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Abstract

Understanding the neuropathological underpinnings of mental disorders such as schizophrenia,
major depression, and bipolar disorder is an essential step towards the development of targeted
treatments. Diffusion MRI studies utilizing the diffusion tensor imaging (DTI) model have been
extremely successful to date in identifying microstructural brain abnormalities in individuals
suffering from mental illness, especially in regions of white matter, although identified
abnormalities have been biologically non-specific. Building on DTI’s success, in recent years
more advanced diffusion MRI methods have been developed and applied to the study of
psychiatric populations, with the aim of offering increased sensitivity to subtle neurological
abnormalities, as well as improved specificity to candidate pathologies such as demyelination and
neuroinflammation. These advanced methods, however, usually come at the cost of prolonged
imaging sequences or reduced signal to noise, and they are more difficult to evaluate compared
with the more simplified approach taken by the now common DTI model. To date, a limited
number of advanced diffusion MRI methods have been employed to study schizophrenia, major
depression and bipolar disorder populations. In this review we survey these studies, compare
findings across diverse methods, discuss the main benefits and limitations of the different methods,
and assess the extent to which the application of more advanced diffusion imaging approaches has
led to novel and transformative information with regards to our ability to better understand the
etiology and pathology of mental disorders.
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1. Introduction

Psychiatric disorders such as schizophrenia, major depression, and bipolar disorder have
remained a conundrum for scientists since they were first defined more than a century ago.
These debilitating disorders often occur at a young age, causing life-long difficulties that
interfere with an individual’s social, occupational and emotional functioning. While in other
disorders, for example Multiple Sclerosis (Matthews et al., 2016; Popescu and Lucchinetti,
2016), Alzheimer’s disease (Hyman et al., 2012) and Parkinson’s disease (Dickson et al.,
2009; Shulman et al., 2011), clear neuropathologies have been delineated, this has,
unfortunately, not been the case for psychiatric disorders. In fact, the role of brain
dysfunction in psychiatric pathology was not initially evident given the gross tools available
for investigation, leading Plum (1972) to caution that those striving to make these disorders
more tractable were wasting their time, as such efforts would lead to a “graveyard of
neuropathologists” (Plum, 1972).

Schizophrenia, major depression, and bipolar disorder each present with characteristic
patterns of emotional, cognitive, and social impairments, although there is some overlap in
these domains of functioning across disorders. Schizophrenia is a severe mental illness
typified by the presence of positive psychotic experiences (e.g., hallucinations, delusions,
and thought disorders), negative symptoms (e.g., anhedonia, avolition, alogia, and flat
affect), and cognitive impairments (attention, memory, and executive functioning deficits)
(Fervaha et al., 20144, 2014b; Ho et al., 1998; Lepage et al., 2014). The core feature of
major depressive disorder (MDD) is depressed mood and a loss of interest in, or lack of
ability to derive pleasure from, activities of daily living (Kennedy, 2008; Uher et al., 2014).
Bipolar disorder (BD) is a disorder of severe mood dysregulation often characterized by
recurring episodes of mania and depression, with more than 50% of individuals additionally
presenting with mania-associated psychotic features (Dunayevich and Keck, 2000). BD can
be further classified into bipolar disorder 1 (BD1) and 2 (BD2), with BD2 representing a less
severe form of the illness wherein patients present with hypomania rather than mania
(National Collaborating Centre for Mental Health UK, 2006). Given the high prevalence of
these three disorders in the general population and the decreased life expectancy of 7-20
years associated with them (Chesney et al., 2014), there is a critical need for more
efficacious, neurobiological-based treatments to be developed, though this is contingent
upon an advanced understanding of the role of the brain in these disorders.

The development of neuroimaging tools such as computed tomography (CT), magnetic
resonance imaging (MRI), and positron emission tomography (PET) introduced the ability
to non-invasively investigate the brains of individuals with psychiatric disorders, as well as
the possibility of identifying pathological signatures of these disorders. Surprisingly, and in
contrast with histopathological studies, studies employing a diversity of imaging modalities
have identified abnormalities in the brains of individuals with psychiatric illnesses (e.g.,
Duval et al., 2015; Frydman et al., 2016; Howes et al., 2009; Kubicki et al., 2007; Mulders et
al., 2015; Sexton et al., 2009; Shenton et al., 2001; Vargas et al., 2013; Weyandt et al.,
2013); these cumulative findings make it clear that abnormalities in the brain are common
across psychiatric disorders. Nonetheless, none of these imaging studies have provided
conclusive, robustly reproducible, and neurobiologically unambiguous findings of the nature
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required for a true breakthrough in understanding the pathophysiology of these disorders,
their diagnosis, and their treatment (e.g., Boksa, 2013; Farah and Gillihan, 2012; Linden,
2012; MacQueen, 2010).

Diffusion MRI is one of the most important technological advances for psychiatric research,
and it has played a critical role in the discovery of brain abnormalities involved in these
disorders (Kubicki et al., 2007; Kubicki and Shenton, 2014; Wheeler and Voineskos, 2014).
While other imaging modalities focus on macroscopic volumetric or functional (e.g.,
metabolic and vascular) changes, diffusion MRI introduces the ability to study
microstructural changes in brain tissue. To date, most diffusion MRI studies have focused
specifically on white matter, using analysis methods such as diffusion tensor imaging (DTI),
and there is a considerable body of work demonstrating that DTI measures are changed in
psychiatric disorders (e.g., Chen et al., 2016; Ellison-Wright and Bullmore, 2009; Nortje et
al., 2013; Clark et al., 2011; Seal et al., 2008). These DTI findings have led to new clinical
hypotheses proposing that psychiatric disorders involve white matter abnormalities that
result in neuronal miswiring and connectivity issues throughout the brain, which may
partially explain some of the clinical symptomology associated with these disorders (Curgi¢-
Blake et al., 2015; Friston, 2002).

In DTI studies of schizophrenia patients, white matter disruptions of lower FA and higher
MD and RD are commonly identified, predominantly in fronto-temporal, interhemispheric,
and thalamo-cortical regions (e.g., Ellison-Wright and Bullmore, 2009; Kelly et al., 2017).
In bipolar disorder, common findings include lower FA and higher RD in white matter tracts
connecting prefrontal cortical regions with anterior limbic structures (specifically those
involved in emotion regulation), as well as alterations in temporal white matter, anterior
corpus callosum and cingulum regions, the uncinate fasciculus, and the superior longitudinal
fasciculus (Phillips and Swartz, 2014). Finally, commonly reported white matter DTI
alterations in major depressive disorder include lower FA in tracts such as the inferior
longitudinal fasciculus, the inferior fronto-occipital fasciculus, the posterior thalamic
radiation, the superior longitudinal fasciculus (Murphy and Frodl, 2011), and
interhemispheric fibers running through the genu and body of the corpus callosum (Liao et
al., 2013). It is important to note that the extent and location of findings largely vary across
different DTI studies. This variation, however, does not necessarily reflect a lack of DTI
robustness. Rather, some variability likely arises due to neurobiological heterogeneity within
overarching diagnostic categories, as well as due to heterogeneity in study designs and
analysis methods, including dissimilarities in sample size, the selected population (e.g.,
stage of the disorder or diverse symptom profiles) and acquisition quality (e.g., resolution,
number of diffusion images, magnetic field strength).

Although DTI measures appear to be sensitive to subtle brain changes that occur in
psychiatric disorders, these measures are not specific to any single neuropathology, or to any
disorder (G. Chen et al., 2016; Dong et al., 2017; O’Donnell and Pasternak, 2015). Further,
although some clinical studies have attempted to relate DTI measures to white matter and
myelin integrity, methodological studies have provided clearer evidence that such
associations are unwarranted, given that DTI measures can be affected by a multitude of
factors including fiber arrangement, axon density, partial voluming with surrounding tissue
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(e.g., gray matter and CSF), tissue density, subject motion, and image resolution (Basser and
Jones, 2002; Jones and Leemans, 2011; Mori and Zhang, 2006; Tournier et al., 2011). This
methodological ambiguity/imprecision necessitates that advanced microstructural imaging
methods be developed with the capacity to provide superior specificity to underlying
pathologies.

In response to this need, more advanced diffusion acquisition and modeling approaches have
been developed in recent years, and a number of studies have applied these new tools to the
study of psychiatric disorders. These advanced methods focus on increasing sensitivity to
subtle changes, as well as on producing new measures that can be more precisely linked to
specific pathologies. The purpose of this review is to provide an up-to-date account of how
advanced microstructural diffusion imaging methods, i.e., those that go beyond the DTI
model, are being used to study psychiatric disorders. We acknowledge that the number of
studies performed to date is not expansive, and thus a secondary purpose of our review is to
construct a set of recommendations, based on the current literature, that may be useful to
those planning to use advanced microstructural diffusion MRI approaches. We have limited
our review to studies of schizophrenia, BD, and MDD, given the high prevalence and
personal and economic burden of these disorders, and given the large body of DTI studies
investigating these afflictions.

2. Methods

To locate articles of relevance that employ diffusion models that go beyond DTI, searches
were conducted using PubMed, Web of Science, and Google Scholar. Keywords included all
possible pairwise combinations of a psychiatric disorder plus an advanced diffusion method,
for example (Schizophrenia or Depression or Bipolar Disorder) AND (generalized fractional
anisotropy/gFA, kurtosis/DKI, free water/free water imaging, Q-ball imaging or Q-space
imaging, neurite orientation and dispersion and density imaging/NODDI, permeability
diffusivity imaging/PDI). Full and abbreviated forms of each method (as indicated above)
were searched separately. The review was inclusive up to June 1, 2017. Review articles and
case studies were not included. Searches using the aforementioned terms yielded a total of
37 articles that were included in this review (27 on schizophrenia, 3 on depression, and 9 on
bipolar disorder, with some papers comparing two or more disorders). A list of all papers
included in the review, as well as their key findings, can be found in Table 1.

2.1 Diffusion MRI models and acquisitions

2.1.1 Diffusion Tensor Imaging—Typical diffusion acquisition sequences that enable
DTI analyses and are currently available on most MR platforms as off-the-shelf sequences
tend to apply six (but often many more for a more robust fit) non-collinear diffusion
gradients that sensitize the signal to water molecule displacements. The different gradient
directions are acquired with gradient strength and timing that determine a factor called the b-
value (Le Bihan et al., 1989), which, for white matter, has an optimal value of around 1,000
s/mm2. Gradient directions that have the same b-value construct a single shell to which a
smaller number of baseline measurements (b=0, i.e., gradients are turned off) are added. In
DTI, the diffusion weighed images from a single shell acquisition are modeled as a function
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of a single diffusion tensor (Basser et al., 1994). Each voxel is fitted separately, resulting in a
single tensor per voxel that can be deconstructed into various measures based on the
eigenvalues of the tensor (Pierpaoli and Basser, 1996). The most commonly reported DTI
parameter is fractional anisotropy (FA) (Pierpaoli et al., 1996), i.e., the normalized variance
of the eigenvalues, which has been (inappropriately) interpreted as a measure of white
matter integrity, and occasionally as a measure of myelin integrity (Alba-Ferrara and de
Erausquin, 2013). Other tensor-derived measures include mean diffusivity (MD; the average
of the eigenvalues), axial diffusivity (AD; the largest eigenvalue), and radial diffusivity (RD;
the average of the two minor eigenvalues); RD and AD are considered to be more specific to
demyelination and axonal degeneration, respectively, than FA (Song et al., 2002). The main
advantages of the DTI model are its sensitivity to subtle microstructural changes and its
mathematical simplicity. This simplicity, however, is also its major shortcoming, as only a
limited set of parameters is available for describing all of the potentially complicated
changes that may occur in brain tissue. As a result, none of the DTI measures can truly serve
as an index of white matter integrity (Jones et al., 2013) or any other specific pathology.

2.1.2 Advanced diffusion MRl methodologies—In our review of the literature we
identified 7 different advanced diffusion MRI approaches that had been applied to data
acquired from individuals with schizophrenia, BD, or MDD. These methods can be broadly
clustered into two families—non-model based and model based approaches (Figure 1). The
non-model based approaches steer away from the DTI model by analyzing properties of the
signal itself that do not require the explicit assumption of an underlying model. The three
non-model based approaches included in this review are g-space imaging, diffusion
spectrum imaging (DSI), and diffusion kurtosis imaging (DKI).

The second family of approaches includes those that are model based. In these approaches,
the single tensor model used in DTI is replaced or augmented with more elaborate models.
These models attempt to better account for different biological processes that can affect the
diffusion MRI signal, with the goal of defining parameters that are closer to the underlying
tissue microstructure and to potential pathologies. These approaches typically involve
defining compartments that represent distinct pools of water molecules, with each
compartment being modeled separately. In this review, the model based approaches
examined include: free-water imaging, permeability diffusivity imaging (PDI), neurite
orientation dispersion and density imaging (NODDI), and g-space trajectory imaging (QTI).

Most advanced diffusion MRI models require acquisitions that are more complicated than
the typical single-shell acquisition. These advanced acquisitions collect signal from gradient
orientations that cover more than a single b-value, i.e., a multi-shell acquisition, where each
shell sensitizes the signal to different ranges of displacement profiles. Some approaches
utilize higher b-values (e.g., larger than 2,000 s/mm?2) where non-Gaussian diffusion profiles
are extant (Assaf et al., 2002; Assaf and Cohen, 1998; Mulkern et al., 1999; Stanisz et al.,
1997), thereby providing more information about restricted and hindered diffusion; this in
turn allows for new parameters and supports more elaborate microstructural models.
Technical details of the acquisition parameters used in the different papers reviewed here are
in Table 2.
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Below we review the 7 advanced diffusion MRI methods that have been used in studies of
schizophrenia, MDD, and BD aimed at investigating microstructural parameters. We note
that these methods by no means provide a complete account of all available advanced
diffusion MRI methods. We additionally note that diffusion MRI is also useful for obtaining
information about the orientation of white matter bundles, from which tractography and
connectivity between different brain areas can be estimated. Nevertheless, because this is not
necessarily related to local tissue microstructure, we have chosen to omit this from the
review.

3. A survey of advanced microstructural diffusion MRI studies in

psychiatry

3.1 Non-model based approaches

3.1.1 Q-space imaging—The aim in diffusion imaging is to extract properties of the
underlying diffusion profile. In DTI, this is done by assuming that the profile has a three-
dimensional Gaussian distribution of displacements that can be parameterized by a diffusion
tensor (Basser et al., 1994). In biological environments, however, the shape of the
displacement often deviates from a Gaussian distribution (Novikov et al., 2011; Seroussi et
al., 2017). For example, when diffusion is restricted (e.g., within white matter bundles) the
displacement has a finite maximal distance (equivalent to the axon diameter), which is
unlike a Gaussian distribution in which the mean squared displacement grows linearly with
the diffusion time. In g-space imaging, the displacement distribution is approximated
directly without assuming a certain distribution (Cohen and Assaf, 2002). To do this, the
signal is collected in multiple b-values following a specific pattern (equally spaced g-
values), which allows for the application of a Fourier transform, resulting in an
approximation of the displacement distribution. While a direct estimation of the
displacement distribution holds in it all of the diffusion properties, it is extremely difficult to
properly estimate. In theory, it necessitates a very large number of different g-values
reaching to very high g-values, which requires strong gradients and lengthy acquisition
times, two requirements that are typically not available or feasible for clinical studies.

In a pilot study, Mendelsohn et al. (2006) conducted g-space imaging with 9 first episode
schizophrenia patients and 5 healthy controls. They collected 16 b-values in 6 different
orientations each, reaching to an extremely high b-value of 14,000 ss/mmZ. Using a Fourier
transform they estimated the displacement distribution, from which they extracted two
measures of interest. The first measure is the apparent displacement, which represents the
full width at half maximum of the displacement distribution function. In cases of free
diffusion, this is proportional to the mean diffusivity. The second measure is the return to
zero probability (i.e., the peak of the displacement function), which provides an indirect
measure of restriction, with higher return to zero probability occurring in more restricted
domains. Using a histogram analysis, Mendelsohn et al. (2006) observed a reduction in the
return to zero probability and increased apparent displacement in individuals with
schizophrenia. The return to zero probability also negatively correlated with the severity of
positive and negative symptoms. White matter differences were prominent in severely ill
patients, whereas in mildly ill patients there were no differences from controls. No
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significant differences in FA were observed between patients and controls (MD was not
compared).

Mendelsohn et al. (2006) concluded that the observed displacement differences were
suggestive of altered white matter integrity in schizophrenia, and that high b-value data may
provide a more direct measure of intra-axonal tissue and may thus be more suitable for
studying early stages of brain pathology in schizophrenia. This early study demonstrates that
measures derived from advanced diffusion imaging methods that are more closely related to
neuronal tissue (return to zero probability) may offer increased sensitivity relative to DTI
(FA). Regarding schizophrenia, this study presents preliminary results to suggest that more
abnormalities exist in the brain than those identified by FA changes, and that co-occurring
pathologies (at least two that are recognized here) may additionally exist. Obviously, the
very small number of study participants challenges the robustness of these findings and
limits our ability to appropriately gauge the potential of the g-space approach, which to date
has not been replicated in a larger study. A clear limitation of this approach, however, is that
the theory postulates that for an accurate estimation of the probability distribution, a much
denser b- (or g-) value sampling is required. This is less feasible for human studies,
especially those involving clinical populations. Methods that further develop g-space
imaging (see below) attempt to resolve this limitation.

3.1.2 Diffusion spectrum imaging and generalized FA—Similar to the g-space
approach, the diffusion spectrum imaging (DSI) approach acquires a dense sampling of the
g-space in order to estimate the displacement function (Wedeen et al., 2005). DSI, however,
attempts to estimate the function in 3D by obtaining a specific grid of b-values and
orientations. In the literature, DSI has been primarily used for obtaining an estimation of the
orientation distribution function (ODF) of white matter bundles, achieved by integrating
over the orientations. A typical measure estimated from the resulting ODF is the generalized
FA (gFA), which measures the anisotropy (i.e., the normalized standard deviation) of the
ODF. gFA is thus similar to FA, although it is purported to provide a more direct measure of
fiber bundle anisotropy, and to be less sensitive to errors that arise in the presence of
complex fiber architectures, for example crossing and kissing fibers (Fritzsche et al., 2010;
Gorczewski et al., 2009).

An alternative approach to extract the ODF from DSI data was introduced as g-ball imaging;
in g-ball imaging a single high-b shell is sufficient to estimate the ODF (Tuch, 2004). There
are several ways to approximate the ODF from such an acquisition, with the most popular
approach being to model the diffusion signal with a spherical harmonics basis while
applying regularization that reduces ODF estimation errors (Descoteaux et al., 2007).

Multiple studies have investigated whether gFA differs between psychotic patients and
controls, with a subset examining correlations between gFA and clinical measures. In an
early study investigating DSI-derived gFA measures along white matter tracts of the default
mode network (DMN) in 12 patients with schizophrenia, Huang et al. (2010) found a
negative correlation between functional connectivity of the inferior parietal lobe and the
posterior cingulate gyrus/precuneus and the gFA of tracts connecting these regions (termed
structural connectivity in the paper). They did not find a correlation between gFA and
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symptom scores. In a follow up study, Huang et al. (2011) used the same approach to
investigate the association between gFA and candidate schizophrenia vulnerability genes. A
significant negative correlation was found between gene dosage and gFA in the posterior
cingulate gyrus and the precuneus. A similar DSI acquisition was used by Wu et al. (2014)
to investigate whether or not structural alterations in the language network are linked to
auditory verbal hallucinations (AVHSs) in 18 patients with schizophrenia and 18 controls.
They reported that patients had significantly lower gFA in left ventral, right ventral, and
right dorsal language tracts. The gFA values did not correlate with age, duration of illness, or
clinical status. They also found a positive correlation between right dorsal pathway gFA and
functional lateralization (measured with fMRI) of the dorsal pathway in patients, but not
controls. Both right dorsal pathway gFA and functional lateralization negatively correlated
with delusion/hallucination symptom scores, suggesting that greater gFA of right
hemisphere language tracts may be linked to less severe language-related symptoms in
schizophrenia.

In another DSI-derived gFA study, Wu et al. (2015b) employed an automated tractography-
based analysis to investigate differences in white matter tracts across 31 patients with
schizophrenia, 31 unaffected siblings, and 31 healthy controls. Significant group differences
in gFA were found in the arcuate fasciculus, the fornix, auditory tracts, optic radiation, the
genu of the corpus callosum, and callosal tracts connecting bilateral dorsolateral prefrontal
cortices (DLPFC), temporal poles, and hippocampi. Post-hoc analyses revealed that the gFA
of the right arcuate fasciculus was significantly decreased in both patients and unaffected
siblings compared to controls, whereas gFA values for the nine other tracts were
significantly decreased in patients only. There were no significant correlations between gFA
and symptom scores. The authors thus concluded that the right arcuate fasciculus may be a
candidate trait marker for genetic vulnerability to schizophrenia. Using the same approach in
a sample of 31 chronic and 25 first episode patients with schizophrenia and 31 healthy
controls, Wu et al. (2015a) found significant differences between groups in the arcuate
fasciculus, the fornix, the superior longitudinal fasciculus, and corpus callosum fibers
projecting to bilateral DLPFC, bilateral temporal poles, and bilateral hippocampi. Post-hoc
between-group analyses revealed that in all of these tracts, gFA was reduced in both chronic
and first episode patients as compared to controls, with the exception of callosal fibers
connecting left and right DLPFC, which demonstrated reduced gFA in chronic, but not first
episode, patients. There were no associations between gFA and clinical parameters. These
results were interpreted as evidence for the existence of white matter structural alterations
throughout the entire course of illness.

Tseng et al. (2015) used DSI to investigate white matter tracts of the mirror neuron system
(MNS) in 32 schizophrenia patients and 32 controls. They found that patients displayed
decreased mean gFA in fibers interconnecting bilateral pars opercularis as well as a negative
correlation between gFA in these fibers and negative symptom scores. Other MNS tracts did
not show significant gFA alterations. Griffa et al. (2015) used DSI to characterize the
structural connectome in schizophrenia. Using a network-based structural connectivity
analysis, they found a distributed set of brain regions that displayed altered nodal
segregation or integration properties in 16 schizophrenia patients as compared to 15 controls,
and furthermore showed that gFA values were significantly lower in schizophrenia patients
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in tracts connecting affected brain nodes, yet not in those connecting unaffected nodes. Katz
et al. (2016) compared white matter architecture in a sample of 23 individuals with high
functioning autism, 24 patients with schizophrenia, and 32 healthy controls. Compared to
controls, both autism and schizophrenia groups exhibited decreased gFA in the left fronto-
occipital inferior fasciculus, possibly suggesting that similar neurostructural alterations may
underlie language and social cognition impairments in both disorders. Finally, Baumann et
al. (2016) used a DSI acquisition with a maximal b-value of 8,000 s/mm? to study the fornix
in a sample of 42 early psychosis patients and 42 healthy controls, and found lower gFA in
the fornix in patients.

Taken together, the aforementioned gFA studies consistently found reduced gFA in white

matter in individuals with schizophrenia, and abnormalities were occasionally associated

with disorder symptoms. These studies however typically had modestly sized samples as

compared to recent DTI studies, and they unfortunately did not conduct comparisons with
DTI measures in order to evaluate if the sensitivity of gFA is superior to that provided by

DTI.

Rathi et al. (2010) used a different analytical approach, spherical harmonics, to calculate
gFA and generalized norm (gN) from low b-value data (b=900). The gN, or the norm of the
spherical harmonics coefficients, (inversely) represents the overall diffusion in the ODF.
They compared gFA and gN with FA and norm obtained from a two-tensor model in 21 first
episode schizophrenia patients and 20 healthy controls. In order to assess the sensitivity of
these diffusion models for characterizing patients, they tested the classification accuracy of
the different measures, ultimately concluding that isotropic parameters (N and norm)
outperformed parameters of anisotropy (gFA and FA). Furthermore, tensor based classifiers
—a combination of FA, norm and mode—demonstrated better classification performance
than spherical harmonics based classifiers, combining gFA and gN.

The gFA has also been assessed in a number of BD studies. With the intention of better
characterizing white matter deficits throughout the entire brain in BD, Sarrazin et al. (2014)
investigated mean gFA for 22 major white matter tracts in 118 individuals (obtained across
three centers) with euthymic BD1, and 88 healthy controls. gFA was computed from a single
shell acquisition using spherical harmonics decomposition. Compared to healthy controls,
individuals with BD evinced decreased gFA in the left anterior arcuate fasciculus, the body
and the splenium of the corpus callosum, and the long fibers of the left cingulum bundle. A
secondary analysis of these three tracts comparing individuals with BD with and without
psychatic features furthermore revealed that psychotic symptoms in BD were associated
with lower gFA in the body of the corpus callosum. gFA was not correlated with duration of
illness, medication load, or 1Q. Despite the conventional single shell acquisition, DTI
parameters were not reported.

In a study of frontal white matter tracts that included the corpus callosum, the cingulum, the
uncinate fasciculus, and the inferior fronto-occipital fasciculus, Scholz et al. (2016) used a
single shell acquisition to extract gFA from a spherical harmonics decomposition. They
replicated findings in euthymic BD1 patients (n=24) of reduced gFA in the cingulum bundle,
although in the right hemisphere, rather than the left as was found in Sarrazin et al. (2014).
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The authors also investigated associations between gFA values and risk-taking behavior.
Here, gFA of the right cingulum accounted for 25% of the variance in subject risk-taking
behavior on The Cambridge Gambling Task, and a negative correlation between risky
behavior on this task and gFA of the left inferior fronto-occipital fasciculus was reported in
the BD group only. Again, DTI parameters were not reported.

Two studies (Favre et al., 2016; Souza-Queiroz et al., 2016) investigated whether or not
mean gFA in the uncinate fasciculus was different between healthy controls and individuals
with either BD1 or BD2. Interestingly, neither of these studies found a group difference in
uncinate fasciculus gFA between healthy and patient groups, in accordance with studies by
Sarrazin et al. (2014) and Scholz et al. (2016), but in contrast with the majority of DTI
studies that examined FA in the uncinate fasciculus. Both Souza-Queiroz et al. (2016) and
Favre et al. (2016) applied a single shell acquisition with b=1,400 (60 directions in Souza-
Queiroz et al., 2016; 30 directions in Favre et al., 2016). Of note, Favre et al. (2016) also
compared the gFA measure with MD, where they reported MD decreases along the left
uncinate fasciculus following a psychoeducation program.

Canales-Rodriguez et al. (2014) also implemented a combined analysis of gFA and DTI
measures (FA and MD) in 40 euthymic BD1 patients and 40 matched controls, to examine
BD-related abnormalities in white and gray matter. Results from this whole brain analysis
revealed decreased FA in the splenium of the corpus callosum and the right insula in BD,
increased gFA in frontotemporal, subcortical, and cerebellar regions in BD, and widespread
MD increases in patients, primarily in the cingulum, the left insula, and subcortical nuclei.
Alterations in gFA and FA in the patient group did not overlap spatially, supporting the
notion that these measures provide distinct but complimentary information about the brain.
The authors also extracted a measure of return to zero probability, here termed probability to
origin, (PTO, see Figure 2), which showed significant decreases in patients in the left insula,
right lingual cortex, and cerebellum. Furthermore, gFA was sensitive to changes in the gray
matter, whereas FA was not. According to the authors, FA was most sensitive for detecting
abnormalities in white matter tracts consisting of parallel fibers (e.g., the corpus callosum),
gFA was most sensitive to aberrations occurring in white matter structures with
heterogeneously organized fibers, and MD was best able to detect global, non-specific
changes in diffusion in both gray and white matter.

Studies utilizing gFA to investigate neuronal alterations in MDD are more scarce, however
Chen et al. (2016) compared 16 MDD patients to 30 healthy controls by acquiring data with
a multi-shell acquisition and extracting gFA. They also extracted two additional parameters,
including normalized quantitative anisotropy (NQA), an alternative measure of anisotropy
extracted from the peaks of the ODF, and the isotropic value of the ODF, which is the
smallest diffusion in any direction, equivalent to DTI’s RD. The authors reported a decrease
in gFA and NQA in the superior longitudinal fasciculus and an increase in the isotropic
component in the frontal lobe in MDD patients. In the corpus callosum, NQA correlated
with Hamilton Depression Rating Scale scores, and gFA correlated with the Hospital
Anxiety and Depression Scale scores. The authors hypothesized that their findings may
point to two different pathologies: that gFA and NQA changes may be due to white matter
integrity loss, and that the isotropic change may arise from reduced neuronal size or glial
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density. However, this hypothesis was not directly supported by additional evidence in the
paper.

Overall, it appears that gFA studies tend to parallel previous FA findings. In almost all
instances, previous DTI studies have found FA decreases in the same locations as reported
gFA decreases. The variability across different studies in terms of the extent and location of
changes in gFA also suggests that the heterogeneity of FA findings is not necessarily
improved by using gFA. On the other hand, when directly comparing gFA and FA from the
same data (Canales-Rodriguez et al. 2014), alterations in the two measures do not appear to
overlap spatially. This lack of overlap supports the notion that these measures may provide
complimentary information about the brain. Importantly, Canales-Rodriguez et al. (2014)
reported that the sensitivity of gFA was lower than that of FA, and that gFA changes were
limited to areas of complex fiber architecture, i.e., locations where the FA measure is
understood to be less accurate.

The studies by Rathi et al. (2010), Favre et al. (2016), Canales-Rodriguez et al. (2014) and
Chen et al. (2016) may additionally attenuate the potential importance of the gFA measure
as they demonstrate that isotropic measures were more sensitive to group differences than
the gFA measure. These studies, in conjunction with studies evincing that FA and gFA
changes arise in areas with different fiber architectures, raise the concern that investigations
that only assess gFA (e.g., single high b-value data from which DT measures cannot be
extracted) may fail to identify some abnormalities that conventional DTI would identify.

In summary, the gFA measure substantiated previous results obtained using DTI, but it has
yet to provide new, transformative information about psychiatric disorder pathophysiology.
On the other hand, the DSI studies that compared multiple diffusion parameters arrived at
conclusions similar to that derived from the g-space study: that psychiatric disorders appear
to involve two different pathologies, one that affects anisotropy and is potentially related to
the microstructural arrangement of the tissue, and a second that affects diffusivity or the
degree of restriction, likely related to changes in the microstructural composition of the
tissue itself.

3.1.3 Diffusion kurtosis imaging—When water molecules are diffusing in a restricted
domain, their displacement profile deviates from a Gaussian distribution. Kurtosis (or, more
accurately, the excess kurtosis) is a mathematical term that measures how much a
distribution deviates from being Gaussian. Kurtosis can be measured directly from an
estimated displacement function, though an alternate way to estimate it that requires fewer
measurements is to deconstruct the signal from multiple b-values and directions into its
cumulant expansion (Jensen et al., 2005). The first order of the expansion is a constant, the
second order is a function of a diffusion tensor, and the next order, which quantifies kurtosis,
is a function of a fourth order tensor. Several types of kurtosis parameters can be estimated,
and depending on the desired parameters, different acquisition protocols are required. The
typical acquisition used in clinical studies consists of two shells, a b>=2,000 and a
b=~1,000, in addition to a few b=0 images, although optimal acquisitions may have many
more shells and much higher b-values (Jensen et al., 2005; Zhu et al., 2015). Scalar
measures can also be extracted from the kurtosis tensor, including mean kurtosis (MK), axial
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kurtosis (AK) and radial kurtosis (RK), in addition to DTI parameters (FA, MD, etc.), which
can be extracted from the diffusion tensor. Kurtosis imaging does not, however, use a
biological model to represent the data. Rather, these metrics reflect how the restricted
diffusion manifests in 3D space, and are thus indicators of microstructural restriction.
Kurtosis is currently the most frequently utilized advanced diffusion MRI method outside of
the mental health literature, and altered kurtosis values have been found in a variety of
neurological disorders, including stroke (Jensen et al., 2011), cancer (Raab et al., 2010),
Alzheimer’s disease (Fieremans et al., 2013), epilepsy (Gao et al., 2012), and Parkinson’s
disease (Kamagata et al., 2013).

In a preliminary study with a small sample of 10 patients with schizophrenia and 8 controls,
Ramani et al. (2007) conducted a histogram analysis of the prefrontal cortex (PFC),
demonstrating that individuals with schizophrenia had reduced FA and reduced MK in PFC
white matter voxels. The authors concluded that the observed alterations might reflect
axonal degeneration and a possible loss of oligodendrocytes in the white matter of this
region, although such a conclusion, without additional supporting evidence, is likely an over
interpretation. Notably, the between-group difference in MK histograms was greater than
that seen in the FA analysis, suggesting higher sensitivity for MK. The analysis of MD
showed no significant group differences, although this may be due to the extremely small
size of the sample, which greatly limits the robustness of these findings.

Zhu et al. (2015) compared DKI and DT measures in 94 schizophrenia patients and 91 sex-
and age-matched healthy controls. Using a two-shell acquisition (with 25 directions for both
b=1,000 and b=2,000 shells) and tract-based spatial statistics (TBSS) to assess group
differences, the authors found (Figure 3) that DTI-derived diffusion parameters (RD, FA and
MD) detected abnormalities in white matter regions with coherent fiber arrangements (e.g.,
the corpus callosum and the anterior limb of internal capsule), whereas kurtosis parameters
(MK and AK) detected differences in white matter regions with complex fiber arrangements
(e.g., the corona radiata and white matter adjacent to the cortex). Importantly, these findings
imply that typical DTI metrics are more sensitive to alterations occurring along bundles of
fibers that run in parallel, whereas DKI measures appear to have increased sensitivity in
regions with branching or crossing fibers, similar to the gFA studies reported above.
Diffusion and kurtosis parameters thus appear to provide complementary information, given
their differing sensitivities to Gaussian and non-Gaussian diffusion profiles, and
investigations seeking to identify the full spectrum of microstructural abnormalities should
consider using them jointly.

Using the same acquisition as in their aforementioned 2015 paper, Zhu et al. (2016) used
DKI to estimate FA in a sample of 19 schizophrenia patients with severe delusions, 30
schizophrenia patients without delusions, and 30 healthy controls. Patients without delusions
had lower FA in the body of the corpus callosum and the superior corona radiata in
comparison to healthy controls. In comparison to patients with severe delusions, patients
without delusions additionally had lower FA in the inferior longitudinal fasciculus and the
optic radiation. These findings surprisingly suggest that schizophrenia patients with severe
delusions have comparable FA to normal. Alternatively, they may speak to the fact that
looking at the relationship between just one clinical feature (e.g., delusions) and diffusion
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imaging parameters very likely does not capture the complex relationship that exists
between clinical presentation and underlying brain microstructure. It is interesting to note
that despite acquiring a DKI acquisition, the authors only reported on DKI-derived FA,
choosing not to report findings involving kurtosis-specific measures of MK, AK, and RK, or
other tensor derived parameters (e.g., MD).

In another study with a similar acquisition protocol, Narita et al. (2016) compared DTI and
kurtosis measures in a sample of 31 patients with schizophrenia and 31 controls. In
comparison to FA measures, more widespread MK reductions were observed in
schizophrenia; MK reductions were observed in the limbic lobe, frontal lobe, parietal lobe,
bilateral superior longitudinal fasciculi, and the right corona radiata. Left superior
longitudinal fasciculus MK values also significantly negatively correlated with the severity
of positive symptoms. No significant correlations between FA and clinical measures were
observed, demonstrating that kurtosis measures were, in this study, more sensitive for
detecting associations with schizophrenia symptomology, as well as for identifying group
differences in white matter microstructure.

Docx et al. (2017) used DKI (MK) in comparison with DTI (MD and FA) to investigate the
association between white matter microstructure and volitional motor activity in a sample of
20 patients with schizophrenia and 16 healthy controls. Following family-wise error rate
correction, there were no group differences in MK and FA values between patients and
controls, and only limited brain regions evinced increased MD in patients. However, in the
patient group, greater motor activity positively correlated with MK in the inferior, middle,
and superior longitudinal fasciculi, the corpus callosum, the posterior fronto-occipital
fasciculus, and the posterior cingulum. This study might be less robust than the ones
reported above due to the smaller sample size, and we caution against attributing changes in
motor activity solely to kurtosis changes in these white matter tracts. Nevertheless, this study
does provide further support to the idea that non-Gaussian measures are more likely to
correlate with symptoms or behavioral pathologies.

Finally, in a DKI study of the cerebellum in BD, unipolar depression, and healthy controls
(Figure 4), both DTI and DKI parameters identified differences between unipolar depression
patients and controls in the white matter of the superior and middle cerebellar peduncles, as
well as between BD patients and controls in the middle cerebellar peduncles. However,
when comparing patients with unipolar depression and BD, only the DTI parameter MD was
significantly different (in cerebellar white matter). In contrast, in the gray matter of the
dentate nuclei, MK was the only measure that differentiated BD from the other two groups
(Zhao et al., 2016). This report demonstrates that combining DKI and DTI parameters
maximizes the sensitivity of the DKI approach, and it demonstrates a utility for DKI in gray
matter.

Findings from the collection of DKI papers reviewed above reveal the importance of
combining DKI-derived parameters of FA, AD, RD and MD with kurtosis specific measures
(MK, AK, RK) in order to detect a greater range of abnormalities. More specifically,
kurtosis measures appear to provide increased sensitivity to group differences that occur in
areas with complex fiber arrangements, as well as, potentially, in gray matter. So far, the
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main contribution of these kurtosis analyses to the mental health literature is in extending the
white matter locations that may be affected into areas of complicated fiber arrangements,
thus evincing that more areas are affected than previously suspected. Kurtosis findings also
suggest that the MK measure may be more related to the actual underlying disease
pathology than FA as it better correlates with clinical measures, though it should be noted
that there was no overlap in the clinical measures that correlated with MK, indicating that it
may be more pathologically, but not clinically, specific.

3.2 Model based approaches

3.2.1 Free-water Imaging—Free-water imaging is a model-based approach (Pasternak
et al., 2009) that augments the DTI model by including a second compartment that accounts
for the contribution of free-water throughout the brain; free-water is defined as water
molecules that do not experience hindrance or restriction during the experiment time. When
using a typical diffusion MRI acquisition, the diffusion time dictates that free-water in the
brain can only be expected in larger extracellular spaces, such as in cerebrospinal fluid
(CSF), interstitial water, or plasma. The free-water compartment is modeled as isotropic
with a fixed diffusion coefficient of water in body temperature (3x10~3mm?2/s). The second
compartment (the tissue compartment) uses the DTI model, i.e., it is modeled using a single
diffusion tensor. By eliminating extracellular free-water, tissue compartment DTI measures
are inherently corrected for free-water (e.g., CSF) contamination. The parameters estimated
in this model are: 1) the fractional volume of the free-water compartment (FW), which
quantifies the contribution of extracellular free-water to the signal and changes during
processes such as ventricle size change, atrophy, edema and chronic neuroinflammation
(Pasternak et al., 2016; Sykova and Nicholson, 2008); and 2) the diffusion tensor of the
tissue compartment, from which scalar measures such as tissue-FA (FAT) are calculated.
Due to the elimination of CSF contamination, the FAT measure is expected to be more
specific than traditional FA to changes that occur within neuronal tissue (Metzler-Baddeley
et al., 2012). Free-water measures can be obtained from single-shell data by applying
regularization, which assumes continuity between neighboring voxels. The model can also
be estimated from multi-shell data (Hoy et al., 2014; Pasternak et al., 2012), in which case
the regularization assumptions can be relaxed.

Pasternak et al. (2012) first compared free-water and DTI measures in a cohort of 18 first
episode patients and 20 controls. Using the conventional DT model, widespread decreased
FA and increased MD were found in patients compared to healthy individuals (Figure 5).
After correcting for free-water, however, the FA measure no longer showed a widespread
group difference (Figure 5). Rather, FAT differences were limited to regionally specific
areas, mainly to frontal lobe white matter. The FW measure, on the other hand, exhibited
global increases in patients, which overlapped with the MD and FA findings. These results
suggested that the majority of group differences seen in FA in this first episode population
were actually driven by increased extracellular free-water, rather than by tissue-related
changes. The authors proposed that this may point to two separate pathologies in early
schizophrenia, one that affects the cellular domain, such as axonal degeneration, and a
second, more extensive pathology that affects the extracellular domain, potentially
neuroinflammation.
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Lyall et al. (2017) replicated this finding of spatially limited FAT decreases and whole brain
FW increases in a study of 63 first episode patients and 70 controls. In this paper, the FW
measure in first episode patients was positively correlated with performance on the
MATRICS Consensus Cognitive Battery following 12 weeks of antipsychotic treatment.
Lyall et al. (2017) proposed a hypothesis wherein FW is indicative of a heightened
neuroimmune response in the primary stages of schizophrenia, with this initial response
being associated with a gain of functionality in terms of cognitive functioning. In a follow-
up study of 29 chronic schizophrenia patients and 25 matched controls, the extent of
elevated FW in schizophrenia patients was found to be limited, while FAT reductions were
largely pervasive. More specifically, there was an approximately 200% increase in the
number of white matter skeleton voxels that exhibited reduced FAT in this study of chronic
patients, when compared to findings from Pasternak et al. (2012) in first episode patients.

These studies indicate that extracellular changes play a role in the early stages of
schizophrenia, and that, as the disease progresses, there is an increased presence of tissue
abnormalities. Oestreich et al. (2017) corroborated these findings using a multi-site cohort of
281 chronic schizophrenia patients and 188 controls. They reported primarily reduced FAT
in the anterior limb of the internal capsule bilaterally, the posterior thalamic radiation
bilaterally, as well as the genu and body of the corpus callosum. In this large study, there
were no significant FW changes. Contrary to this study, in a multi-modal analysis Mandl et
al. (2015) used magnetization transfer ratio (MTR) in conjunction with free-water imaging
in a sample of 40 chronic schizophrenia patients and 40 healthy controls, but did not identify
significant group differences in any of the free-water imaging diffusion parameters
(including FAT). Of note, the data in this study as well as in the Oestreich et al. (2017) study
were acquired on 1.5T scanners, which may suggest inferior sensitivity that requires a larger
sample size (such as that used by Oestreich et al. (2017)) for a significant finding. Finally
(Wang et al., 2016) compared 81 at-risk for mental state subjects and 36 controls, and found
reduced FAT in the left cingulum, left side of the corpus callosum, left uncinate fasciculus,
forceps minor, left inferior fronto-occipital fasciculus, left superior longitudinal fasciculus,
and left anterior thalamic radiation. FAT in the forceps minor was significantly more reduced
in subjects who later developed psychosis as compared to those who did not. Symptom
severity, as measured by CAARMS total severity score, was correlated with decreased FAT
within the left inferior fronto-occipital fasciculus, the left uncinate fasciculus, and the left
anterior thalamic radiation in at-risk subjects. This study suggests sensitivity to
abnormalities even prior to psychosis onset. However, in this study FW was not evaluated,
and the FAT results were not compared with FA results.

Differences in white matter microstructure and extracellular free-water were also associated
with state and trait delusions in an investigation of 87 chronic schizophrenia patients and 28
controls. Oestreich et al. (2016) observed that the presence of both state and trait (currently
remitted) delusions were associated with reduced FAT and increased RD in left and right
cingulum bundles, while increased extracellular free-water in the left cingulum bundle,
specifically, was associated with present (state) delusions. In this same study, the authors
noted the lack of significant group differences in diffusion measures in the fornix and the
uncinate fasciculus, two limbic tracts commonly found to exhibit differences in
schizophrenia in the literature. They suggested that correcting FA for the presence of free-
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water likely removes the bias of partial volume that may have influenced findings observed
in previous DTI studies.

Interestingly, a study of 17 individuals with BD1 and 28 controls reported that individuals
with chronic bipolar disorder look most similar to schizophrenia patients in their first
episode, in that the chronic BD group showed global FW increases, but no significant FAT
decreases, compared to controls (Tuozzo et al., 2017). Tuozzo et al. (2017) interpreted these
findings as indicative of a globalized acute response, possibly inflammation, in BD. No
correlations were found between free-water measures and clinical scores, however,
suggesting that changes in extracellular free-water do not impact clinical presentation, but
rather reflect an up- or down-stream process related to the central neuropathology of the
disorder.

The utility of the free-water model in psychiatric research has additionally been examined in
MDD. In a study of 18 healthy individuals and 17 diagnosed with MDD, Bergamino et al.
(2016) performed a voxel-wise analysis to compare groups using both DTI (FA, AD, RD)
and free-water corrected DTI measures (FAT, ADt, RDT). Although group comparisons
using traditional DTI metrics revealed no significant differences between the two groups,
after applying a free-water correction individuals with MDD evinced decreased FAT and
ADT in overlapping regions of the left inferior fronto-occipital fasciculus. ADT values in the
MDD group were also significantly negatively correlated with stress measures derived from
the Perceived Stress Scale and the Penn State Worry Questionnaire. The increased sensitivity
of free-water corrected measures was substantiated experimentally using a bootstrapping
procedure, which supported that there was a robust difference between using free-water
corrected versus uncorrected measures with regards to between-group effect sizes in FA and
AD, and neural-behavioral correlations. This underscores the potential importance of
removing partial volume effects and extracellular CSF contamination from the diffusion
signal.

Considered together, the primary contribution of these free-water imaging studies appears to
be their ability to distinguish between two disparate pathologies that can both account for
similar changes in conventional DTI measures. Additionally, the studies support the notion
that correcting for CSF contamination improves the ability to uncover subtle anomalies in
brain microstructure in psychiatric disorders. The discovery of the development of
extracellular and cellular pathologies at different stages along the progression of
schizophrenia and BD could be transformative to our understanding of the etiology of these
disorders, as this challenges current DTI-based theories proposing that widespread
demyelination or axonal degeneration exists in the early stages of disease. Instead, free-
water imaging studies reveal that extracellular processes may be more closely related to
psychosis onset.

Still, despite free-water imaging’s ability to model two separate compartments, it remains
equivocal as to what biological changes drive changes in each compartment. Although it has
been suggested that neuroinflammation may be the source of increases in the extracellular
compartment, the extracellular space can also be affected by atrophy, axonal density
changes, and other parameters such as motion and temperature.
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3.2.2 Permeability diffusivity imaging (PDI)—The permeability diffusivity imaging
(PDI) model is a variant of a two compartment diffusion model, based on theoretical work
by Sukstanskii et al. (2004, 2003). This model suggests that the bi-exponential decay of the
diffusion signal reflects the permeability of cellular membranes, as opposed to two physical
compartments. PDI estimates and quantifies the effect of permeable barriers on diffusion as
the ratio between the diffusivity of two water pools, i.e., D,/D,, where D; is the diffusivity of
the restricted pool and Du is the diffusivity of the unrestricted pool (Figure 6). The model
also estimates the fraction of the signal that comes from each pool. The unrestricted pool
represents water molecules that are far away from axonal walls and other water barriers,
whereas the restricted pool is formed by water that is close to cellular walls and diffusivity
barriers and thus more likely to undergo either passive exchange (diffusion) across cell
membranes and/or active exchange via ionic water pumps (Baslow, 2002). According to this
model, small changes in the permeability of the axon or cell membrane predominantly affect
the restricted diffusion pool coefficient (Dr), thus making PDI sensitive to membrane
permeability differences (Sukstanskii et al., 2003, 2004). Lower permeability may represent
less-efficient water exchange via axonal ion channels and water pores of the axonal
membrane (Nilsson et al., 2013). Estimating the model requires an extensive multi-shell
protocol that is based on the g-space imaging protocol. The protocol includes 15 b-value
shells with 30 directions per shell and a maximal b-value of 3,800 s/mm?2. Due to this
intense acquisition protocol, only a limited field of view can be acquired in a reasonable
time frame. In the studies listed below, that field of view covers the mid-sagittal portion of
the corpus callosum and the cingulate.

Kochunov et al. (2013) acquired data using a PDI protocol from 26 schizophrenia patients
and 26 controls. They observed significantly lower D, and PDI (D,/D,) in the corpus
callosum and cingulate gray matter of patients, as well as more modest differences in FA in
these regions. There were no group differences in axial or radial diffusivity, in Dy, or in the
fractional volumes of the PDI compartments. PDI and FA were significantly correlated in
patients. The authors suggested that reduced cross-membrane water molecule exchange,
potentially a marker of ion channel abnormalities, could explain the observed reductions in
FA, although they could not provide a clear biological mechanism that would explain the
positive correlation between the measures.

Using the same data with additional subjects added, Kochunov et al. (2014) tested whether
accelerated age-related decline in schizophrenia was related to a greater volume of
hyperintensive white matter (HWM) lesions or to reduced PDI. In the larger sample of 40
controls and 30 patients, they found once again that patients had significantly lower corpus
callosum PDI and FA, with a significant age-by-diagnosis interaction. No differences in
HWM volume were observed. The accelerated decline in FA seen in schizophrenia patients
was also explained by a decline in PDI. The authors therefore deduced that PDI may be a
more sensitive measure of schizophrenia-related white matter deficits.

In Kochunov et al. (2016), the PDI values obtained from the corpus callosum were compared
with DKI and DTI values obtained from a sample of 74 schizophrenia patients, 41 healthy
siblings, and 113 healthy controls. The authors observed significant differences between
patients || and controls across four measures (FA, kurtosis anisotropy (KA), axial kurtosis
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(K, and PDI); three of these measures (FA, KA, and PDI) showed significant differences
between controls and the siblings of schizophrenia patients as well. Combining the three
measures by applying principal component analysis, the outcome composite measures
explained patient—control differences in processing speed, but not differences in working
memory or psychiatric symptoms; this same association was found for the healthy siblings
of the patients. The authors concluded that non-Gaussian measures may better capture the
association between white matter and core cognitive deficits in individuals with
schizophrenia and their first-degree relatives.

In these three PDI studies, PDI abnormalities overlapped with FA abnormalities, yet the PDI
measure resulted in larger effect sizes when differentiating between groups. The preliminary
inference that can be made, with the significant caveat of limitations discussed below, is that
FA changes typically found in the corpus callosum in schizophrenia studies may be caused
by a decrease in membrane permeability. This is potentially a transformative finding in
schizophrenia, as it introduces a new candidate pathology that necessitates further
investigation. The PDI model presents a few limitations however. First, the model assumes
that any change in diffusivity can ultimately be explained by a change in permeability
(assuming that the restricted and non-restricted diffusivities are not changing at exactly the
same rate). This assumption has not yet been proven, and it is probable that other factors,
including axon diameter and CSF contamination, also affect diffusivities, independent of
permeability. Second, the model assumes that the restricted diffusion in high-b value shells
can be modeled by a Gaussian process, an assumption that is contrary to most other high-b
methods, which model restricted diffusion using models such as cylinders or sticks. Lastly,
this model requires extensive acquisition time that limits coverage to only a few slices, thus
with the current acquisition this methodology may not be practical for clinical studies that
seek to examine multiple regions of the brain. As a result of these limitations it is difficult to
identify a biological mechanism that elucidates the relationships found between PDI and
other diffusivity measures. Due to this difficulty, the authors of Kochunov et al. (2016)
suggested that the derived diffusion metrics should primarily be discussed in a
phenomenological way without referring to specific biological postulations.

3.2.3 Neurite orientation dispersion and density imaging (NODDI)—The
Neurite orientation dispersion and density imaging (NODDI) approach (Zhang et al., 2012)
estimates a three compartment model (Figure 7)—intracellular, extracellular, and free-water
compartments. Similar to the free-water model, the free-water compartment is modeled as
isotropic with the diffusion coefficient of water in body temperature. The intracellular
compartment models the space bounded by the membranes of neurites (axons and
dendrites). It is modeled as a set of cylinders with zero radius (sticks), simulating the highly
restricted diffusion perpendicular to the neurites. Diffusion parallel to the sticks is set to a
constant of 1.7x1073mm?/s. The orientation of the sticks is dispersed according to a
mathematical function. In the original implementation, a Watson distribution is used that has
two free parameters, the mean orientation of the neurites and the orientation dispersion
about that mean. The fractional volume of the intracellular compartment is used as an
estimate of neurite density. The extracellular compartment models the space around the
neurites. Given that the extracellular space is hindered and not restricted, this compartment
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is parametrized using a distribution of tensors that are assumed to have the same orientation
dispersion as the intracellular sticks. The parallel and radial diffusivity of the tensors are set
as a function of the parallel diffusivity of the sticks, the neurite density, and the neurite
dispersion. Accordingly, the model has the following free parameters: the neurite density
(ND) parameter, the orientation dispersion index (ODI), the free-water fraction, and the
mean orientation of the neurites.

Since the NODDI model deviates from the Gaussian model, it requires a multi-shell
acquisition with both high b-values (e.g., 2,000-2,500 s/mm?) and b-value shells in the
range of b=1,000. An optimal acquisition includes 2 shells, a 30-direction shell with a b-
value of about 700 s/mm? and a 60-direction shell with a b-value of about 2,000 s/mm?,
however the model can be fitted from similar acquisitions as well. NODDI provides a way to
identify if microstructural changes in brain tissue are caused by ND changes, or by ODI
changes. The ND measure could be a sensitive yet nonspecific marker of demyelination,
indicative of a pathological neurodegenerative process. The ODI parameter is a marker of
banding and fanning of axons, which may provide insight into neurodevelopmental
pathologies (Crow et al., 2007; Savadjiev et al., 2014).

Rae et al. (2017) used NODDI measures (ODI and ND), as well as DTI measures (FA and
MD), to assess microstructural differences between 35 first episode psychosis patients and
19 healthy controls. TBSS analyses revealed that patients in their first episode of psychosis
had lower regional FA in multiple commissural, corticospinal, and association tracts. They
found (Figure 8) that the differences in FA predominantly co-localized with regions of
reduced ND, rather than with the ODI, a measure of aberrant fiber bundle arrangement.
Therefore, the authors suggested that neurite density differences may contribute to white
matter aberrations in early psychosis, highlighting the utility of non-Gaussian measures for
explaining traditional DTI metrics.

Relevant to this review, Nazeri et al. (2016) applied NODDI to model gray matter
microstructural properties in 36 schizophrenia patients, 29 patients with BD1, and 35
healthy controls. They observed significantly lower gray matter ND in the temporal pole, the
anterior parahippocampal gyrus, and the hippocampus in schizophrenia patients in
comparison to the healthy controls. No significant differences in gray matter ND were
observed between patients with BD1 and schizophrenia patients or healthy controls.
Regardless of diagnosis, spatial working memory performance was significantly associated
with higher gray matter ND. The authors also discussed the potential utility of ND for
biological subtyping in psychiatry, an area which should be further explored.

We note that neither the Rae et al. (2017) study nor the Nazeri et al. (2016) study reported
whether or not there were any findings with the extracellular component that was extracted
fromm NODDI.

In summary, the NODDI model is similar to the free-water model in that it eliminates CSF
contamination, though it goes further by separating changes in the tissue into two possible
factors, neurite orientation or neurite density changes. The model, however, is limited by
some of its assumptions, the main one being that the diffusivities of the tissue compartments
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are fixed. While this assumption may hold for healthy brains, it is not clear whether or not it
remains valid for brains with pathologies. In fact, a recent paper by Lampinen et al. (2017)
suggests that this assumption may bias the estimation of neurite density in healthy brains as
well. In this paper (Lampinen et al., 2017), an alternative acquisition approach (described
below in section 3.2.4) was used to demonstrate how a more accurate estimation of neurite
orientation dispersion and neurite density can be performed. Given the small number of
studies that have used NODDI in psychiatry, it is still quite early to predict if NODDI will
play an important role in unraveling the etiology of psychiatric disorders. For now, it brings
up an interesting candidate, neurite density, as having a potential role in disorder
pathophysiology.

3.2.4 Q-space trajectory imaging (QTI)—Q-space trajectory imaging is a very recent
model and acquisition approach (Westin et al., 2016), first applied clinically to
schizophrenia. This method was developed to improve the discrimination of sizes, shapes,
and orientations of diffusion within tissue. QTI changes the way the diffusion signal is
acquired by replacing the pulsed gradient with a free form gradient that rotates in g-space.
The effect of this measurement is that the signal is sensitized to water molecule
displacement in all orientations simultaneously; instead of collecting separate gradient
directions, the signal is sensitized to the sequential orientation displacement of each water
molecule. For example, molecules that are within an anisotropic domain will yield a
different signal from those in an isotropic domain, even if these anisotropic domains are
randomly ordered and macroscopically isotropic (Figure 9). Similar to conventional pulsed
gradient acquisitions, the free-form gradient properties can be described using a group of
parameters, which in QTI is collected into a second order tensor called the b-tensor rather
than to the familiar b-value. Collecting data with several b-tensor shapes and sizes is
equivalent to the collection of multiple-shell data, and it provides a collection of signal that
is sensitive to different orders and kinds of displacements.

To quantify microstructure from QTI, Westin et al. (2016) suggested a model of infinite
microenvironments, where each microenvironment is Gaussian. By decomposing this model
into its cumulant expansion, a function that depends on a diffusion tensor, a 4th order tensor
is obtained. This is similar to kurtosis imaging, except that the measures now represent
microscopic features rather than macroscopic features. Westin et al. (2016) proposed a
family of rotationally invariant scalar quantities describing microstructural features derived
from the 4th order tensor, which include microscopic anisotropy (shape variability),
dispersion (orientation variability), and size variability.

Measuring QTI from a small sample of 5 healthy controls and 5 patients with schizophrenia,
Westin et al. (2016) observed that 9 out of the 14 parameters investigated showed significant
differences between groups. The authors concluded that the ability to model the distribution
of diffusion tensors within a single voxel might be more powerful in capturing complex
white matter architecture, as opposed to quantities that have already been averaged within a
voxel. Based on this small pilot study, it is too early to evaluate the current contribution of
QTI to the study of schizophrenia or other mental disorders. Nonetheless, QT1 will be highly
relevant for future analyses, especially given that the method is capable of providing the
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same type of information (except, arguably, more accurate) that the kurtosis imaging and
NODDI methods provide.

4. Discussion

To date, only a limited number of investigations have applied advanced diffusion MRI
techniques to the study of psychiatric disorders. Nonetheless, available studies have begun to
offer interesting insights into psychiatric neuropathology from which early conclusions can
be drawn.

The most readily drawn conclusion is that advanced diffusion MRI methods continue to
observe the trend set by diffusion tensor imaging: that brain abnormalities are consistently
found in psychiatric populations. While this may partially reflect selective reporting and an
unwillingness or inability to publish negative findings, it still undoubtedly supports the
notion that subtle neurobiological abnormalities are present in white matter (and likely in
gray matter) in psychiatric patients. Authors of the reviewed papers provide two main
reasons for employing more advanced diffusion imaging methods as opposed to
conventional DTI. The first reason is to increase methodological sensitivity to brain
abnormalities, and the second reason is to attempt to provide a better explanation as to the
source of these abnormalities.

Of the 7 methods reviewed, gFA and DKI are the two methods most focused on increasing
the sensitivity of DTI by replacing existing DT1 parameters with measures that are presumed
to be more directly related to tissue microstructural changes (especially those that occur in
white matter). It is, nonetheless, difficult to assess whether or not the gFA measure is more
sensitive than DTI FA, given that most studies did not directly compare these two measures.
Nevertheless, Canales-Rodriguez et al’s (2014) important study established that the gFA
measure improves the capacity to identify abnormalities in areas of complex fiber
architecture. gFA does not, however, appear to improve the detection of abnormalities in the
rest of the white matter, and it may actually be less sensitive than FA in many regions.
Moreover, the gFA measure is not sensitive to isotropic changes that consistently appear in
psychiatric disorders. For these reasons, we suggest that gFA may not, on its own, be
sufficient for characterizing and understanding the nature of brain abnormalities in
psychiatry. We recommend that whenever possible, the standard DTI model should be
applied alongside advanced diffusion MRI methods. This will help to increase overall
sensitivity while simultaneously helping to evaluate the added benefits (or lack thereof) that
these new measures provide.

Unlike gFA analyses, the DKI analysis inherently estimates DTI parameters, and therefore
many of the DKI studies reviewed reported changes in both kurtosis-derived DTI and DKI
measures. This is an advantage of the DKI model, since, in theory, it can only contribute
additional information to the DTI model. Indeed, from the papers reviewed, it appears that a
combination of kurtosis and diffusivity measures provides higher sensitivity than that of DTI
measures alone. Additionally, DKI measures may be more closely linked to disorder
symptomatology. It should be noted, however, that DKI requires higher b-values with lower
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signal to noise ratios, and thus DKI is often collected with a lower resolution than optimized
DTI protocols, which might reduce some of DKI’s sensitivity as compared to DTI.

With regards to specificity, authors of both gFA and DKI studies argue that the derived
measures are more specific to white matter pathologies. In many of the reviewed papers,
gFA is used as a proxy for microstructural integrity, and DKI measures are considered to be
directly representative of a demyelination index. From the studies reviewed here, it is not yet
clear whether the interchangeable use of these imaging and biological terms is justified. The
specificity of kurtosis, for example, is limited by its susceptibility to partial volume effects
such as CSF contamination, and by the fact that in complex architecture, macroscopic
averaging yields isotropic profiles that are less useful to characterize microscopic anisotropy.

The free-water imaging, PDI, and NODDI methods reviewed here aim to improve the
specificity of DTI measures to particular and distinctive pathologies. Interestingly, these
three methods assume three different explanations for decreases in FA. Free-water imaging
has shown that FA decreases can be explained by either (or by a combination of) an increase
in the isotropic extracellular fractional volume, or by a decrease in anisotropy in the vicinity
of tissue. The PDI model attributes decreases in FA to changes in permeability, which seem
to be driven (at least in schizophrenia) mainly by a decrease in the diffusivity of the
restricted compartment. Lastly, the NODDI model explains decreases in FA as decreases in
neurite density (i.e., the fraction of the restricted compartment). These differences merit
further direct comparisons between these methods in the same sample.

The different ways in which these three models interpret findings of decreased FA highlight
two interesting limitations of model based approaches: 1) It is difficult to assess whether the
more complicated models over fit the signal variability or truly represent underlying
microstructural changes, though if findings continue to be replicated this will lend support to
the later. When variability in the signal exists, this variability has to be absorbed by one of
the free parameters of the model. In the free-water imaging model, the variability can be
absorbed by either the fractional volume of the extracellular space, or by the diffusivity/FA
of the tissue compartment. In the PDI model, the variability can be absorbed by either a
change in permeability (as estimated by the ratio of restricted and non-restricted
diffusivities) or by the fractional volume of the restricted compartment. In the NODDI
model, the variability can be absorbed by the fractional volume of the extracellular space, by
the neurite dispersion, or by the neurite density. And 2) The model is only as good as its
underlying assumptions. While these models are mathematically advanced and biologically
feasible, here it is clear that some assumptions from different models are also contradictory.
For example, free-water imaging assumes that there is no permeability, whereas PDI aims to
quantify permeability directly, presuming that this is the main explanation for observable
group differences. The PDI model additionally operates under the assumption that there is
no extracellular free-compartment, and it can thereby be biased by CSF contamination, a
bias that can alter the biological interpretation of the PDI parameter. Along similar lines, the
NODDI model explicitly assigns a fixed restricted diffusivity, which PDI has shown to be
the main parameter that differentiates schizophrenia patients from healthy controls. Finally,
PDI and free-water imaging assume a single fiber orientation, whereas NODDI allows for a
distribution of orientations in order to explain signal variability. Unfortunately, the scope of
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this review does not allow us to conclude which of these assumptions is most valid. This,
along with techniques that lessen the chance of overfitting (e.g., regularization and cross
validation) are critical areas of investigation for future studies, given the compelling
hypotheses that each model engenders.

The conclusion that follows is that parameters derived from advanced models are likely quite
sensitive (and likely more sensitive than DTI) to brain abnormalities, yet, while improving
the specificity of DTI, they are still not definitively specific to individual pathologies. This
continued lack of specificity must be considered by users trying to interpret the results of
any given model. Moreover, the explicit names chosen for some model parameters increase
the likelihood of confusion in their interpretation, whereby, for example, a change in the
permeability diffusivity index does not necessarily signify a change in permeability, and a
change in the neurite density parameter can occur due to changes other than in neurite
density. Adding to the danger of misinterpretation is the application of these advanced
methods to studies with small cohorts. Such studies are important as proof of concept, but
physiological interpretation of their results should be avoided until a) results are replicated in
larger and more robustly designed studies, and b) the neurobiological bases of derived
parameters are further investigated and validated.

Validation studies using post-mortem histological analyses, animal models, or other
techniques (e.g. phantoms or simulated data) that can link imaging findings to specific
pathologies are key for understanding and justifying the use of certain diffusion measures.
These studies will be central to interpreting transformative diffusion findings in the mental
health literature, and will mitigate many over interpretation concerns. Some preliminary
work has been done in this direction, for example in relating kurtosis measures with
histopathology (Hui et al., 2008; Umesh Rudrapatna et al., 2014), with reactive astrogliosis
(Zhuo et al., 2012) in rat brains, and with demyelination in mouse brains (Falangola et al.,
2014; Jelescu et al., 2016). Similarly, preliminary histopathological studies are also available
for DSI/gFA (Shen et al., 2015), and for NODDI measures (Sato et al., 2017).

The aforementioned studies are important validation studies for diffusion MRI methods, yet
the vast majority of validation studies have looked at neurological disorders, i.e., disorders
with known pathologies that can be reliably induced and identified in animal models.
Discerning the specificity of a diffusion measure to a relevant candidate pathology and
ascertaining the role of that pathology in producing disorder symptoms is much more
difficult for psychiatric than for neurological illnesses. This is since it is still largely unclear
what pathologies may indeed be “relevant” to investigate or induce (which is why
developing hypotheses from neuroimaging studies is critical), and because human pathology
(both biological and psychological) may not be readily comparable to animal models.
Human post-mortem studies offer an alternative solution, though these are typically
conducted on chronically ill subjects, thus brains may primarily show signs of illness
chronicity and medication use, rather than indicators of the initial pathology of interest.

Despite the limitations of model based approaches and the current need for validation, these
methods remain superior to most proposed since the conception of /7 vivo neuroimaging. As
such, there is much to be gained by employing these approaches, especially when there is a
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need to differentiate between what are likely two distinct pathologies. Accordingly, the
major contribution of these model based studies is the understanding that there are often two
or more co-occurring pathologies contributing to the etiology of a single psychiatric
disorder. An additional important conclusion is that the spatial distributions of these
pathologies may change (and interact) over the lifetime course of a disorder, offering insight
into different stages of illness. As an example, the free-water imaging studies in
schizophrenia have provided evidence of two co-occurring pathologies, one that is
extracellular and isotropic that manifests in the early stages of schizophrenia, and a second
affecting the tissue that is more prominent in the later stages of the disorder. This finding is
paralleled in other advanced method studies reviewed here that investigated isotropic
processes. The discovery of this isotropic effect early in the disease course has led to
investigations into the possible pathological underpinnings of extracellular diffusion
changes, using other tools such as PET imaging and histological approaches. Sources
currently being investigated include neuroinflammation, density changes, and permeability
changes.

4.1 Recommendations for future studies

4.1.1 Study design—In the future, an important consideration for the application of any
advanced diffusion MRI study will be the study design. More specifically, the selection of
appropriate and more homogenous psychiatric sub-populations increases the likelihood of
identifying abnormalities that correlate with clinical or cognitive measures, making it easier
to relate imaging findings to specific, clinically-relevant symptoms or behaviors.
Homogeneity may be achieved by studying genders separately, by limiting age ranges, and
by including subjects in similar disorder stages with similar symptomatology. In turn,
established diffusion imaging markers may contribute to alternative subtype definitions that
focus more on dimensional traits rather than dichotomous classification, as was, for
example, proposed by the Research Domain Criteria (RDoC) framework (Insel et al., 2010);
this identification of biological subtypes may prove critical to our understanding of disorder
risk and treatment. As described in our review, the advanced diffusion MRI measures often
exhibited improved correlation with clinical and cognitive symptoms when directly
compared to DTI measures, hence they may fit well within the RDoC framework. However,
due to the large number of potential clinical and cognitive variables that are pertinent in
psychiatry, care must be taken to reduce erroneous (i.e., false positive) findings by properly
correcting for multiple comparisons. To avoid false negatives on the other hand, studies
should be appropriately powered.

The large variability across studies (in factors such as design, symptomatic population,
imaging sequences, sample sizes, preprocessing steps, and statistical analyses) likely
contributes more to the variability seen in these advanced diffusion study results than the
occurrence of false positives or false negatives. Clearly, surveying the spatial extent of the
different abnormalities reported here (see Table 3) does not present a coherent picture of the
brain areas that are afflicted. What is needed then are more studies that employ similar
designs and analyses on homogenous populations, as this will allow for a more direct
comparison of results. Longitudinal follow up studies will also be essential for
understanding the dynamics of reported neurological aberrations; none of the studies
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reviewed here followed subjects over time with multiple imaging sessions. Moreover, multi-
modal imaging studies that integrate imaging information across modalities and with other
clinical, cognitive, and biological (e.g., genetic, neuroendocrine, and blood-based) measures
will be integral to the pursuit of developing a more comprehensive understanding of the
pathologies that underlie these imaging abnormalities. For example, a promising approach
could be to combine information from diffusion analyses with morphometric analyses from
anatomical images, especially because collective morphometric findings reveal that a large
number of abnormal patterns can be expected in mental disorders (Gupta et al., 2015).

In the future, more resources must also be devoted to the acquisition of large neuroimaging
cohorts. The average statistical power of neuroimaging studies is very low, resulting in an
overestimation of effect sizes as well as problems with the reproducibility of findings. In
recent years, the neuroimaging community has seen the proliferation of multisite
collaborations in a concerted effort to increase sample sizes and yield more robust estimates
of effects for DTI studies (as well as other imaging modalities). These efforts are also
needed for advanced diffusion MRI methods. Modification of retrospective meta-analysis
tools such as those proposed by the ENIGMA-DTI workgroup (Jahanshad et al., 2013;
Kochunov et al., 2015) could be an effective way to combine advanced diffusion data
analyses. Users must be aware, however, that all of the diffusion metrics reviewed here are
likely affected by scanner differences and scanner calibrations, even when the same make
and model are used in different locations (Mirzaalian et al., 2016). Efforts to harmonize the
acquired diffusion signal for combining multiple DTI datasets derived from different
acquisition protocols can additionally be extended to advanced diffusion MRI
methodologies, thereby allowing for joint analyses across different sites. For example, a
recent method proposed by Mirzaalian et al. (2016) takes into account region-specific
differences in the acquired signal from different scanners in order to harmonize the signal at
each site in comparison to a reference site, using several rotation invariant spherical
harmonic features.

4.1.2 Data acquisition—It is important to note that the different methods reviewed here
require different acquisitions. All of the advanced methods reviewed require multi-shell
acquisitions for an ideal estimation. However, the free-water imaging parameters and the
gFA parameter can also be obtained from a single-shell acquisition. Based on the papers
reviewed here, we offer the opinion that a DKI-like acquisition is destined to be the most
general and simultaneously cost-effective sequence that will additionally allow for the
estimation of most parameters discussed here, including DTI parameters, gFA, return-to-
zero probability, DKI parameters, free-water imaging parameters, and NODDI parameters.
A more ideal acquisition, however, would be similar to a DKI design with the addition of a
few low b-value shells. The addition of these shells allows for better estimation of fast
diffusing components that typically go unaccounted for and thereby bias the estimation of
diffusion measures, for example vascular contributions (Rydhdg et al., 2017) that are likely
involved in many brain disorders. Of course, adding diffusion directions and b-values does
increase the acquisition time. However, immerging technologies such as multi-band
(Setsompop et al., 2016), compressed sensing (Michailovich et al., 2011), and super-
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resolution (Ning et al., 2016) may considerably shorten the required time, making the more
advanced diffusion methods much more feasible to acquire.

We also note that although the QTI acquisition may actually be the most general, QTI
sequences are not yet available as a product on MRI vendors. Nevertheless, protocols similar
to QTI approaches show promise, given that they allow for a more direct estimation of
permeability (Lasi€ et al., 2011). These protocols are expected to have high clinical utility as
they provide a feasible approach to simultaneous estimation of all of the candidate
pathologies described throughout this review, including extracellular contributions,
permeability, neurite density, and orientation dispersion.

5. Conclusions

As evinced in this review, much progress is being made towards developing and
implementing methods that increase the degree of sensitivity and specificity of diffusion
MRI, using both non-model based and multi-compartment model based approaches.
Although none of the methods reviewed were specifically designed for examining
psychiatric disorders, these newer methods nonetheless presented novel findings and offered
new insight into psychiatry in at least two important ways: 1) Improved sensitivity allowed
for the identification of microstructural white matter abnormalities outside of homogenous
fiber areas, such as in areas with complex fiber arrangements, and possibly in gray matter;
and 2) Increased specificity allowed for the detection of co-occurring pathologies that
typically affect DTI- derived diffusion measures in the same way, and thus previously could
not be distinguished.

Although the exact neurobiological sources of these co-occurring abnormalities remain to be
fully elucidated, there are now new candidate pathologies that have the potential to explain
the etiology and symptomatology of psychiatric disorders. These include pathologies that
change the extracellular volume (e.g., inflammation), density changing pathologies (e.g.,
excessive pruning or degeneration), and permeability changing pathologies (e.g., membrane/
channel deficiencies). These important advances in disorder insight have emerged from just
the small selection of studies reviewed here, warranting their application in future work.
Future work is also needed, however, in order to validate the underlying assumptions of
specific models, or else to establish evidence-based models designed to investigate specific
candidate psychiatric related pathologies.

Our recommendation for future studies is to collect multi-shell diffusion data with both high
and low b-values from which parameters derived from numerous different models can be
estimated. Importantly, such data will also allow for a direct comparison of different
advanced methods in the same clinical population. New study designs should emphasize the
careful selection of clinical sub-populations, large cohorts, longitudinal imaging follow ups,
and multidimensional data.

Future progress demands the integration of multi-modal imaging methods with behavioral,
computational, neuroendocrine, neuroimmunological, and genetic approaches. The time is
ripe for investigations such as these, given the invaluable potential that diffusion imaging
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holds for elucidating neurological abnormalities at the core of these psychiatric disorders,
and for further improving disorder diagnosis, risk-evaluation, and treatment through the
implementation of neuroimaging-informed psychiatric evaluation and management.
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Figure 1: An overview of the advanced diffusion MRI methods examined in thisarticle.
The methods are either model based (Compartmental models) or non-model based (Non

Gaussian), with the later methods focusing on measures of deviation from a Gaussian
distribution. Methods are ordered vertically by increased acquisition complexity (single
shell, single direction multi-b, multi-shell and free-waveform), and horizontally by increased
model complexity (1, 2 or 3 compartments). DTI = diffusion tensor imaging; FWI = Free-
water imaging; PDI = Permeability-diffusivity imaging; DSI = Diffusion spectrum imaging;
NODDI = Neurite orientation dispersion and density imaging; QTI = g-space trajectory
imaging.
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Figure 2: Generalized fractional anisotropy (gFA).

(Canales-Rodriguez et al., 2014) proposed that the combination of gFA, probability of return
to origin (PTO), FA and MD measures may best capture the diversity of microstructural
environments in the brain, including regions of coherent parallel fibers, crossing fibers, gray
matter, and cerebrospinal fluid (CSF). (Figure replicated from (Canales-Rodriguez et al.,
2014) with permission).
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|

Figure 3: Direct comparison of DK| and DTI parameters.
Zhu et al. (2015) directly compared MK and FA measures derived from the DKI model.

Despite much overlap between MK and FA, the FA measure identified abnormalities in
ordered white matter bundles that MK could not identify (e.g., corpus callosum in z-
coordinate 28). On the other hand, MK identified abnormalities in complex white matter
structures that include crossing fibers, while FA did not identify abnormalities in those
regions. (Figure modified from Zhu et al. (2015) with permission).
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Figure 4: Comparison of DK| and DT parametersacross disorders.
Zhao et al. (2016) compared DKI and DTI parameters between subjects with bipolar

disorder, unipolar depression and healthy controls in the white matter of the superior and
middle cerebellar peduncles (SCP and MCP), and in the dentate nuclei (DN). DKI (but not
DTI) identified abnormalities in the DN. DTI and DKI identified the same abnormalities in
the left SCP and left MCP. In the right MCP, both DTI and DKI identified a difference
between unipolar depression patients and controls, however, DTI measures also identified a
difference between bipolar disorder patients and controls. (Figure replicated from Zhao et al.
(2016) with permission).
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Figure 5: Comparison of Free-water imaging and DTI measures.
(Pasternak et al., 2012) compared free-water and DTI measures between first episode

schizophrenia patients and controls. The widespread FA decreases (top, red) were explained
mostly by increased fractional volume of extracellular free-water (FW) (bottom, blue).
Following free-water correction the corrected tissue anisotropy (FAT) was reduced only in a
limited area in the frontal lobe. (Figure modified from Pasternak et al. (2012) with
permission).
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Figure 6: Permeability diffusivity imaging (PDI).

This illustration explains the PDI parameters in comparison to the DTI model. While DTI
has one compartment, PDI assumes two compartments: a restricted compartment, next to
membranes, and an unrestricted compartment, away from membranes. The ratio between the
diffusivities of the two compartments defines the permeability diffusivity index, which is
purported to reflect alterations in water channels embedded in the plasma membrane.
(Replicated from Kochunov et al. (2013) with permission).
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Figure 7: Neurite orientation dispersion and density imaging (NODDI).
NODDI has three compartments, intra-cellular, extra-cellular and CSF (free-water)

compartments. The fractional volume of the isotropic compartment (ISO), the orientation
dispersion index (ODI) and the neurite density (ND) are estimated from NODDI. (Figure
replicated from Rae et al. (2017) with permission).
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Rae et al. (2017) compared DTI and NODDI measures in first episode schizophrenia
patients (FEP) and controls (CON). Differences in FA predominantly co-localized with
regions of reduced neurite density index (NDI), rather than with the orientation dispersion

index (ODI).
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Figure 9: Q-spacetrajectory imaging (QTI).

Using a combination of continuous gradient pulses, QT estimates a 4 order tensor, from
which scalar values can be estimated. These parameters reflect features of the diffusion
tensor distribution (DTD) such as size variability - V\p, and shape variability — Vgnear- The
figure (replicated from Westin et al., 2016 with permission) shows three theoretical
distributions that are macroscopically isotropic and thus indistinguishable using DTI
parameters (or any other approach based on conventional pulsed gradients), but that can be
separated based on their Vyp and Vghear Values. In these graphical representations, green is
positive, black is zero, and red is negative.
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