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Abstract

Background: Biased patterns of attention are implicated as key mechanisms across many forms 

of psychopathology and have given rise to automated mechanistic interventions designed to 

modify such attentional preferences. However, progress is substantially hindered by limitations in 

widely-used methods to quantify attention bias leading to imprecision of measurement.

Methods: In a clinically anxious sample (n=70), we applied a well-validated form of 

computational modeling (Drift-Diffusion Model; DDM) to trial-level reaction time data from a 

two-choice “dot-probe task”—the dominant paradigm used in hundreds of studies attention bias 

studies to date—in order to model distinct components of task performance.

Results: While DDM-derived attentional bias indices exhibited convergent validity with previous 

approaches (e.g., conventional bias scores, eyetracking), our novel analytic approach yielded 

substantially improved split-half reliability, modestly improved test-retest reliability, and revealed 

novel mechanistic insights regarding neural substrates of attentional bias and the impact of an 

automated attention retraining procedure.

Conclusions: Computational modeling of attentional bias task data may represent a new way 

forward to improve precision.
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Introduction

Computational psychiatry aims to apply computational methods to observational data in 

psychiatric populations in the hopes of more precisely quantifying underlying mental 

processes, which may then track with observations at other levels of analysis (e.g., clinical 

symptoms, neural substrates)(1-3). Many psychiatric conditions are characterized by 

alterations in attention, a fundamental building block of cognition that dictates which stimuli 

are preferentially selected from within a dynamic environment and promoted for further 

processing (4). A prominent example comes from clinical anxiety, a prevalent and disabling 

condition (5,6), in which individuals demonstrate selective attentional preference 

(henceforth, attention bias) in response to threat-relevant stimuli (7). Attention Bias 

Modification (ABM) procedures, a fully automated, computer-based, mechanistic 

intervention designed to target vigilance to threat, have shown some promise in reducing 

emotional vulnerability and/or alleviating clinical anxiety symptoms (8,9), supporting the 

theory that attention bias may play a causal role in anxiety. Though there are well-replicated 

behavioral findings regarding both the existence of attention bias across a wide range of 

anxious phenotypes (7) and the ability of ABM procedures to effectively modify attention 

(8,9), this literature has suffered from widely acknowledged psychometric issues (10-12), 

including: a) the predominant use of tasks and analysis procedures that conflate numerous 

components of task performance; and b) a lack of sufficient test-retest stability to facilitate 

addressing key, clinically relevant questions related to individual differences (e.g., 

relationships between change in mechanism and change in symptoms; personalized 

treatment outcome prediction).

One form of computational modeling, Drift-Diffusion Modeling [DDM; (13)], has been 

strongly validated and widely used in both simulated and empirical datasets as a method of 

dissecting and modeling diverse components of trial-level behavioral data in the context of 

two-choice decision tasks (14). The dominant task paradigm used to quantify attention bias 

in hundreds of anxiety studies to date (7), the dot-probe task (15), is a two-choice decision 

task which is appropriate for application of DDM, though DDM has not been previously 

applied within the dot-probe literature, and rarely (16-22) has been applied in affective 

psychopathology research. Briefly, DDM utilizes each individual’s distribution of reaction 

times and errors across task trials to quantify a set of parameters that together produce the 

optimal fit to the individual’s actual distribution of responses. Most relevant to the study of 

attentional bias is the capacity to separate out two parameters, “drift” and “extradecisional 

time,” effectively enabling the response process to be divided into: 1) a measure of 

performance related to the response decision itself (represented by the “drift” parameter), 

which, in the case of the dot-probe, is an incidental decision task which is irrelevant to 

affective processing (e.g., does a probe cue display as an “E” or an “F”), and 2) the 

“extradecisional” components that occur before and after a probe decision is made. Though 

DDM analysis often focuses on decision-related parameters (e.g., drift, decisional 

threshold), in the case of the dot-probe task, it is this latter, extradecisional component that 

encompasses the attentional processes of theoretical interest (as well as more extraneous 

components such as response preparation and execution—e.g., pressing the correct button). 

More precisely, the extradecisional component includes the time an individual takes to orient 
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attention to the probe location (which must occur before a decision about the probe can 

commence), which can then be compared for trials in which the probe location follows 

either an affective (e.g., threat-related) or neutral cue, providing an index of attentional 

preference. By separately modeling and thereby removing some irrelevant features of task 

performance (parameters related to the incidental probe decision), DDM could produce a 

purer behavioral measure of the attentional patterns of interest, and might yield more precise 

and/or psychometrically sound estimates, enabling potential reanalysis of response data from 

many hundreds of studies that have previously utilized the dot-probe task in the study of 

psychopathology.

To test this thesis, we applied DDM to dot-probe behavioral data collected from a 

transdiagnostic clinically anxious sample in the context of a mechanistic intervention study, 

in which participants were randomized to complete ABM procedures intended to modify 

attentional patterns or a sham control condition. We aimed to: 1) explore the viability of 

DDM to achieve good model fits and/or superior reliability when applied to response data 

from a fairly typical dot-probe paradigm; 2) assess convergence regarding how novel 

attentional bias scores derived via DDM relate to other variables, including conventional 

dot-probe attention bias scores,eye movements, and neural correlates; and 3) assess whether 

use of DDM enabled more sensitive detection of mechanistic shifts in attention over the 

course of the RCT that were not observable when applying conventional analyses to task 

data.

Methods

Full methods and primary clinical findings from the randomized controlled trial 

(clinicaltrials.gov: NCT02303691) have been reported previously (23). In brief, seventy 

unmedicated patients reporting clinically elevated levels of trait anxiety and associated 

clinician-rated disability were randomized to receive active ABM (n=49) or a sham control 

variant (n=21). See Table S1 in Supplement for sample characteristics.

Dot-probe task.

The dot-probe assessment task was completed at baseline, at acute post-treatment, and at 1-

month follow-up. At baseline, ten idiographic threat words were selected collaboratively by 

the participant and clinical interviewer and ideographically matched (on familiarity and 

word length) to 10 neutral words; these idiographic lists were supplemented by 20 threat 

words and 20 neutral words from a normative corpus used previously in ABM research(e.g., 

24). Word pairs (80% threat-neutral; 20% neutral-neutral) were presented vertically for 

either 500ms (50% of trials) or 1500ms (50% of trials), followed by a probe (‘E’ or ‘F’) in 

either the upper or lower word location. Participants responded via button press to indicate 

the probe letter displayed. A total of 300 trials were given. The present analyses focused on 

2 conditions of shorter (500ms) duration trials, comprised of 60 trials each, which were 

randomly interspersed over the course of the experiment: “congruent” trials (in which the 

probe appeared in the previous location of the threat word) and “incongruent” trials (in 

which the probe replaced the neutral word). Given that the ABM intervention specifically 

trained attention using 500ms stimulus presentations (see details below), we specifically 
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hypothesized that intervention effects would be evident on these trials. The remaining task 

trials, comprised of congruent and incongruent trials of longer (1500ms) duration, and 

neutral-neutral word pairs of both short and long duration, were exploratory and not 

included in the present analyses. To provide a direct measure of overt eye movements, a 

RK-768 eyetracker concurrently measured eye gaze during the task (see Supplement for 

details).

In a separate fMRI session prior to the onset of treatment, the same dot-probe task was 

administered, with minor modifications (e.g., only 500ms duration word pairs were 

included; randomly jittered intertrial intervals of 0-8s). BOLD data were acquired 

simultaneously on a 3Tesla Siemens Trio scanner (TR=2000; TE=28; flip angle=73°; 38 

slices; FOV=200×200; 3.125×3.125×3.2mm voxels). Standard preprocessing steps were 

applied in AFNI. 68 of the 70 randomized participants had usable data (n=1 excluded for 

excessive motion; n=1 did not complete scan). Whole-brain analyses were conducted to 

identify regions robustly linked to DDM-derived attentional bias scores across individuals 

[voxel threshold: p<.005; map-wise p<.05 via 3dClustSim with AFNI’s spatial 

autocorrelation function, which provides accurate type I error control under our conditions 

(25)]. See Supplement for full details of fMRI data acquisition and analysis.

DDM analysis.

Analyses were completed using fast-dm software ((26);see Supplement for software 

commands used and for preliminary model comparison steps which led to our adopted 

approach). A distribution of reaction times and correct/incorrect values of each trial response 

was compiled for each individual, at each assessment point, for each of the 2 trial types 

described above. Each of these discrete distributions was then modeled using the 

Kolmogorov-Smirnov method to search through the parameter space and identify the 

optimal combination of the following parameters: extradecisional time (t0), drift (v), 

differences in speed of response execution for correct/incorrect responses (d), decisional 

threshold separation (a), variability in t0, variability in v, and inter-trial variability in starting 

point (sz). Consistent with recommendations when applying DDM to correct/incorrect 

response distributions with a similar number of trials (14), a priori decisional bias (zr) was 

set to 0.5 (representing no starting bias towards correct/incorrect responding) and percentage 

of contaminants (p) was set to 0. Simulations (see Supplement) verified that the DDM 

methods could accurately identify model parameter shifts in extradecisional time, as distinct 

from shifts in other relevant parameters (e.g., drift rates), for datasets with the current 

number of trials per condition and similar RT and error rate distributions.

Bias scores.

The extradecisional time parameters from each of the two conditions were used to generate 

an attentional bias score for each participant/timepoint as follows: extradecisional_bias = t0_ 

incongruent – t0_ congruent. Likewise, conventional attention bias scores were generated 

from mean RT values from each trial type, after applying data handling/cleaning 

recommendations to optimize reliability (10). Across all bias scores, larger scores indicate 

greater degree of vigilance to threat.
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ABM and sham interventions.

The ABM and sham conditions were modeled after prior studies(e.g., 24) and have been 

described in a previous report which focused on fMRI indices, collected during a distinct 

task, predicting clinical outcomes (see (23) and Supplement for details). Briefly, participants 

in both groups completed 8 twice-weekly sessions in the laboratory, using an abbreviated 

version of the dot-probe task as described above, with a few modifications. In all trials 

during training, word pairs were presented for 500ms. The only distinction between the 

ABM and control conditions was in the relationship between the probe location and the 

threat word in each word pair. In ABM, for 100% of threat-neutral trials (80% of all trials), 

the probe replaced the neutral word, thereby shaping attention away from threatening cues 

through practice. In the sham condition, the distribution of trials was the same as in the 

assessment dot-probe, with the probe replacing either the threat or neutral word with equal 

likelihood.

Results

Model fit.

DDM models were a good fit for every participant’s datasets (for each assessment point and 

trial type) according to Kolmogorov-Smirnov tests, which assess the probability that 

empirical and predicted data distributions differ (all p’s≥.59; mean p=.983; SD=.017). 

Model fits did not differ by trial type, timepoint, or group (ABM vs. control) (p’s≥.18). 

Figure 1 illustrates the model fit for the empirical data distribution in a representative 

subject. See Table S3 in Supplement for descriptive statistics for all model parameters.

Reliability.

Test-retest reliability of attentional bias scores was examined across baseline, post-treatment, 

and 1-month follow-up assessments in the sham control group only, as test-retest stability 

would not be expected among individuals who received active ABM specifically intended to 

alter attention bias. By conventional psychometric standards, Intraclass Correlation 

Coefficient (ICC) values ≤0 indicate no reliability, while values that are statistically 

significant (relative to 0) but <.5 indicate low reliability (27). Extradecisional_bias scores 

were significantly reliable across the three sessions (baseline, post-treatment, 1-month 

follow-up) spanning a roughly 2-month period, though the reliability coefficient was low 

(ICC=0.25; p=.037). Reliability was particularly strong across the first two (baseline and 

post-training) assessments (r=.63; p=.003). By contrast, conventional bias scores showed no 

reliability (ICC=.001; p=.48; max pairwise r=.20, ns), even when using only trials with 

probes appearing on the bottom of the screen, as recommended previously (10) to improve 

dot-probe reliability (ICC= −0.14; p=.82; max pairwise r=.27, ns).

To assess split-half reliability, DDM models were re-calculated allowing the t0 parameter to 

vary as a function of odd vs. even trials (see Supplement for alternative split-half reliability 

results when allowing additional model parameters to vary as a function of odd vs. even 

trials). Extradecisional bias scores were derived separately from odd vs. even trials, 

correlated with one another, and a Spearman-Brown prediction formula was applied to 

estimate reliability. Split-half reliability was adequate at each assessment point (baseline: 
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Spearman-Brown reliability=0.85, r=0.732, p<.001; post-treatment: reliability=0.52, 

r=0.355, p<.001; follow-up: reliability=0.83, r=0.716, p<.001). By contrast, the split-half 

reliability for conventional bias scores was uniformly unacceptable (non-significant and near 

or below 0; r’s ranging from −0.185 to 0.187, p’s<=.15), both when analyzing all relevant 

trials and for dot-on-bottom trials only.

Correlates of extradecisional time.

Age.—For both trial types at baseline, extradecisional time was correlated with participant 

age (r’s>=.44; p’s<.001), while drift rates were not (∣r∣’s<.09; p’s>.45). This replicates a 

very well-established pattern within the DDM literature when applied to other two-choice 

tasks (28), suggesting the parameters derived from the dot-probe task in this sample 

conformed to established expectations.

Eye movements.—For both trial types at baseline, extradecisional time was moderately 

correlated with the percentage of trials in which overt eye fixations on one or both of the 

words in the word pair were registered by the eyetracker (r's>=.35; p’s<.004), while drift 

rates were not related to eye fixations (∣r∣<.05, p’s>.71) (see Supplement for eyetracking 

details). This further supports the DDM’s ability to accurately separate extradecisional 

components of task performance, which include overt attentional shifts in eye gaze (which 

would be expected to increase extradecisional time). However, unlike eye movement data, 

the extradecisional time component preserves the ability to capture important covert 

extradecisional processes [e.g., covert/mental shifts in attention; (29)] not reflected in overt 

eye movements.

Conventional bias scores.—Extradecisional_bias scores were moderately correlated 

with conventional bias scores at two out of the three assessment points (baseline: r=.34; p=.

005; post-treatment: r=.20; p=.113; follow-up: r=.27; p=.039), suggesting the novel DDM-

derived indices track with conventional methods, but are not fully collinear with them.

Neural correlates.—In whole-brain analyses, extradecisional_bias scores from the 

baseline assessment were negatively correlated with fMRI contrast values (incongruent-

minus-congruent trial responses) across several regions implicated in emotional and 

attentional regulation of salient stimuli, including left temporoparietal junction, ventral 

anterior cingulate, and dorsomedial PFC (Figure 3). This pattern may implicate decreased 

regulatory control as a neural substrate linked to increased vigilance to threat (indexed by 

extradecisional_bias) across individuals (30,31). When using conventional attentional bias 

scores in an identical whole-brain search, no significant clusters tracking with degree of bias 

across individuals were identified.

Intervention effects.

Intent-to-treat mixed models regression with extradecisional_bias as the dependent measure, 

training group (ABM or control) as a between-subjects factor, subject as a random factor, 

and timepoint (baseline, acute post-treatment, 1-month follow-up) as a within-subject factor 

revealed a significant effect of training condition on the slope of extradecisional_bias over 

time, indicating that the trajectory of scores over time differed across training conditions: 
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t(68)=−3.41, p=.001, reffect size=.38 (a large effect (32)). As shown in Figure 2, 

extradecisional_bias decreased steadily over the course of the assessment points in the ABM 

group, such that individuals in this group became less biased towards threat over the course 

of the baseline, acute post-treatment, and 1-month follow-up [within-group effect of time: 

t(48)=−2.71, p=.009, reffect size=.36], while extradecisional_bias increased over time in the 

control training group [t(20)=2.15, p=.044, reffect size=.43]. These findings were maintained 

in models that included participant gender and age as covariates.

Conversely, identical mixed models regression analyses with conventional bias scores as the 

dependent measure revealed no evidence of intervention effects. Specifically, there were no 

effects of group on either the slope or the intercept of attentional bias over the three 

assessment points (group effect on slope of attentional bias: p’s>.46; reffect size ≤.09). There 

were also no effects of time on conventional attentional bias scores when considering the 

ABM group alone [p’s≥.40, reffect Size ≤.12].

Exploratory analysis: Relationship to clinical outcomes.

We explored whether change in extradecisional bias (delta score: post-treatment - baseline) 

was related to change in our primary clinical outcomes (clinician-rated hypervigilance; 

MASQ-Anxious Arousal and General Distress subscales; see Supplement for details), in 

either the ABM or sham training groups or across the full sample. No significant 

relationships were found (∣r∣ < .15; p’s>.31).

Discussion

The dot-probe task has been used in many hundreds of studies of affective conditions, 

spanning both internalizing [e.g., anxiety(7), depression(33), trauma(34), suicidality(35)] 

and externalizing [e.g., substance use(36), unhealthy eating(37)] conditions. The task 

assesses the clinically relevant construct of attentional bias—or preferential allocation of 

attention to disorder-relevant stimuli—which is a feature of information processing believed 

to have wide-reaching effects on the generation and/or maintenance of a range of 

psychopathological symptoms. In this first, proof-of-principle application of a well-validated 

computational modeling approach to dissect behavioral data collected during the dot-probe 

task, we introduce a novel analytic approach for dot-probe data and show that good model 

fits were readily achievable using publicly available software. We further demonstrate that 

split-half reliability of resulting DDM-derived attentional bias indices was strong—a 

necessary precondition for evaluating individual differences (38)—and test-retest reliability, 

though still modest, clearly outperformed conventional attention bias scores, where widely-

acknowledged problems with reliability threaten to stall progress (10,11). With respect to 

convergent validity, the DDM-derived extradecisional parameters tracked as expected with 

participant age, eye movements measured concurrently during the task, and conventional 

bias scores, and with altered salience network activation during a dot-probe task performed 

in the fMRI scanner (Figure 3). Finally, the novel extradecisional bias scores appeared more 

sensitive to treatment change—when using these indices, hypothesized mechanistic 

intervention effects were unveiled which were not detectable using conventional bias 

quantification methods.
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The advantages of computational modeling include the ability to make full use of trial-level 

data to obtain more fine-grained detail about cognitive processes (3). In the context of 

anxiety research, computational modeling approaches have previously revealed novel 

insights including altered learning mechanisms [e.g., increased threat expectations, 

decreased ability to leverage causal statistics to accurately predict outcomes;(39,40)], which 

may contribute to the development of affective biases such as attention bias (41); dynamic 

processes of task performance such as an increased tendency to apply caution in response to 

errors (19); and effects of threatening content on memory performance which were not 

detectable using traditional memory bias indices (17,18). In an effort to encourage 

replications and extensions of the current work, we used computational modeling methods 

which are freely available for download, making the enormous corpus of previously 

collected dot-probe data—which has produced replicable (7) yet notoriously mixed and 

unreliable (11) findings using conventional analysis techniques—ripe for the picking. Our 

results suggest the potential benefits may include improved reliability, interpretability, and 

sensitivity of attentional bias indices.

Our fMRI analyses suggest the DDM-derived index could also be readily traced backwards 

to neural substrates, while conventional bias scores could not. Findings implicated decreased 

recruitment of attentional and emotional control regions that regulate responses to salient 

stimuli (30,31) in those individuals showing the largest degree of extradecisional bias. While 

this finding may be consistent with the hope that computational psychiatry will assist in 

establishing linkages across levels of analysis, we were unable to further link extradecisional 

bias forward to clinical symptoms in the current sample. Specifically, in exploratory 

analyses we found no evidence that shifts in extradecisional bias over time mediated acute 

improvements in clinical symptoms (following either ABM or sham training). These 

analyses were limited by the relatively small sample sizes in the two arms, the (still 

suboptimal) test-retest reliability of the DDM indices, and by the fact that robust between-

group differences in clinical outcomes were not observed in the current study (23). Larger or 

more clinically homogeneous samples may be required to adequately test for such linkages. 

Given the prevalent usage of the dot-probe task across numerous ABM studies conducted to 

date, reanalysis of existing datasets may present an accessible opportunity to address these 

questions in sufficiently powered samples.

Limitations.

The DDM extradecisional time parameter conflates both cognitive processes of theoretical 

interest [e.g., time taken to orient attention to the probe location] and those of less interest 

(response preparation/execution). Although good model fits to the empirical data were 

obtained in the present analyses, computational modeling necessarily involves assumptions 

that may vary in their applicability across participants and/or studies, and model fits, though 

uniformly adequate, did vary to some degree across individual datasets. With respect to test-

retest reliability, the DDM-derived bias scores surpassed that of conventional bias scores in 

the current dataset, as well as exceeding the maximum reliability achieved in previous 

exhaustive analyses of conventional bias scores conducted across multiple datasets (max 

ICC=.19; (10)); yet test-retest reliability still remained suboptimal, which may be 

particularly problematic if correlational analyses of individual differences in trajectories over 
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time within a group (e.g., mediation analyses) are desired. This may be partly due to 

inherent (mathematically determined) challenges in obtaining good reliability whenever a 

bias score is computed as a difference score between two task conditions which are 

themselves highly correlated across individuals (11) or may be a natural by-product of state 

(rather than trait-like) influences on performance. Unexpectedly, extradecisional_bias 

increased over repeated assessments within the sham training group, which could be linked 

to the aforementioned factors limiting stability of bias scores over time, coupled with the 

relatively small control group sample; or could suggest that the control training had an 

unanticipated (and potentially unwanted) effect in this sample. The dot-probe task has been 

critiqued for conflating other features of attention which DDM cannot separate—e.g., initial 

engagement with threat vs. disengagement from threat; overt and covert aspects of attention 

(29,42). While the current findings may inform improved analysis strategies applicable to a 

large volume of existing data, future work should aim to develop and refine new assessment 

methods (e.g.,40), ideally with an explicit eye towards task features that will maximize the 

ability to apply computational analytic methods and precisely quantify cognitive 

components most relevant to the attentional mechanisms of interest. Finally, the current 

dataset was suboptimal for examining key clinically relevant questions (e.g., mediation of 

clinical effects), particularly given small within-treatment sample sizes and the lack of 

robust group differences in clinical outcomes.

Conclusions.

The present analyses suggest a well-validated computational modeling method (DDM) is 

appropriate for modeling of the dot-probe task in clinically anxious samples and represents 

an improved analytic technique that can yield novel insights. Widespread interest in 

quantifying and mechanistically targeting attentional bias in clinical populations has led to 

widespread use of the dot-probe task. However, efforts to better understand the nature, role, 

and neurobiological substrates of attentional patterns are stymied by recent recognition of 

the limitations of conventional analytic methods. Our results introduce one possible method 

of extracting more reliable, precise, and sensitive attentional bias metrics from existing 

behavioral dot-probe datasets—which likely span tens of thousands of participants—and 

could therefore improve the potential to translate this fundamental, transdiagnostic 

mechanism, both backward to neural substrates and forward to clinical applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Representative empirical and model-predicted cumulative distribution functions (CDFs) of 

trial-level behavioral performance on the dot-probe task, constructed from a single 

individual at baseline. For graphical purposes only, error trials (present in the top panel only) 

are represented as negative values reflecting the inverse of observed reaction time.
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Figure 2. 
Hierarchical linear regression equation plots depicting changes (slope) in extradecisional 

bias as a function of training group.
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Figure 3: 
Clusters where incongruent-minus-congruent fMRI contrast values negatively correlate with 

DDM-derived extradecisional bias scores across individuals (from whole-brain analysis with 

map-wise p<.05; voxel-wise p<.005). From left to right, panels display the following 

clusters from Results text: L temperoparietal junction (TPJ; n=121 voxels; peak voxel: x=

−46, y=−69, z=38; R2=.28); dorsomedial prefrontal cortex (DMPFC; n=93 voxels; peak 

voxel: x=−1, y=45, z=14; R2=.20); ventral anterior cingulate cortex (vACC; n=96 voxels; 

peak voxel: x=5, y=15, z=−3; R2=.21). No significant clusters exhibiting positive 

correlations were found.
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