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Abstract

Staphylococcus aureus (S. aureus) is a notorious pathogen and one of the most frequent causes of 

biofilm-related infections. The treatment of S. aureus biofilms is hampered by the ability of the 

biofilm structure to shield bacteria from antibiotics as well as the host’s immune system. 

Therefore, new preventive and/or therapeutic interventions, including the use of antibody-based 

approaches, are urgently required. In this review, we describe the mechanisms by which anti-S. 
aureus antibodies can help in combatting biofilms, including an up-to-date overview of 

monoclonal antibodies currently in clinical trials. Moreover, we highlight ongoing efforts in 

passive vaccination against S. aureus biofilm infections, with special emphasis on promising 

targets, and finally indicate the direction into which future research could be heading.
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1. Clinical significance of S. aureus biofilm-associated infections

The Gram-positive pathobiont Staphylococcus aureus (S. aureus) is one of the most frequent 

causes of nosocomial infections, and there is no vaccine available yet. S. aureus infections 

are highly diverse, ranging from acute diseases, such as bacteremia and skin abscesses to 

severe chronic infections that are often associated with biofilms [1]. Due to an arsenal of 

adhesins (see Glossary), S. aureus can attach to and persist on host tissues (e.g. heart valves 

and bones) as well as implanted materials (e.g. catheters, prosthetic joints and pace makers), 

and cause diseases such as endocarditis, and osteomyelitis [1–3]. On the other hand, about 

20% of the human population is persistently colonized in the anterior nares and other body 
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sites such as the intestine, while the remainder carry the bacteria intermittently [4]. In most 

cases, colonization is asymptomatic, but it can also lead to endogenous infections [5].

Over the past decades, the steady increase in the use of medical implants has been 

accompanied by a rise in infection risk. Indeed, implant or device-associated infections are 

important complications associated with the use of biomaterials [2,6], and account for one 

quarter of all healthcare-associated infections in the USA [7]. Among their deleterious 

consequences are failure of prosthetic devices, implant replacement with its associated risk 

of clinical complications, and chronic and/or relapsing diseases [2,8]. Staphylococci, 

including S. aureus, S. epidermidis (Box 1) and other coagulase-negative staphylococci 

(CoNS) are the main culprits of foreign body-associated infections, accounting together for 

an estimated 80% of all infections [2,9]. The diagnosis and targeted therapy of implant 

infections is often problematic, because they are frequently subclinical and culture-negative.

Biofilm formation is an important virulence mechanism of many bacterial pathogens. A 

biofilm is defined as a sessile microbial community embedded within an amorphous slimy 

material [2]. Biofilm formation enables growth on natural and foreign surfaces, and shields 

bacteria from antibacterial therapies as well as the host immune system, often leading to 

persistent infections unresponsive to antibiotic therapy [2]. In addition to the matrix 

representing a penetration barrier for many antimicrobial agents, the efficacy of most 

antibiotics is reduced against biofilms, because cells in a biofilm are in a state of reduced 

metabolism [10,11], whereas most antibiotics target active cell processes, such as cell wall 

formation, translation or transcription [12]. Consequently, there is an immense medical need 

to develop innovative preventive and/or therapeutic interventions, including anti-infective 

biomaterials, biofilm-active antibiotics, and biofilm matrix-degrading enzymes [13]. 

Another appealing measure to prevent biofilm formation and/or treat established biofilms is 

the use of monoclonal antibodies targeting the invasive pathogen, which is the focus of this 

review. After describing aspects of S. aureus biofilm formation, the antibacterial antibody 

response in S. aureus biofilm infections as well as techniques to generate monoclonal 

antibodies, we provide an update on preclinical as well as clinical studies on monoclonal 

antibodies against S. aureus biofilm-associated infections and outline critical aspects for the 

development of a successful anti-biofilm vaccine.

2. Staphylococcal biofilm stages and composition

In order to develop protective antibody-based therapies, it is essential to gain an in-depth 

understanding of the process of biofilm formation as well as its composition, since gene and 

protein expression differ greatly between the planktonic and biofilm modes of bacterial 

growth [14,15]. In the past, proteomic analyses were usually based on examining 

intracellular proteomes of laboratory isolates in static biofilms. However, more recent 

studies used flow chamber systems or even analyzed biofilms from animal infection models, 

which may reflect the human clinical situation more closely and hence reveal novel biofilm-

associated targets [14,16–19].

Biofilm formation in staphylococci has been described as a process comprising at least three 

main stages: (i) bacterial attachment to a surface, (ii) biofilm formation and maturation, and 
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(iii) biofilm detachment / dispersal (Figure 1, Key Figure) [20]. Staphylococcal 

agglomerations that are not attached to a surface are also occasionally regarded as biofilms 

[21]; in those cases, intercellular aggregation substitutes for the initial adhesion step.

Attachment of bacteria to abiotic plastic surfaces of indwelling medical devices may happen 

via hydrophobic attraction. However, soon after insertion, human matrix proteins cover the 

device surfaces, and thus, initial attachment in vivo proceeds mainly via the interaction of 

staphylococcal surface binding proteins with human extracellular matrix [20]. Many of the 

former belong to the “microbial surface components recognizing adhesive matrix molecule” 

(MSCRAMM) family [22]. MSCRAMMs (discussed in detail in Chapter 5) are anchored to 

the cell wall via the enzyme sortase and contain cell wall-spanning domains that end with an 

exposed domain binding to human matrix proteins (Figure 1). Overall, there is pronounced 

redundancy among the MSCRAMMs, reflecting their key role in bacterial colonization and 

survival in the host [22].

The biofilm formation / maturation phase, in addition to bacterial growth, is characterized by 

the secretion of biofilm matrix components and the creation of a three-dimensional biofilm 

structure. The composition of biofilm matrix is heterogeneous, comprising proteins, 

extracellular DNA (eDNA) and polysaccharides (discussed in detail in Chapter 5). Several 

secreted proteins have been implicated in biofilm formation, many of them are surface 

binding proteins, whose contribution to the initial adhesion versus subsequent phases of 

biofilm development is often hard to discern. In contrast, the S. epidermidis accumulation-

associated protein Aap and its S. aureus homologue SasG, appear to have a very specific 

biofilm matrix function, forming polymeric fibrils that link together cells in a biofilm [23–

25].

Another biofilm-characteristic component is the cell surface associated exopolysaccharide 

PNAG (ß-1,6-poly-N-acetylglucosamine, also called polysaccharide intercellular adhesin, 

PIA) [26]. PNAG is not omnipresent in staphylococcal biofilm-forming isolates [27], but its 

production supports cell to cell adhesion, leading to more robust biofilms [28,29]. PNAG’s 

cationic nature facilitates bacterial attachment to host cell surfaces [30], which is possibly 

mediated by negatively charged molecules such as teichoic acids and eDNA that is released 

by dying cells.

Biofilms do not grow as undifferentiated “bricks”, but contain channels that are deemed 

important for nutrient delivery to all layers of a biofilm. Enzymatic digestion of biofilm 

matrix molecules, such as eDNA and proteins by nucleases and proteases, respectively, has 

been implicated in channel formation [1]. However, no enzyme capable of degrading PNAG 

has so far been identified in staphylococci. Moreover, phenol-soluble modulins (PSMs) are 

amphipathic and surfactant-like peptides that structure biofilms independently of biofilm 

matrix composition, most likely by disrupting hydrophobic as well as hydrophilic 

interactions between biofilm matrix molecules [31,32].

Detachment of cells or cell clusters from a biofilm can be triggered solely by mechanical 

shear forces as encountered in the blood stream. However, this process, which is crucial for 

the systemic dissemination of a biofilm-associated infection, can also be facilitated by 
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pronounced activity of biofilm-structuring factors. For instance, PSMs disrupt interactions of 

biofilm matrix molecules, such as PNAG, with each other in vivo, contributing to biofilm 

dispersal [31,33].

3. Antibacterial antibody response in S. aureus biofilm infections

How the innate and adaptive immune systems react to biofilms and what type of immune 

response is protective is still not well understood. Biofilm infections trigger an inflammatory 

response, as reflected by the infiltration and activation of phagocytes at the site of infection, 

and the release pro-inflammatory cytokines, promoting a Th1/Th17 response and the 

production of antibodies, predominantly of the human IgG1 subclass [34–36]. While 

neutrophils are capable of infiltrating the biofilm and efficiently phagocytose enclosed cells, 

this defense mechanism is less effective in mature biofilms [37]. This exemplifies the 

inefficiency of the induced host response in clearing a persistent biofilm infection [37,38].

Similarly, the protective potential of antibodies in biofilm infections is not well defined. S. 
aureus infection stimulates the production of specific antibodies against a broad range of 

surface and secreted staphylococcal proteins, but these generally do not prevent a re-

infection with this notorious pathogen [39]. However, antibody profiling in sepsis patients at 

the time of diagnosis showed that high antibody titers might confer protection from an 

adverse outcome [40]. This implies that the immunological “starting position” is important 

for disease outcome, a fact that is encouraging for efforts in vaccine development. For 

biofilm infections, clinical data are scarce, but suggest that biofilms also trigger or boost an 

antibody response against a broad range of S. aureus antigens: adhesins and cell wall-

modifying enzymes, biofilm matrix components, toxins and immune evasion factors 

(discussed in detail in Chapter 5) [41–43].

In line with these patient data, animal experiments indicate that boosting the antibody 

response by active or passive vaccination prevents or at least reduces the severity of biofilm-

associated S. aureus infections [18,35,44]. For example, in a murine model of mesh-

associated biofilm infection, a vaccination approach using biofilm matrix exoproteins 

significantly reduced the number of bacterial cells inside a biofilm and on the surrounding 

tissue [18]. Another multivalent S. aureus vaccine comprising four cell wall-associated 

proteins prevented the formation of biofilm-mediated osteomyelitis in the majority of the 

treated animals when combined with an antimicrobial therapy [44]. Hence, animal data 

suggest that antibodies can contribute to biofilm prevention and clearance.

Anti- S. aureus antibodies can penetrate the biofilm matrix [45,46], and interfere with all 

three stages of biofilm formation. Initial attachment can be prevented by targeting surface-

bound or soluble adhesins (Figure 2). Biofilm maturation is disturbed by blocking surface 

proteins involved in cell-to-cell adhesion, and biofilm dispersal is enhanced by targeting 

matrix-stabilizing proteins. Moreover, high affinity IgA and IgG antibodies can neutralize 

secreted bacterial factors (e.g. toxins, enzymes, immune evasion molecules). Finally, 

surface-bound antibodies can enhance biofilm elimination by neutrophils and macrophages, 

either via antibody-binding Fc receptors or by inducing complement activation and C3b 

deposition on the bacterial surface (Figure 2) [18,47,48]. In conclusion, antibodies can 
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potentially interfere with biofilm formation and/or promote dispersal of established biofilms 

by several mechanisms. However, since the natural antibody response in many cases seems 

to be insufficient to eliminate established biofilms, boosting the antibody response by active 

or passive vaccination seems a promising approach to reduce the severity of biofilm-

associated S. aureus infections.

4. Generation of monoclonal antibodies

Monoclonal antibodies are superior to polyclonal sera in studying anti-biofilm activities, 

since they allow for molecular interaction studies and can potentially be applied in human 

patients. Over the past decade, technical advances have been made in the production and 

modification of monoclonal antibodies. Traditionally, monoclonal antibodies were generated 

using the hybridoma technology (Figure 3A) resulting in murine antibodies, which can, 

however, have severe side effects if introduced into the human host [49,50].

Within less than a decade after the first monoclonal antibody was described, two approaches 

were developed to reduce antigenicity and enhance antibody-mediated effector functions. 

The recombinant attachment of a murine antigen-specific variable region to a human 

constant region resulted in the rise of chimeric antibodies [51]. Almost concurrently, the first 

humanized antibody was generated by transfering the murine complementarity-determining 

regions (CDRs) into a human antibody sequence. Especially the latter approach reduced the 

murine proportion and hence the immunogenicity of the antibody [52]. Both methods 

enabled the selection of the desired human constant region, which defines the antibody class 

and hence antibody-mediated effector functions. Nowadays it is possible to generate 

chimeric and humanized antibodies by combining the use of transgenic mice expressing 

chimeric or CDR-drafted antibodies with the hybridoma technology.

The four most common techniques for the generation of numerous fully human monoclonal 

antibodies are phage display libraries, B cell cultures, B cell immortalization using Epstein-

Barr virus (EBV) as well as cloning of antibodies from single antigen-specific B cells 

(Figure 3B-E). While phage display libraries are generated by random combination of 

immunoglobulin heavy and light chains, the other three methods are based on antigen-

specific B cells from exposed donors and thus reflect the physiological antibody response 

[53,54]. These methods can also be elegantly combined. For example, instable hybridomas 

and EBV-transformed cell lines can be rescued by cloning the antibody-coding sequences 

into an expression system.

Using antibody engineering, it is also possible to tailor the affinity and effector functions of 

antibodies to their application. For example, monoclonal antibodies can be genetically 

modified to increase antigen affinity and antibody half-life or to increase/decrease affinity 

towards Fc receptors [55,56]. Moreover, two antibodies can be combined to create bispecific 

antibodies by linking Fab fragments of two different specificities [57,58], or used as a 

shuttle to target antimicrobial drugs directly to the S. aureus cells [59–61]. This tool box for 

antibody engineering promises to be very helpful in designing protective anti-S. aureus 
monoclonal antibodies in the future.
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5. Preclinical studies on antibodies targeting S. aureus biofilms

Despite the huge clinical impact of biofilm infections, research on antibodies targeting S. 
aureus infections often ignores biofilms during antigen selection and preclinical antibody 

testing. Nevertheless, there are several interesting S. aureus vaccine candidates with 

promising results in pre-clinical studies that we would like to highlight in this chapter, 

including adhesins, cell-wall modifying enzymes, surface glycopolymers, biofilm matrix 

components, and toxins (Figure 1).

Adhesins

Staphylococcal adhesins, including MSCRAMMs, are one of the most studied targets for 

antibody-based therapies [22]. Antibodies against adhesins exert their action via two 

mechanisms (Figure 2): (i) preventing the initial microbial adherence to abiotic as well as 

biotic surfaces [62–64], and (ii) coating the bacterial surface, thereby facilitating the 

clearance of an organism through opsonophagocytic bacterial killing [65,66]. In the context 

of biofilm vaccine development, interesting candidates are clumping factor (Clf) A and B, 

and the fibronectin-binding proteins (FnBPA and B) as these cell-wall associated proteins 

are involved in biofilm formation and are widely distributed among the S. aureus clinical 

isolates, while the collagen-binding protein (Cna), biofilm-associated protein (Bap), as well 

as the S. aureus surface protein C (SasC) and SasG are present only in a subset of isolates 

[67].

The MSCRAMM ClfA promotes bacterial binding to fibrinogen. ClfA plays an important 

role in the colonization of implanted biomaterials or damaged endothelial surfaces at the site 

of endovascular infections [22,68]. Over the past 15 years, several monoclonal antibodies 

against ClfA were shown to block biofilm formation in vitro (Table 1) [62,66,69,70]. In 

animal infection models anti-ClfA monoclonal antibodies protected from biofilm (e.g. IE) 

and non-biofilm-associated (e.g. sepsis) infections [69,70]. In contrast, an anti-ClfA 

monoclonal antibody alone had only a moderate effect in a murine hematogenous implant 

infection, but in combination with antibodies against alpha toxin (Hla) it effectively 

inhibited biofilm formation both in vitro and in vivo [62]. Moreover, a humanized anti-ClfA 

monoclonal antibody (tefibazumab) conferred full protection against infective endocarditis 

(IE) in rabbits when applied prophylactically [69].

FnPBs recognize fibronectin, fibrinogen and elastin, and promote intercellular accumulation 

and biofilm development (Table 1) [22]. Antibodies against FnBP inhibit S. aureus biofilm 

formation in vitro and partially protected mice against endocarditis following sepsis [63,64].

Cell wall-modifying enzymes

The surface-associated murein hydrolase autolysin, Atl is a bifunctional enzyme that 

undergoes proteolytic cleavage to yield two cell wall-active enzymes, an amidase (Amd) and 

a glucosaminidase (Gmd). Both enyzmes are involved in bacterial cell separation after cell 

division, host extracellular matrix adhesion and biofilm formation (Table 1) [71]. Polyclonal 

antibodies to Amd and Gmd inhibit biofilm formation and enhance opsonophagocytosis 
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[71,72]. In addition, a monoclonal antibody against Gmd (1C11) reduced infection severity 

in a murine model of implant-associated osteomyelitis [73].

Glycopolymers

Staphylococcal cells are decorated with glycopolymers, including wall teichoic acids 

(WTA), peptidoglycan, lipoteichoic acids (LTA), and capsular polysaccharides (CP). These 

surface glycopolymers are recognized by serum antibodies and a variety of pattern 

recognition molecules, including mannose-binding lectin. Anti-WTA antibodies facilitate 

complement C3 deposition via the classical pathway as well as opsonophagocytosis of 

laboratory and clinical S. aureus isolates by neutrophils (Table 1) [74,75]. Although a human 

monoclonal anti-WTA antibody was ineffective in preventing S. aureus infection in an 

intravenous mouse infection model, it showed promising in vivo results when conjugated to 

an antibiotic [61]. Further human monoclonal antibodies targeting WTA are currently 

characterized [76]. However, to the best of our knowledge, anti-WTA antibodies have never 

been tested in biofilm-related infection models. Antibodies against the capsular 

polysaccharides promote opsonophagocytosis but yielded contradictory results when tested 

in a rat endocarditis models. While rabbit polyclonal antibodies conferred partial protection, 

murine antibodies were not protective [77–79].

Biofilm matrix

The biofilm matrix has been recently brought into the focus of anti-biofilm vaccine research. 

This is in part due to the widely conserved nature of some of its components, making those 

components suitable conserved vaccine candidates for protection against various human 

pathogens.

PNAG has been extensively evaluated as a potential vaccine candidate in relation to biofilm-

associated infections (Table 1). In contrast to many S. aureus-specific biofilm factors, it is 

expressed among a variety of bacteria, fungi and protozoa [80,81]. For instance, the 

immunological cross-reactivity of an opsonic antibody against S. aureus PNAG and 

Escherichia coli polyglucosamine has led scientists to investigate the possibility of 

developing a vaccine against both pathogens [80]. Several studies have highlighted the 

superiority of deacetylated PNAG (dPNAG) to PNAG in terms of immunogenicity and 

protection in animal models [80,82]. Anti-dPNAG immune sera provided efficient protection 

in a murine intraperitoneal [80,82], as well as a bacteremia model [82]. More interestingly, 

the human IgG1 monoclonal antibody F598 (which binds both PNAG and dPNAG) has 

opsonic and protective activities against multiple microbial pathogens in vivo [65,81] and is 

currently undergoing preclinical and clinical assessments as a broad-spectrum antimicrobial 

therapeutic [83].

Bacterial DNA-binding proteins (DNABII family) have conserved homologs in a wide 

variety of bacterial species and are involved in a number of biofilm-associated infections 

[84,85]. They serve as adapter proteins for eDNA strands and hence stabilize the biofilm 

matrix (Figure 1; Table 1) [86]. Loss of these scaffolding proteins, for instance by 

neutralization with specific antibodies, causes dispersal of the biofilm. The released bacteria 
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regain their susceptibility to killing by antibiotics and are more easily cleared by phagocytes 

[86,87].

Recently, Estellés et al. generated a native human monoclonal antibody (TRL1068) 

recognizing a DNABII epitope conserved across a range of Gram-positive and Gram-

negative bacterial species [84]. TRL1068 showed anti-biofilm efficacy in an in vitro biofilm 

assay as well as in a murine infectious implant model, and a catheter-related biofilm 

infection model in rats [84,85]. However, as this antibody promotes biofilm dispersal, it is 

essential to eliminate the released bacteria to prevent subsequent dissemination to distant 

organs. Therefore, TRL1068 was proposed as a clinical candidate for the treatment of 

implant-associated infections in combination with standard-of-care antibiotics (Table 1) 

[84,85].

Toxins

Proteomic studies demonstrated that several pore-forming toxins (e.g. Hla, LukAB, and γ 
hemolysin (HlgAB)), and immune evasion molecules (e.g. SCIN, and CHIPS) are produced 

within a biofilm in vitro and in vivo, some even in higher amounts than in planktonic 

cultures, whereas others, including the immune evasion protein A, are down-regulated 

[14,17,88]. The pore-forming toxins Hla, LukAB and HlgAB lyse a range of host immune 

cells, including T cells, monocytes and neutrophils [89], thereby torpedoing the anti-biofilm 

immune response. Neutralizing these toxins by monoclonal antibodies may enhance host 

defenses and facilitate clearance of planktonic and biofilm cells (Figure 1).

Apart from destroying immune cells, Hla promotes biofilm formation in vitro, as well as in 
vivo by disrupting the host epithelium, providing nutrients for bacterial survival through 

promoting host cell lysis, and facilitating bacterial cell-to-cell interactions [90,91]. The 

human monoclonal anti-AT neutralizing antibody (MEDI4893) sterically inhibits binding of 

Hla to its cellular receptor ADAM10, effectively blocking pore formation [92]. It 

successfully abrogated ex vivo biofilm formation on porcine vaginal mucosa explants [91]. 

Considering that prophylactic treatment with MEDI4893 in a mouse model of S. aureus 
wound infection also promotes wound healing [93], this suggests that neutralization of Hla 

may be useful in biofilm-related S. aureus wound infections. MEDI4893 has been 

extensively tested in various biofilm and non-biofilm infection models (Table 1) [62,91,93].

The pore-forming toxin leukocidin A/B (LukAB) kills professional phagocytic cells, and 

together with AT facilitates the persistence of staphylococcal biofilms [94]. Badarau et al. 

first reported on the discovery of a highly potent neutralizing human IgG1 monoclonal 

antibody against LukAB (ASN-2), with a high affinity antibody binding site on the LukAB 

dimer [95]. In 2017, Thomsen et al. reported on three potently neutralizing naturally 

occurring LukAB-specific human monoclonal antibodies, which reduced the bacterial load 

in murine sepsis model (Table 1) [96].

Quorum-sensing blocking monoclonal antibodies

Targeting quorum sensing, i.e. bacterial cell density-dependent gene regulation, is a 

frequently promoted antivirulence strategy [97]. In S. aureus and other staphylococci, the 

quorum-sensing system Agr controls virtually all known virulence factors, such as toxins 
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and secreted degradative enzymes [98]. In an exceptionally strict fashion, Agr controls 

thePSMs [99], which – as previously mentioned – trigger biofilm structuring and 

detachment [100]. Owing to this control, interfering with Agr quorum sensing results in the 

formation of thick undifferentiated biofilms [101]. Another less well characterized potential 

quorum-sensing system, LuxS, controls exopolysaccharide synthesis in a negative fashion 

[102,103]. Thus, interfering with quorum-sensing in staphylococci by the use of monoclonal 

antibodies or any other means does not represent a promising/efficient anti-biofilm strategy.

In summary, several S. aureus vaccine candidates, including adhesins, cell-wall modifying 

enzymes, biofilm matrix components and toxins, showed promising results in pre-clinical 

studies. To combat biofilm-related infections, future vaccination studies should aim at 

identifying and testing bacterial target structures expressed by both planktonic and biofilm 

cells, for instance using proteomic approaches.

6. Clinical trials on antibodies targeting S. aureus

Several of the above described targets, including ClfA, CP5 and 8, PNAG, Hla and HlgAB 

(Table 2), have been tested as passive vaccines in clinical phase II and/or III trials. However, 

none of them improved the clinical outcome in the treated patient cohorts. For instance, the 

anti-ClfA monoclonal antibody tefibazumab failed to achieve statistically significant 

improvement of clinical outcome in bacteremia and cystic fibrosis patients [104]. Similarly, 

polyclonal antiserum against CP5 and CP8 (AltaStaph), as well as a monoclonal antibody 

against LTA (Pagibaximab) failed in phase II and III trials, respectively (Table 2, Box 1) 

[105–108]. Moreover, a phase IIa study on using an anti-PNAG monoclonal antibody in 

ventilated intensive care unit (ICU) patients was terminated.

This failure of trials using surface-directed monoclonal antibodies against adhesins and 

surface glyocopolymers forced S. aureus researchers to revisit S. aureus pathogenesis and 

potential correlates of protection. One lesson learned is that targeting a single adhesin is 

prone to failure due to the high functional redundancy of these proteins. For instance, there 

are at least five fibrinogen-binding proteins in S. aureus [22]. Moreover, it has been 

suggested that adverse effects could be caused by antibody-induced agglutination, since 

large aggregates of bacteria in the blood may not be cleared by the host and could become 

trapped in various tissues, particularly in the lungs [109,110]. Finally, in contrast to other 

pathogens, opsonophagocytosis may not be the most important mechanism of protection, 

since this species produces a whole arsenal of toxins and immune evasion proteins that are 

decisive for pathogenesis. In consequence, current research and clinical trials are focusing 

on poreforming toxins as targets for an antibody-based therapy (Table 2) [95,111,112]. 

MedImmune as well as Aridis Pharmaceuticals are testing human anti-Hla antibodies for 

prevention of S. aureus pneumonia [111].

Apart from a shift towards toxins, there is now a trend towards multivalent vaccines in order 

to combat the multifactorial nature of S. aureus pathogenesis [112,113]. For instance, 

Arsanis Biosciences has tested a combination of two human monoclonal antibodies (ASN-1 

targeting Hla and four other bi-component leukocidins; ASN-2 targeting LukAB) in the 

ASN100 phase II clinical trial for the prevention of S. aureus pneumonia (Table 2) [95,112]. 
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The trial was however recently halted due to insufficient efficacy. Another approach involves 

the use of monoclonal antibodies as means of targeted delivery of antimicrobials. For 

instance, an antibody-antibiotic conjugate (AAC) specifically binding wall teichoic acid is 

currently used in a phase Ib clinical trial targeting S. aureus bacteremia patients [114,115] 

(Table 2).

7. Concluding Remarks and Future Perspectives

Although biofilm infections have been recognized as an important mediator of chronic 

infection associated with high morbidity and mortality, vaccine research has seemingly 

overlooked biofilms with regard to discovery and efficacy studies. A better understanding of 

the immune response against biofilms, and of how biofilms manipulate this response, is 

therefore essential for the development of protective staphylococcal vaccines (see 

Outstanding Questions). Nevertheless, in the reasonably near future, the identification and 

testing of new combinations of monoclonal antibodies, which are effective against 

planktonic as well as biofilm cells in a broad range of disease settings, will hopefully 

achieve more success than past attempts.

Ideally, the following factors should be considered while selecting potential biofilm-related 

antigens: (i) prevalence in clinical isolates [67], (ii) antigenic variability of the target protein 

[66,116,117], (iii) expression profiling of proteins within the biofilm in vivo [14,16], (iv) its 

relevance in many different staphylococcal diseases, (v) immunological relevance, i.e. 

accessibility to antibodies within the biofilm matrix, and (vi) ability to induce not only a 

strong but the correct (i.e. protective) type of immune response (governed by the right choice 

of adjuvant / route of antigen application) [118].

In order to meet all or most of these criteria, multivalent vaccines are the only strategy of 

choice for active as well as passive immunization [18,44,44,66]. The most effective 

therapeutic approach for the biofilm lifestyle will likely require a combinatorial approach of 

bactericidal and immunostimulatory treatments. It may be an unrealistic goal to achieve a 

complete clearance of S. aureus from our body, bearing in mind that the microorganism is 

part of the human normal microbiota and an expert in evading host immune defense, but 

rather clinical protection to reduce the severity of staphylococcal infections and prevent 

chronification.

Recapitulating the unsuccessful clinical trials for a passive S. aureus vaccine, several hurdles 

can be named: (i) the multiplicity and redundancy of S. aureus virulence factors which 

challenges the selection of protective antigens, (ii) the production of numerous immune 

evasion factors, including protein A (iii), a lack of knowledge about the nature of protective 

immunity against S. aureus infection, and (iv) a lack of transition from animal models to 

human studies [109,119,120]. One explanation for a lack of transition could be the use naive 

animals, whereas humans are immunologically primed against S. aureus. This may explain 

why huge effects of different passive or active vaccination strategies in animals cannot be 

reproduced in humans. If these points are considered in antigen selection processes and 

subsequent preclinical tests, we will hopefully be more successful in the near future in 

developing a protective passive vaccine against this notorious pathogen.
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Glossary

Active vaccination:
immunization with an antigen to provoke adaptive immunity. It usually induces long-lasting 

and robust protective immune memory, but requires several weeks to become fully effective.

Adhesins:
bacterial cell surface proteins that enable them to bind to the surfaces of host cells or the 

extracellular matrix.

Antibody:
also known as immunoglobulin (Ig), is secreted by B cells upon antigen contact. It is highly 

specific and binds its target structure, the antigen, with very high affinity. While each B cell 

produces identical antibodies, an individual can produce a total number of at least 107 

antibody specificities, enabling the immune system to respond to wide range of antigens. 

Structurally, antibodies are heterodimeric proteins composed of two heavy and two light 

chains which are linked by disulfide bonds.

Chimeric antibody:
antibody whose constituent parts are derived from different species, mostly human and 

murine. The replacement of the murine with a human Fc part allows chimeric antibodies to 

efficiently interact with the human immune system and reduces the risk of an adverse 

immune response to the applied monoclonal antibodies.

Human antibody:
antibody that is composed of fully human antibody heavy and light chains.

Humanized antibody:
antibody, where the mouse antigen binding regions (= hypervariable loops) are genetically 

engineered into otherwise human antibodies.

Hybridomas:
hybrid cell lines formed by fusing a myeloma cell (no antibody production, but immortal) 

with a specific antibody-producing B cell (antibody production, but mortal). The resulting 

immortal hybridoma cells are grown in tissue culture and produce antibodies of a single 

specificity (i.e. monoclonal).

mAb (monoclonal antibody):
antibodies produced by a single clone of B cells, which are hence all identical. They are 

generated either by immortalizing the antibody-producing B cell or by cloning the respective 

genes into an expression system.
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MAC (membrane-attack complex):
a protein complex composed of the terminal complement proteins, which generates lytic 

pores in certain pathogens.

MSCRAMMs (microbial surface components recognizing adhesive matrix molecules):
cell wall-attached adhesin proteins, which share a similar protein structure and a common 

mechanism of ligand binding, including ClfA, ClfB, SdrC, SdrD, SdrE, bone sialoprotein-

binding protein, FnBPA, FnBPB and Cna. They mediate the initial attachment of bacteria to 

abiotic/biotic surfaces, providing a critical step in the establishment and persistence of 

infections.

Murine antibody:
antibody that has been generated in mice. Murine antibodies are recognized by the human 

immune system as foreign antigens, and can thus - upon repeated application - lead to 

allergic reactions, reduced therapeutic effectiveness and shorter circulating antibody half-

life.

OPK (opsonophagocytic killing):
the deposition of antibody and/or complement onto the surface of a pathogen makes it more 

easily ingested by phagocytes.

Passive immunization:
transfer of antibodies / immune sera / immune cells to provide immediate and specific – 

albeit short-lived – immunological protection.
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Highlights

• S. aureus and other staphylococci are the most common cause of persistent 

biofilm-associated infections, which are inherently resistant to antibiotics as 

well as the host’s immune system.

• Antibody-based approaches can be used to combat biofilms. Antibodies can 

prevent bacterial attachment and/or biofilm maturation, or even disperse 

mature biofilms as shown in vitro and in pre-clinical studies.

• Several sophisticated techniques can be used for the generation of human 

monoclonal antibodies, to be ultimately employed in research or clinical 

settings.

• Since antibodies against surface structures proved unsuccessful in clinical 

trials so far, current research is focussed on S. aureus toxins, and biofilm 

matrix components.

• Multivalent vaccines, with a special emphasis on biofilm-related targets, are 

the strategy of choice for active as well as passive immunization.
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Outstanding questions box:

• What is the proteome (surface proteins, secreted factors) of staphylococcal 

biofilms in ex vivo or in vivo-like conditions?

• How does the adaptive immune system (antibodies, T cells) respond to 

biofilm as compared to non-biofilm infections?

• How do biofilm-embedded bacteria modulate and subvert innate and adaptive 

defense mechanisms?

• What are correlates of protection in biofilm infections – type1/3, type 2 or 

regulatory responses?

• Are specific epitopes of antigens more effective in destabilising biofilms 

and/or preventing biofilm formation?

• Can the efficacy of monoclonal antibodies be enhanced by using a multivalent 

vaccine or by combing antibodies with antibiotics or specific enzymes (such 

as nucleases, proteases)?

• How well can ‘reverse vaccinology’, a genome-based unbiased discovery 

process for the prediction of candidate vaccine antigens, supplement 

traditional vaccine approaches?
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Box 1: Antibody-based therapies against S. epidermidis biofilm-associated 
infections

S. epidermidis is the most frequent cause of device-related infections, with biofilm 

formation as the major virulence factor [2,9,121]. Comparable to S. aureus, targeting S. 
epidermidis biofilm-associated infections can be achieved either by preventing bacterial 

attachment to implants, or by blocking cell-to-cell adhesion during biofilm maturation. 

However, unlike S. aureus, S. epidermidis biofilm formation relies mainly on 

exopolysaccharides rather than proteins [20,122].

The two major biofilm matrix constituents, PNAG and Aap, have been targeted by 

monoclonal antibodies in order to prevent biofilm formation. Anti-PNAG antibodies 

inhibited biofilm formation in vitro and were protective in a rabbit endocarditis model 

[123]. However, the inhibitory effect on static biofilm formation seems to be strain-

dependent [124]. Apparently, PNAG as a biofilm matrix constituent hinders antibody 

binding close to the bacterial cell surface, which is needed for efficient opsonic killing 

[45]. The surface-protein Aap promotes cell-to-cell adhesion within a biofilm. 

Monoclonal antibodies against Aap reduced S. epidermidis biofilm formation in vitro, but 

neither enhanced opsonophagocytosis nor protected mice in an experimental biomaterial-

associated infection [110,125]. The lack of protection might result from shedded Aap, 

acting as a decoy for anti-Aap antibodies [125].

The anti-LTA monoclonal antibody Pagibaximab was designed primarily for the 

treatment of S. epidermidis biofilm-associated sepsis, which occurs particularly often in 

neonates [126,127]. After encouraging results in animals and a more limited phase II 

study in very low birth weight neonates, a larger phase III study in a similar patient 

cohort failed to show a reduction in staphylococcal sepsis (Table 2) [108].

As there are no toxins in S. epidermidis other than PSMs [128], anti-toxin monoclonal 

antibody development for the treatment of S. epidermidis catheter-related bacteremia has 

been limited to those peptides. This approach is however problematic due to the diversity 

and high production of PSMs. Although anti-PSMβ polyclonal antibodies showed some 

success in limiting the dissemination of S. epidermidis biofilm-associated infection in 

mice [33], an octavalent antigen mixture containing four α-type PSMs, despite their 

immunogenicity, did not protect against S. aureus bacteremia [129], dampening the 

enthusiasm for passive PSM-targeted vaccination approaches.

A more suitable candidate might be the surface protein SesC, which is expressed in 

biofilm-associated as well as planktonic cells. Polyclonal rabbit sera against SesC 

partially prevented in vitro biofilm formation by S. epidermidis and dissolved established 

biofilms [130]. A similar reduction in biofilm formation was observed with polyclonal 

anti-SesC antibodies in a mouse model of catheter-related infections [131].
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Figure 1: Overview on tested targets for an antibody-based preventive or therapeutic strategy 
against biofilm-associated S. aureus infections.
Main figure: Biofilm formation in staphylococci comprising three main stages: bacterial 

attachment to a surface, biofilm formation and maturation, and biofilm detachment / 

dispersal. For the attachment to (a)biotic surfaces, S. aureus relies on a broad spectrum of 

functionally redundant adhesins such as the MSCRAMMs (ClfA, Cna, FnbA, FnbB). After 

successful adhesion, bacteria start proliferation and production of the biofilm matrix 

consisting of eDNA, stabilized by DNABII, PNAG and proteins. Eventually, biofilm 

dispersal is mediated by mechanical shear stress (e.g. in a blood vessel) or by dispersion 

factors like PSMs, nuclease, and proteases. Insert: Molecular targets for antibody based 

therapies tested in preclinical in clinical studies include adhesins and cell-wall modifying 

enzymes and other cell wall-attached proteins, surface glycopolymers, biofilm matrix 

components, as well as toxins and immune evasion proteins. Targets from preclinical 

studies, ongoing clinical trials and failed clinical trials are shown in black, blue and red, 

respectively. The asterisk indicates that the S. aureus protein autolysin (Atl) is 
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proteolytically processed into two enzymes, autolysin amidase (Amd) and autolysin 

glucosaminidase (Gmd), which stay non-covalently attached to the cell surface.

Abbreviations: Atl (autolysin); Amd (autolysin amidase); Bap (biofilm-associated protein ); 

ClfA (clumping factor A); Cna (collagen-binding protein); CP (capsular polysaccharides); 

DNABII (DNABII family proteins); eDNA (extracellular DNA); FnBPA/FnBPB 

(fibronectin-binding protein A and B); Gmd (autolysin glucosaminidase); GrfA (ABC 

transporter); Hla (α-toxin); Hlg (γ-haemolysin); IsaA (Immunodominant staphylococcal 

antigen A); LTA (lipoteichoic acid); Luk (Leukotoxins); mAb (monoclonal antibody); 

MSCRAMM (microbial surface components recognizing adhesive matrix molecule); PhnD 

(subunit of alkylphosphonate ABC transporter); PNAG (poly-N-acetyl-ß-(1,6)-

glucosamine); PSMs (phenol soluble modulins); Sasc/G (S. aureus surface protein C and G); 

WTA (wall teichoic acid).
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Figure 2: Antibodies can interfere with biofilm formation and promote dispersal of established 
biofilms by several mechanisms.
A) Secreted staphlyococcoal proteins (e.g. immune evasion molecules, toxins, exoenzymes) 

as well as surface proteins are involved in biofilm development and are hence potential 

targets for therapeutic purposes. High affinity IgA and IgG antibodies can neutralize the 

action of bacterial toxins and surface proteins. Moreover, antibodies can bind to bacterial 

adhesins (e.g. ClfA, FnBPA) and cell wall components (e.g. PNAG), thereby blocking initial 

attachment to host matrices and subsequent initiation of biofilm formation. B) Surface-

bound antibodies (most prominently IgG) can trigger the uptake and destruction by 

neutrophils and macrophages expressing Fc receptors (FcR) on their surface 

(opsonophagocytosis). Activation of neutrophils can also trigger granule release, oxidative 

burst and NETosis. C) Surface-bound antibodies (IgM and IgG) trigger complement 

activation via the classical pathway. Following binding of C1q to the surface-bound 

antibody, the complement cascade is initiated resulting in the formation of the C3 

convertase, which cleaves the central component of all complement pathways, C3, into C3a 

and C3b. C3b acts as an opsonin, enabling phagocytes that express the C3b receptor to 

ingest C3b-coated bacteria more easily. The soluble C3a (as well as C5a) act as chemo-

attractants that recruit immune cells to the site of infection causing inflammation. C3 

activation also triggers the formation of the membrane attack complex (MAC) that generates 

lytic pores in certain pathogens. Gram-positive bacteria, including S. aureus, are protected 

from MAC-dependent lysis by their thick peptidoglycan layer [132]. D) Antibodies targeting 

different components of the biofilm matrix, e.g. DNABII, can destabilize a biofilm matrix 

and thereby promote bacterial dispersal and clearance by immune cells or antibiotics.

Abbreviations: FcR (Fc receptor); MAC (membrane attack complex).
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Figure 3: Methods commonly used for the generation of monoclonal antibodies (mAbs).
A) Hybridoma technology. Following immunization with an antigen, mice start producing 

large amounts of antigen-specific B cells. These cells are harvested from the spleen and 

fused with myeloma cells. The resulting hybridoma cells are screened for the secretion of 

antigen-specific antibodies. Antigen-specific hybridoma cells are selected by limiting 

dilution (subcloning) [3]. B) Phage display library. Initially, mRNA is isolated from B cells 

or plasma cells and then reverse-transcribed into cDNA. The variable light and heavy chains 

are amplified via PCR and ligated into a phage display vector. The resulting phage library 

consists of 108-1010 different phages, each encoding a single surface-expressed mAb, 

generated by random combination of heavy and light chains. The antigen is subsequently 

“displayed” to the phage library in successive rounds, to enrich antigen-specific phages 

(panning). The genes encoding the desired antigen-specific mAbs can then be cloned into an 

appropriate expression system for the generation of the mAbs of interest [1,2]. C) B cell 
culture. After isolation and limiting dilution, B cells are cultivated and activated in vitro 
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leading to the secretion of antibodies. B cell culture supernatants are screened for antigen-

specific antibodies, and positive cultures are used for the amplification of heavy and light Ig 

genes via PCR. The antibody sequence is finally cloned into an expression system to 

produce the mAbs [6]. D) EBV immortalization. Human B cells or plasma cells are 

isolated and immortalized using Epstein-Barr virus followed by subsequent single cell 

distribution. Supernatants of B cell cultures are screened for specific antigen binding and 

subsequently subcloned to produce mAbs [4]. E) Single B cell cloning. Human B cells are 

isolated and single antigen-specific B cells are sorted by fluorescence-activated cell sorting 

(FACS). The mRNA of those single cells is reverse-transcribed into cDNA followed by 

amplification of Ig heavy and light chains via PCR. The extracted antibody sequences can be 

cloned into a vector and ultimately introduced into an expression system. Finally, the 

resulting monoclonal antibodies are validated for their antigen-specificity [5].

Abbreviations: Ag (antigen); EBV (Epstein-Barr virus ); Ig (Immunoglobulin); mAb 

(monoclonal antibody).
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