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Abstract: Interferon is known as a pleiotropic factor in innate immunity, cancer immunity and therapy. Despite an 
objective short-term response of interferon (IFN) therapy in renal cell carcinoma (RCC) patients, the potential ad-
verse effect of IFN on RCC cells is not fully understood. In this study, we demonstrate that IFNs can enhance RCC 
invasion via a new mechanism of IFIT5-mediated tumor suppressor microRNA (miRNA) degradation resulted in the 
elevation of Slug and ZEB1 and epithelial-to-mesenchymal transition (EMT). Clinically, a significant upregulation of 
IFNγ signaling pathway (such as IFNGR1, IFNGR2, STAT1 and STAT2) is observed in RCC patients with metastatic 
disease. Overall, this study provides a new mechanism of action of IFN-elicited canonical pathway in regulating sup-
pressor miRNAs. Most importantly, it highlights the potential pro-metastatic effect of IFNs, which could undermine 
the clinical applicability of IFNs for treating RCC patients.

Keywords: Interferon (IFN), interferon-induced tetratricopeptide repeat 5 (IFIT5), epithelial-to-mesenchymal transi-
tion (EMT)

Introduction

Renal cell carcinoma (RCC) is by far the most 
lethal urologic malignancy of cancer-specific 
mortality of 40% compared with 25% of overall 
mortality of prostate and bladder cancers 
because it is resistant to chemotherapeutics 
and radiotherapy [1]. Pathologically, RCC is a 
heterogenous disease consisting three major 
types: clear cell RCC (ccRCC) [2], papillary RCC 
[3] and chromophobe RCC [4]. As for the thera-
peutic strategy for RCC patients, usually local-
ized primary tumor can be managed success-
fully with radical nephrectomy. On the contrary, 
despite the prognosis of metastatic RCC 
(mRCC) patients has improved with targeted 
therapies, 20-25% of the patients are refracto-
ry to chemotherapy at the first response 
assessment and acquire drug resistance dur-
ing the treatment [5].

Accumulating studies have demonstrated that 
tumor-associated immune cells play a critical 
role in cancer development. The presence of 
tumor-associated macrophage (TAM) is able to 
increase tumor cell proliferation and dissemina-
tion in different cancer types [6-12]. Action of 
these tumor-infiltrating lymphocytes (TILs) is 
mainly mediated through secretion of cytokines 
such as interleukins (IL-1, IL-6, IL-8 and IL-10), 
tumor necrosis factors (TNF), and interferons 
(IFNs). Many studies have shown that these 
cytokines could stimulate tumor cell prolifera-
tion, protect tumor cells from apoptosis, or pro-
mote angiogenesis and metastasis. Interleu- 
kin-6 (IL-6) is known to act as pro-tumorigenic 
cytokine by facilitating cell growth and anti-
apoptosis in multiple myeloma [13, 14]. High 
concentration of interleukin-1 (IL-1) is associat-
ed with more malignant tumor phenotype [15-
18]. Both IL-1α and IL-β are implied to aggra-
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vate tumor angiogenesis and invasiveness via 
induction of vascular endothelial cell growth 
factor (VEGF) and tumor necrosis factor (TNF) 
[18]. On the other hand, the role of IFNs in can-
cer development remains controversial. For 
example, both IFN and IFNγ can exhibit anti-
tumor activities [19-25]. IFNγ is also responsi-
ble for antigen-specific tumor immunity [26-
29]. In contrast, IFNγ was reported to facilitate 
lung metastasis in melanoma 30 and peritone-
al dissemination of ovarian cancer [31]. In pros-
tate cancer, our recent study also indicates that 
IFNγ can promote epithelial-to-mesenchymal 
transition (EMT) via a new mechanism of IFIT5 
in specific microRNA (miRNA) turnover [32]. 

Clinically, a significant elevation of several key 
effectors (such as IFNγ receptor 1 and 2 
[IFNGR1, IFNGR2], STAT1, STAT2) in IFNγ signal-
ing pathway is associated with metastatic RCC 
tumor [33]. Nevertheless, the role of IFNs in 
RCC development is not fully characterized. In 
this study, we demonstrate that IFN-elicited 
RCC invasion is mediated by IFIT5-XRN1 com-
plex responsible for specific microRNA (such as 
miR-363) turnover; loss of miR-363 expression 
has been detected in RCC specimens [34]. 
Taken together, IFN is a potent tumor promoter 
that is mediated by a new mechanism of action 
of IFIT5 in degrading tumor suppressor miRNA. 

Materials and methods

Cell lines 

ACHN, 768O and 769P cell lines were main-
tained in RPMI-1640 medium supplemented 
with 10% fetal bovine serum (FBS). 293 cells 
were maintained in Dulbecco’s Modified Eagle’s 
Medium (DMEM) containing 10% FBS. Stable 
IFIT5-shRNA knockdown (shIFIT5) and control 
(shCon) RCC cell lines were established from 
ACHN, 786O and 769P cell lines using pLK0.1-
shCon or pLK0.1-shIFIT5 plasmids provided 
from Academia Sinica, Taiwan. All RCC cell lines 
were authenticated using the short tandem 
repeat (STR) profiling by Genomic Core in UT 
Southwestern Medical Center (UTSW). Myco- 
plasma testing was performed using Myco- 
Alert® kit (Lonza Walkersville, Inc. Walkersville, 
MD) every quarterly to ensure Mycoplasma-free 
condition.

Invasion assay 

RCC cells cultured in the serum-free RPMI-
1640 medium for 18 hrs were plated onto the 

upper chamber of Transwell (8-um (i.e., 
8-micrometer) pore size, Corning) pre-coated 
with 2.5% Matrigel, and bottom chamber con-
tained RPMI-1640 medium with 10% FBS. After 
24 hrs, cells from the bottom side of chamber 
were fixed by 4% paraformaldehyde, stained 
with 0.4% Crystal Violet and observed under 
microscope (Keyance). The crystal-violet-
stained cells from each field were quantified 
using BZ-X Analyzer software. Relative invaded 
cells were normalized to control group of each 
experiment. Each experiment was performed in 
triplicates.

Construction of SSMut and DSMut pre-miRNA-
expression plasmid

miR-363 and miR-128 expression plasmid was 
initially purchased from Origene and Gene- 
copoeia, respectively. Native miR-363 or miR-
128 expression plasmid was engineered to 
generate mutant pre-miR-363 or mutant miR-
128 with 5’-end six nucleotides single stranded 
overhang (pre-SS6Mut-miR-363 or pre-SS6Mut-
miR-128) or double-stranded blunt end (pre-
DSMut-miR-363 or pre-DSMut-miR-128) con-
structs using QuickChange II site-directed 
mutagenesis kit (Agilent Technologies) and the 
mutated sequence was confirmed by DNA 
sequencing from Genomic Core in UTSW. 

RNA purification 

RCC cells were pelleted by centrifuge at 5000 
rpm for 2 mins then snap-frozen in liquid nitro-
gen before RNA extraction. Chilled 1-Thio- 
glycerol/Homogenization Solution (200 µl) was 
added to re-suspend the pellet, followed by 
additional of 200 µl Lysis Buffer with 15 µl 
Proteinase K solution. Samples were vortexed 
and incubated at room temperature for 10 mins 
before loading into Maxwell® cartridge. RNA 
sample was purified in the Maxwell® RSC 
Instrument using the microRNA Tissue Kit and 
eluted in 40-60 µl Nuclease-Free Water.

Quantitative real-time RT-PCR (qRT-PCR)

For the quantification of miRNA expression 
level, total RNA 2.5 ug (i.e., 2.5 microgram) was 
subjected to miScript II RT kit (QIAGEN) then 
2.0 µl cDNA was applied to a 25-μL reaction 
volume using miScript SYBR® Green PCR kit 
(QIAGEN) in CFX96 Touch Real-Time PCR detec-
tion system (BioRad). Primer assays for each 
miRNA species were purchased from QIAGEN. 
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The relative expression levels of matured miR-
NAs from each sample were determined by nor-

malizing to SNORD95 small RNA. For the quan-
tification of mRNA expression level, total RNA 

Figure 1. IFNγ promotes renal cancer invasion via induction of IFIT5. A. Increased invasiveness of ACHN or 786O 
cells after IFNα or IFNγ treatment (20 ng/ml) for 48 hrs, compared to vehicle control. (***P<0.00001). B. Dose-
dependent elevation of IFIT5 protein and mRNA level in renal cancer cell lines (ACHN and 786O) treated with IFNγ 
for 48 hrs, compared to vehicle control. (*P<0.05). C. The impact of IFIT5 loss (shIFIT5) on the IFNγ-enhanced 
aggravation of invasiveness in ACHN cells, compared to shCon. (**P<0.001, ***P<0.00001). D. The impact of 
IFIT5 loss (shIFIT5) on the IFNγ-induced elevation of Slug and ZEB1 mRNA level in ACHN cells, compared to shCon 
(**P<0.001). E. The impact of IFIT5 loss (shIFIT5) on the IFNγ-induced alteration of Slug, ZEB1 and E-Cadherin (E-
Cad) protein level in ACHN cells, compared to shCon.
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(2 g) was subjected to iScript advanced cDNA 
synthesis kit (BioRad) then 2.0 μl cDNA was 
applied to 25-μl qRT-PCR reaction volume using 
iTaq Universal SYBR® Green supermix (BioRad) 
in CFX384 Touch Real-Time PCR detection sys-
tem (BioRad). The relative expression levels of 
IFIT5, Slug, ZEB1, E-cadherin, and Vimentin 
mRNA from each sample were determined by 
normalizing to 18S mRNA. All quantitative data 
were analyzed using ΔCt (Ct value normalized 
to internal SNORD95 miRNA or 18S RNA) and 
the fold change (ΔΔCt) was obtained after nor-
malizing with the control group.

Western blot analysis 

RCC Cells were lysed in lysis buffer [50 mM 
Tris-HCl (pH 7.5), 150 mM NaCl, 0.1% Triton 
X-100, 1 mM sodium orthovanadate, 1 mM 
sodium fluoride, 1 mM sodium pyrophosphate, 
10 mg/mL, aprotinin, 10 mg/mL leupeptin, 2 

mM phenylmethylsulfonyl fluoride, and 1 mM 
EDTA] for 30 mins on ice. Cell lysates were spin 
down at 20,000×g for 20 mins at 4°C. Protein 
extracts were subjected to SDS-PAGE using 
Bolt 4-12% Bis-Tris Plus gel (Invitrogen), and 
transferred to nitrocellulose membrane using 
Trans-Blot Turbo Transfer system (BIORAD). 
Membranes were incubated with primary anti-
bodies against IFIT5 (ProteinTech), Slug (Cell 
Signaling Technology), ZEB1 (Cell Signaling 
Technology), E-Cadherin (BD Transduction La- 
boratory), Vimentin (Sigma-Aldrich), STAT1 
(Santa Cruz Biotechnology), GAPDH (Santa Cruz 
Biotechnology) or HRP-conjugated Flag (Sigma-
Aldrich) antibodies at 4°C for 16-18 hrs, fol-
lowed by incubation with horseradish peroxi-
dase-conjugated secondary antibodies at room 
temperature for 1.5 hrs. Results were visual-
ized with ECL chemiluminescent detection sys-
tem (Thermo Scientific Pierce) using Alph- 
aimager instrument. The relative protein ex- 

Figure 2. Recruitment of XRN1 is required for the machinery of IFIT5-mediated miR-363 degradation. A, B. The 
impact of IFIT5 shRNA knockdown (shIFIT5) on the expression level of miRNAs derived from the miR-106a-363 
cluster (miR-106a, miR-18b, miR-20b, miR-19b-2, miR-92a-2 and miR-363) in ACHN and 293T cells, compared to 
control shRNA (shCon). (*P<0.05, ***P<0.00001). C. Co-Immunoprecipitation using flag antibody to pulled down 
flag-tagged WT or mutant (Δ7-8 TPR deletion) IFIT5 protein overexpressed in 293 cells, and immunoblotted with 
or and flag antibody. D. Expression level of miR-363 in cells overexpressed with WT or mutant (Δ7-8 TPR deletion) 
IFIT5, compared to vector control (**P<0.001, ***P<0.0001). E. Dose-dependent expression level of miR-363 in 
IFIT5-positive 293 cells transfected with siRNA-knockdown of XRN1 (***P<0.0001). F. Expression level of Slug in 
IFIT5-overexpressed 786O cells transfected with siRNA-XRN1, compared to vector control (*P<0.05, **P<0.001).
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pression level in each sample was normalized 
by GAPDH levels.  

Luciferase reporter assay 

Established stable clones of control (shCon) or 
STAT1-knockdown (shSTAT1) 786O cells (8×104) 
were seeded onto 12-well plates at 75% conflu-

ence before transfection with IFIT5 promoter-
luciferase reporter plasmid. Cells were harv- 
ested and lysed with Passive Lysis buffer (Pro- 
mega) at 48 hrs after transfection. Luciferase 
activity was measured using the Firefly lucifer-
ase reporter assay (Promega) on the Veritas 
Microplate Luminometer (Turner Biosystems). 

Figure 3. IFIT5 regulates miR-363 turnover via recognition of precursor miRNA 5’end. A, B. The impact of IFNγ on the 
expression level of miRNAs derived from the miR-106a-363 cluster (miR-106a, miR-18b, miR-20b, miR-19b-2, miR-
92a-2 and miR-363) in ACHN and 786O cells, compared to vehicle control (*P<0.05, ***P<0.0001). C. The impact 
of IFIT5 loss (shIFIT5) on the IFNγ-induced downregulation of miR-363 level in ACHN cells. (*P<0.05). D. Attenu-
ated cancer invasiveness by miR-363 overexpression in 786O or ACHN cells, compared to vector control (*P<0.05, 
***P<0.00001). E. Left: Mutation of nucleotides (box) for generating 5’-end 6 nucleotides single stranded pre-
miR-363 (SS6Mut pre-miR-363) and blunt 5’-end double stranded pre-miR-363 (DSMut pre-miR-363). Both mature 
miR-363 and miR-363* sequence are shown in lighter gray. Right: Expression level of mature miR-363 in 293 cells 
transfected with plasmids carrying mutant SS6Mut or DSMut pre-miR-363 sequence. (**P<0.001). F. The impact 
of mutant SS6Mut or DSMut pre-miR-363 on suppression of cell invasion in ACHN cells (*P<0.05, ***P<0.00001). 
G. Expression level of Slug mRNA in 293 cells transfected with plasmids carrying mutant SS6Mut or DSMut pre-
miR-363 sequence. (**P<0.001). 
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Relative luciferase activity was determined by 
normalizing with control. Each experiment was 
performed in triplicates. 

Statistics analysis 

Statistics analyses were performed using Gra- 
phPad Prism software. Statistical significance 
was evaluated using Student t-test. P values of 
P<0.05, P<0.001 and P<0.00001 were consid-
ered significant difference between compared 
groups and marked with asterisks. 

Results

IFN promotes RCC invasion via induction of 
IFIT5

Prior to targeted therapy for RCC patients, IFNα 
has demonstrated a short-term efficacy as a 
single agent [35-39] and improved the overall 
survival by combining with other agents such 
as cyclooxygenase-2 inhibitor (celecoxib) [40], 

interleukin-2 [41], capecitabine [42] or sora- 
fenib [43, 39, 44]. On the other hand, IFNγ ther-
apy resulted in minimal anti-tumor activity 
among mRCC patients [45, 46]. Thus, we decid-
ed to study potential adverse effect of IFNγ and 
observed that either IFNα or IFNγ was able to 
facilitate cell invasion of ACHN and 786O cell 
lines using Transwell invasion assay (Figure 
1A). Since IFNγ appeared more potent than 
IFNα, we decided to focus IFNγ to unveil its 
mechanism of action. Indeed, IFNγ treatment is 
able to activate the canonical pathway of STAT1 
phosphorylation to increase IFIT5 expression 
(Figures 1B, S1A and S1B), a bona fide IFN-
induced gene [47, 48] that is capable of pro-
moting EMT in prostate cancer [32]. To eluci-
date the role of IFIT5 in IFNγ-induced RCC cell 
invasion, we knocked down IFIT5 in ACHN, 
786O and 769P cell lines and demonstrated 
that IFNγ-induced cell invasion is diminished in 
IFIT5-knockdown (KD) cells (Figures 1C, S1C 
and S1D). Indeed, IFNγ is able to increase both 

Figure 4. IFIT5 regulates miR-128 turnover via recognition of 5’-end of precursor miRNA. A. Left: Mutation of nucleo-
tides (box) for generating 5’-end 6 nucleotides single stranded pre-miR-128 (SS6Mut pre-miR-128) and blunt 5’-end 
double stranded pre-miR-128 (DSMut pre-miR-128). Both mature miR-128 and miR-128* sequence are shown 
in lighter gray. Right: Expression level of mature in 293 cells transfected with plasmids carrying mutant SS6Mut or 
DSMut pre-miR-128 sequence. (**P<0.001). B. The impact of mutant DSMut or SS6Mut pre-miR-128 on suppres-
sion of cell invasion in ACHN cells (***P<0.00001). C. Expression level of ZEB1 mRNA in 293 cells transfected with 
plasmids carrying mutant SS6Mut or DSMut pre-miR-128 sequence. (**P<0.001). D. The impact of IFNγ and IFIT5 
knockdown on the expression level of miR-128, compared to vehicle and control shRNA, respectively. (*P<0.05). E. 
The impact of IFIT5 loss (shIFIT5) on the IFNγ-induced downregulation of miR-128 level in ACHN cells. (*P<0.05). 
F. Attenuated cancer invasiveness by miR-128 overexpression in 786O or ACHN cells, compared to vector control 
(*P<0.05, ***P<0.00001). 
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Figure 5. Machinery of IFIT5-mediated miRNA degradation is enhanced in the metastatic progression of RCC. A. Expression level of IFIT5, SNAI2/Slug, ZEB1, IF-
NGR1 and IFNGR2 in paired adjacent benign and tumor specimens derived from 75 RCC patients. B. Expression of IFIT5 in the patient-derived xenografts from 
normal benign (N=191), primary (N=294) and metastatic tumors (N=86) of RCC patients. Expression level of IFNGR1 and IFNGR2 genes in tumor specimens de-
rived from RCC patients with non-metastasis (M0, N=550) and metastasis (M1, N=90) status. C. Kaplan-Meier overall survival curves estimate patients with RCC 
including types of clear cell RCC, papillary RCC and Chromophobe RCC, stratified in low and high expression of IFIT5, IFNGR1 or IFNGR2 genes. D. Clinical correla-
tion between IFIT5 and SNAI2(Slug), ZEB1, IFNGR1 or IFNGR2 in TCGA dataset derived from 888 RCC patient tumor specimens. 
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Slug and ZEB1 gene expression leading to EMT 
in ACHN cells (Figure 1D and 1E). However, in 
IFIT5-knockdown (KD) cells, IFNγ failed to in- 
duce Slug and ZEB1 gene expression as well as 
EMT change based on E-Cadherin and Vimentin 
expression (Figures 1D, 1E and S1E). Taken 
together, these data support the notion that 
IFIT5 is the key mediator in IFNγ-induced RCC 
invasion. 

IFIT5 complex regulates miR-363 turnover

IFIT5 has been characterized to function as a 
binding protein for various RNA species (such 
as viral RNA, tRNA) [47, 49, 50]. Our recent data 
[32] demonstrate that a new function of IFIT5 is 
to recruit XRN1 exoribonuclease to degrade 
miRNA by recognizing the unique 5’-structure of 
precursor miRNA. In addition, loss of miR-363 
is detected in RCC specimens [34]. Thus, we 
further validated whether IFIT5 with a similar 
functional role could contribute the loss of miR-
363 in RCC cells. Noticeably, miR-363 belongs 
to the miR-106a-363 cluster containing miR-
106a, miR-18b, miR-20b, miR-19b, miR-92a-2 
and miR-363 [51-54]. As shown in Figure 2A 
and 2B, only mature miR-363 but no other 
miRNA species from this cluster was elevated 
in IFIT5-KD cells. 

Since XRN1 is required for the activity of IFIT5 
complex, we further determine the binding 
domain in IFIT5 for XRN1 and found 7-8 TPR 
domain (Δ7-8) as a key binding domain (Figure 
2C). This truncated IFIT5 was incapable of deg-
radation of miR-363 (Figure 2D). Furthermore, 
our data demonstrate that XRN1 is required for 
IFIT5-mediated miRNA degradation (Figure 2E). 
Consistently, the restoration of miR-363 level 
by siRNA-knockdown of XRN1 resulted in the 
suppression of Slug mRNA expression in 786O 
cells (Figure 2F). Taken together, we believe 
that the presence of IFIT5-XRN1 contributes to 
the loss of miR-363 in RCC cells. 

miR-363 functions as a potent suppressor in 
IFNγ-induced cell invasion

Knowing IFIT5 as a potent regulator for miR-
363 turnover (Figure 2A and 2B), we further 
demonstrated that IFNγ exhibited the same 
specific degradation of miR-363 from miR-
106a-363 cluster in both ACHN and 786O cells 
(Figure 3A and 3B). Also, IFNγ-induced down-
regulation of miR-363 can be reversed in IFIT5 

KD cells (Figure 3C), supporting the mecha-
nism of IFNγ on miRNA turnover is mediated by 
IFIT5 complex. 

By increasing miR-363 expression in either 
ACHN and 786O cells, a significant reduction of 
IFNγ-elicited cell invasion was observed (Figure 
3D). Recently, we have demonstrated that IFIT5 
preferentially bind to 5’-end single-stranded 
overhang sequence of precursor miRNAs [32]. 
Thus, the blunt-end (i.e., DSMut) of pre-miR-363 
appears more resistant to IFIT5-mediated deg-
radation than open-end (i.e., SS6Mut) of pre-
miR-363 (Figure 3E). Functionally, the DSMut 
of pre-miR-363 is more potent in suppressing 
cell invasion of several RCC cells (Figures 3F 
and S2A) as well as Slug gene expression 
(Figure 3G). Overall, these data provide some 
understanding of induction of Slug by IFNγ in 
RCC cells.

IFIT5 regulates the turnover of miR-128 that 
can target ZEB1

In addition, ZEB1 induction was detected in 
IFNγ-treated RCC cells (Figure 1E). We hypoth-
esized that this regulation could be mediated 
by the same mechanism. Thus, by searching 
IFIT5-binding miRNA candidates, we identified 
pre-miR-128 with as similar single-stranded 
overhang structure at its 5’-end (Figure 4A left 
panel) and targeting ZEB1. By modify its native 
structure, the DSMut of pre-miR-128 became 
more resistant than the SS6Mut of pre-miR-128 
(Figure 4A right panel). Similar to miR-363, the 
DSMut of pre-miR-128 is more potent in sup-
pressing cell invasion of several RCC cells 
(Figures 4B and S2B) as well as ZEB1 gene 
expression (Figure 4C).

Consistent with the down-regulation of miR-
363 by IFNγ (Figure 3A), we also observed the 
reduction of miR-128 level in IFNγ-treated 
ACHN cells (Figure 4D). Moreover, IFNγ-induced 
down-regulation of miR-128 can be rescued in 
the IFIT5 KD cells (Figure 4E). On the other 
hand, by increasing miR-128 expression in 
either ACHN and 786O cells, a significant 
reduction of IFNγ-elicited cell invasion was 
observed (Figure 4F). Taken together, we be- 
lieve that decreased miR-128 regulated by 
IFIT5 complex underlies IFNγ-induced ZEB1 
contributing to RCC cell invasion.
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IFNγ-signaling pathway is correlated with RCC 
progression 

To strengthen our observation from in vitro 
model, we further analyzed the IFNγ-signaling 
pathway from 75 paired adjacent benign and 
tumor tissues of ccRCC patients and the results 
(Figure 5A) indicated a significant elevation of 
IFNγ receptor 1 or 2 (IFNGR1, IFNGR2) and 
IFIT5 in tumor specimens. In addition, the 
expression levels of IFNGR1, IFNGR2, and IFIT5 
in mRCC patients are significantly higher than 
primary tumor or benign tissue (Figure 5B). 
Moreover, patients with higher level of elevated 
IFNGR1, IFNGR2, and IFIT5 predicts poor over-
all survival of RCC patients based on the 
Kaplan-Meier curves analyses (Figure 5C). As 
expected, a positive correlation between IFIT5 
and Slug, ZEB1, IFNGR1 or IFNGR2 expression 
level is also observed after analyzing TCGA RCC 
dataset (Figure 5D). Overall, these clinical data 
support the pro-tumorigenic role of IFNγ-
signaling axis in RCC progression. 

Discussion 

The incidence of RCC has been steadily rising 
by 2-4% each year; a 5-fold increase in the inci-
dence and a two-fold increase in mortality com-
pared to 1971 [55]. RCC is by far the most 
lethal urologic malignancy of cancer-specific 
mortality of 40% compared with 25% of overall 
mortality of prostate and bladder cancers once 
it becomes metastatic. The median OS of un-
treated metastatic disease is 5 months with 
1-year survival of only 29%. Although, a recent 
study elegantly demonstrated the predisposi-
tion of different genetic mutation in RCC 
patients to various organ metastases [56, 57], 
the influence of tumor microenvironment and 
its regulatory network are not fully chara- 
cterized.

At the initial stage of cancer metastasis, tumor 
cells could undergo a phenotypic change from 
epithelial type to mesenchymal type (i.e., EMT), 
leading to loss of cell-cell adhesion, increased 
cell motility and invasion into vascular circula-
tion [58]. Loss of E-Cadherin (epithelial marker) 
and gain of Vimentin (mesenchymal marker) is 
associated with RCC metastasis [59] and the 
presence of a sarcomatoid component is often 
found in metastatic lesion of RCC and associ-
ated with high mortality. Slug (Snail2), an EMT 
transcription repressor of E-Cadherin, has been 
demonstrated to induce EMT in RCC cell lines 

[60-62]. Slug expression is substantially in- 
creased in high-grade ccRCC tissues and sar-
comatoid carcinoma, which predicts the worse 
prognosis for patients with RCC [63]. Tumor 
surrounding microenvironment is known to play 
an important role in EMT [64-67] induction by 
producing several cytokines such as TNF-α 
[68], TGF-β [69] and IL-10 [67].    

In RCC, a number of cytokines have shown anti-
tumor activity, the most consistent results have 
been reported with IFNα [70]. IL-2 and IFNγ 
have also been given to patients with metastat-
ic RCC with limited success [70]. Although the 
mechanism of action of these cytokines is 
poorly understood, anti-tumor effects in murine 
models have been linked to the direct killing of 
tumor cells by activated T cells and natural kill-
er cells, as well as to anti-angiogenic effects 
[71-73]. However, in this study, we demonstrat-
ed the pro-tumorigenic role of IFNγ in promot-
ing RCC cancer invasion. IFNγ signaling path-
way is highly elevated in primary as well meta-
static RCC and significantly correlated with OS 
RCC patients, suggesting the oncogenic role of 
IFNγ-IFNGR1/IFNGR2-IFIT5 signal axis in the 
progression of RCC. Noticeably, this study 
unveils a new mechanism of action of IFIT5 in 
regulating turnover of tumor suppressor miR-
NAs (miR-363 and miR-128), leading to the 
upregulation of EMT drivers (Slug and ZEB1). 
Moreover, IFNγ promoting cancer metastasis is 
not only limited to RCC; it has been recently 
reported in other malignancies such as pros-
tate [32] and gastric cancer [74]. In summary, 
we demonstrate an adverse effect of IFNγ on 
RCC progression via a unique regulation of 
miRNA turnover. Therefore, targeting IFNγ sig-
naling pathway using inhibitory RNA strategy 
may provide a new avenue for the clinical man-
agement of RCC progression.
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Figure S1. A. Dose-dependent elevation of IFIT5 protein and mRNA level in 769P cells treated with IFNγ for 48 hrs, 
compared to vehicle control. (*P<0.05). B. The impact of STAT1 shRNA knockdown (shSTAT1) on IFIT5 promoter 
activity using luciferase reporter assay. C. The impact of IFIT5 loss (shIFIT5) on the IFNγ-enhanced aggravation of 
invasiveness in 786O cells, compared to shCon. (*P<0.05, ***P<0.00001). D. The impact of IFIT5 loss (shIFIT5) on 
the IFNγ-enhanced aggravation of invasiveness in 769P cells, compared to shCon. (**P<0.001, ***P<0.00001). E. 
The impact of IFIT5 shRNA knockdown (shIFIT5) on the protein expression level of E-Cad, ZEB1, Slug and Vimentin 
(VIM) in ACHN cells, compared to control shRNA (shCon).
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Figure S2. A. The impact of mutant DSMut or SS6Mut pre-miR-363 on suppression of cell invasion in 786O and 769P 
cells (*P<0.05, **P<0.001, ***P<0.00001). B. The impact of mutant DSMut or SS6Mut pre-miR-128 on suppres-
sion of cell invasion in 786O and 769P cells (*P<0.05, ***P<0.00001).


