitude and reward 

motivation was not attenuated with greater increases in inflammation. However, it should be 

noted that this index of reward sensitivity entails a cost-benefit analysis (i.e., the tradeoff 

between anticipated effort and potential reward) and captures cognitive valuation of potential 

monetary reward. This may be distinct from actual receipt of monetary reward, rewards that 

elicit an automatic response (e.g., primary rewards like food or water) or rewards that are not 

in the context of a motivational task (e.g., viewing positive images). Indeed, there is some 

work suggesting that the neural response to monetary reward versus positive images may be 

differentially altered in the context of depression (Smoski, Rittenberg, & Dichter, 2011), and 

the effects of inflammation on social reward may be similarly nuanced (Irwin & 

Eisenberger, 2017).

Contrary to hypotheses, we found that greater increases in IL-6 were associated with 

increased reward responsiveness (encompassing both learning rate and sensitivity) on the 

PRT. This was surprising, as both stress and depressive symptoms are associated with 

blunted performance on this task (Bogdan and Pizzagalli, 2006; Pizzagalli et al., 2005; 

Pizzagalli et al., 2008b), and we expected that increases in inflammation would act similarly, 

perhaps indicating withdrawal from environmental cues. For example, Harrison and 

colleagues (2015) found that inflammation reduced prediction-error signaling in the ventral 

striatum during an instrumental learning task. However, unlike the current study, their task 

assessed explicit learning and included punishment learning cues. While in need of greater 

study, these methodological differences may reflect meaningful differences in behavioral 

sensitivity to inflammation. For example, explicit learning requires greater cognitive 

resources than implicit learning, and the presence of punishment may obfuscate or moderate 

effects of inflammation on reward learning.

It is also important to note that our finding for a facilitative effect of inflammation on reward 

responsiveness is not without precedent. Several studies have found improvements in some 

measures of cognition following an inflammatory stimulus (e.g., Grigoleti et al., 2011), and 
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it is conceivable that greater awareness of environmental cues is adaptive in the context of 

threat or illness. Furthermore, there is increasing evidence that inflammation can increase 

reward sensitivity (Vichaya et al., 2014) although this may vary by context (e.g., Lasselin et 

al., 2016; Inagaki et al., 2015; Muscatell et al. 2016). For example, an inflammatory 

stimulus has been shown to elicit greater neural sensitivity to rewarding social stimuli, 

including images of loved ones (Inagaki et al., 2015). More studies testing the dimensions 

and contextual factors that shape how inflammation may alter reward are clearly warranted.

The results of this study need replication and should be interpreted in light of several 

limitations. Most notably, the lack of a placebo or wait-list control group precludes 

establishing a causal relationship between the vaccine and change in IL-6, and between 

change in IL-6 and performance on the reward tasks. It is important to note, however, that 

our hypotheses centered on within-person change (Kuhlman et al., 2018) based on prior 

work demonstrating within-person associations between changes in IL-6 following typhoid 

vaccination and changes in negative mood (Wright et al., 2005), fatigue and mental 

confusion (Brydon et al., 2008) and reinforcement learning (Harrison et al., 2015; Treadway 

et al., 2017). While relatively small, our sample size was comparable to previous studies 

investigating affective, cognitive, or behavioral changes following the typhoid vaccine 

(Harrison et al., 2015) or interferon alpha therapy (Dowell et al., 2016). Our sample 

consisted of healthy young adults, and the extent to which these results generalize to other 

populations remains to be established. There was variability in time between blood draws, 

and while we based our assessment schedule on previous research showing increases in IL-6 

at 1-day post-influenza vaccine (Carty et al., 2006; Tsai et al., 2005), it is possible that the 

peak response for some individuals may have occurred later (e.g., Christian et al., 2011). 

Although we made modifications to the reward tasks, past studies have shown both tasks to 

be robust to these types of modifications (Damiano et al., 2012; Pechtel et al., 2013). Finally, 

it would have been ideal to use immediate monetary reward, rather than raffle tickets, and to 

counterbalance task order to address potential habituation effects.

Reward processing is a critical organizer of behavior involving the willingness to work for 

reward, the hedonic/consummatory response to reward, and reward learning (Schultz, 2015), 

all of which may be dysregulated in the context of depression (Keedwell et al., 2005; Pechtel 

et al., 2013; Treadway et al., 2012). Increasing evidence, particularly in the neuroimaging 

literature, suggests that inflammation plays an important role in the dysregulation of reward-

related processing (Capuron et al., 2012; Eisenberger et al., 2010b; Felger et al., 2015), and 

the current study extends this literature by assessing multiple domains of reward 

behaviorally. Our results indicate that even very mild increases in inflammation are 

associated with alterations in dimensions of reward processing. This line of research is an 

important step towards the development of more targeted and effective treatments for 

depression and may also be relevant for other clinical conditions characterized by impaired 

reward processing, such as Alzheimer’s disease, schizophrenia, and post-traumatic stress 

disorder.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mild increases in IL-6 following influenza vaccination were associated with 

alterations in behavioral measures of reward processing.

• Increases in IL-6 were associated with lower reward motivation, but not lower 

reward sensitivity for monetary reward.

• Increases in IL-6 were associated with increased performance on an implicit 

reward learning task.
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Figure 1. 
Results from generalized estimating equations for the Effort Expenditure for Rewards Task 

with 95% confidence interval error bars. Greater increases in IL-6 from pre- to post-

influenza vaccine were significantly associated with fewer hard trial choice over and above 

the effects of time (pre-vs. post-vaccine), task specific variables (i.e., probability, expected 

value, reward magnitude, trial number), sex, BMI and cohort (b = −0.65, p = .029).
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Figure 2. 
Greater increases in IL-6 were significantly associated with greater increases in total 

response bias (i.e., reward responsiveness) from pre- to post-vaccine on the PRT (r = .40, p 
= .019) (Panel A). Analyses remain significant when removing the outlier on changes in 

total response bias (i.e., the participant with the highest values on the y axis in Panel A). The 

relationship between change in IL-6 and change in reward learning did not reach 

significance (r = .07, p = .710) (Panel B) nor did the association between change in IL-6 and 

change in reward sensitivity on the PRT (r = .28, p = .121) (Panel C). Note that reward 

sensitivity (logβ) and learning rate (log ε
1 − ε ) parameters in the transformed space were 

used to prevent issues with non-Gaussianity.
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