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Abstract

Purpose of Review: Children’s environmental health researchers are increasingly interested in 

identifying time intervals during which individuals are most susceptible to adverse impacts of 

environmental exposures. We review recent advances in methods for assessing susceptible periods.

Recent Findings: We identified three general classes of modeling approaches aimed at 

identifying susceptible periods in children’s environmental health research: multiple informant 

models, distributed lag models, and Bayesian approaches. Benefits over traditional regression 

modeling include the ability to formally test period effect differences, to incorporate highly time-

resolved exposure data, or to address correlation among exposure periods or exposure mixtures.

Summary: Several statistical approaches exist for investigating periods of susceptibility. 

Assessment of susceptible periods would be advanced by additional basic biological research, 

further development of statistical methods to assess susceptibility to complex exposure mixtures, 

validation studies evaluating model assumptions, replication studies in different populations, and 

consideration of susceptible periods from before conception to disease onset.
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Introduction

Periods of heightened susceptibility (also known as critical windows) are developmental 

periods during which exposure to some agent (chemical or non-chemical) results in a greater 

effect on an outcome than does exposure to that same agent at other times. Examining 

susceptible periods can have several advantages for environmental epidemiology studies of 

children’s health. First, investigators may compare associations of exposures measured at 

different time intervals with the aim of elucidating biological mechanisms based on known 

underlying developmental processes. Second, the ability to optimize timing of exposure 

measurements for the most susceptible period(s) can reduce exposure misclassification and 

improve effect estimation. Third, knowledge of the most susceptible periods can inform 

targeted exposure interventions or recommendations to maximize public health impact.

The importance of investigating susceptible periods in children’s health research has been 

emphasized for more than two decades (1, 2), and identifying periods of susceptibility was a 

specific goal of the National Institute of Environmental Health Sciences (NIEHS) 2012–

2017 Strategic Plan (3). Despite increased emphasis on this topic, identifying susceptible 

periods remains a key challenge in the field of children’s environmental health research (4).

Reduced cost of biomarker assays, novel biomarker measurements, and advances in 

exposure modeling have resulted in a greater number of studies with repeated measures of a 

multitude of exposures. These advances necessitate methods capable of modeling high-

dimensional repeated exposure data to maximize its utility for inference. While familiar 

statistical approaches for estimating effects of repeated exposure measures can be applied to 

the study of susceptible periods, recent methodological work has focused on developing 

approaches to overcome the limitations of standard methods and new challenges. Exposures 

measured at multiple time intervals may be highly correlated due to common sources, 

necessitating control for confounding among periods. When simultaneously considering 

susceptible periods and multiple exposures, the problem of correlation is magnified by both 

within and between measure correlation. Methods for assessing exposure mixtures have 

been rapidly developing, though most approaches consider mixtures measured at a single 

time interval (recently reviewed in (5) and (6)).

This review discusses novel statistical approaches for identifying susceptible periods, with 

emphasis on methods developed for the setting of highly time-resolved or correlated 

exposure data. After providing an overview and rationale for assessing susceptible periods, 

we describe key articles published in the past five years and make recommendations for 

additional research and methodological development.

Biological Rationale

The idea of periods of heightened susceptibility has a long history in epidemiology and 

clinical medicine, with origins in the study of teratogens. Teratogenic agents can cause 

adverse effects when exposure occurs during well-defined time intervals such as gestation 

when major organ systems undergo rapid and synchronized development at discrete periods 

(7). Perturbation of sensitive biological processes during discrete periods of gestation can 
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increase the risk of a variety of birth defects. For example, thalidomide, a pharamaceutical 

agent used in the 1950–1960s to treat nausea in pregnant women, is one of the most 

infamous teratogens. Thalidomide caused limb defects in thousands of children born to 

women who used the drug (8). Notably, the presence of limb defects depended on the timing 

of thalidomide use, where exposure between 21 and 36 days after conception was necessary 

to cause these birth defects. The effect of teratogens is not limited to limb or organ 

malformations. For instance, primary cytomegalovirus infection during pregnancy is the one 

of the leading non-genetic causes of sensorineural hearing loss and is also associated with 

other developmental deficits (9).

Terminology around the concept of susceptible periods is variable, with authors referring to 

a number of related terms: window vs. period as well as critical vs. susceptible vs. 

vulnerable. We prefer period over window because the former is routinely used in the 

developmental biology literature to distinguish between critical and sensitive periods. 

Critical periods are well-defined time intervals during which an exposure can affect an 

outcome. For example, teratogens typically have effects only when exposure occurs during a 

very narrow period during fetal development (10), as noted above. Sensitive periods are less 

discrete; the effect of an exposure may be greatest during a given period while also having 

lesser or different effects at other periods (e.g., cytomegalovirus infection) (11). Next, we 

note the distinction between susceptible and vulnerable. Susceptibility refers to the induction 

of health effects after exposure, whereas vulnerability additionally considers the probability 

of exposure and capacity of response (e.g., coping and adaptability) (12). In environmental 

epidemiology, we are typically concerned with determining susceptibility given that we 

assess health effects resulting from exposure in extant populations for which exposure and 

response have already occurred. When considering public health implications of such 

research, the resulting interventions, policies, and recommendations typically deal with 

vulnerability as they consider susceptibility in conjunction with likelihood of exposure and 

response capacity of the target population.

Statistical Approaches

Periods of susceptibility are often operationalized based on developmental stages of interest, 

such as trimesters during pregnancy or stages of child development. Exposure during each 

period is typically assigned a priori based on a single measurement during the period or by 

creating period-averaged exposure variables. A common statistical approach is to estimate 

associations of exposure during each period with the outcome to determine which effect 

estimate has the greatest magnitude. Such period-specific effects are estimated in either 

separate regression models for each period or in a simultaneously-adjusted model to account 

for correlation in exposure over time. Raz et al. provides an illustrative example in the 

context of particulate matter (PM) exposures in relation to autism spectrum disorders (13). 

The authors examined five unique developmental periods by operationalizing period-

averaged PM2.5 during the 9 months prior to conception, each trimester of pregnancy, and 9 

months after birth. The magnitude of association was strongest during the third trimester, 

which the authors’ describe as evidence supporting a prenatal origins of autism spectrum 

disorders (13), a finding that has been replicated (14).
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Limitations of the above approach include the inability to formally test for differences 

among periods, difficulty in addressing missing data or unequally timed exposure measures, 

multiple comparisons, multi-collinearity, and loss of information or measurement error due 

to period-averaging (15–17). Many of these limitations can be addressed by examining 

exposure periods continuously rather than as discrete periods (16) and applying approaches 

to account for repeated exposure measures over time. We refer the reader to previous 

reviews discussing linear and generalized additive mixed effects models for examining 

susceptible periods, which compare and contrast model assumptions and utility in various 

settings (15, 16). Notably, Chen et al. compares nine approaches for examining repeated 

exposure data in relation to a time-fixed outcome including the traditional approaches above 

and several mixed model and clustering- based methods (15). The authors also compare 

results of the nine approaches using an application to repeated phthalate biomarkers during 

pregnancy and preterm birth (15). The authors conclude that the two mixed effects models 

evaluated performed best for identifying susceptible periods.

We focus the remainder of our discussion on novel methods for identifying susceptible 

periods with applications to children’s environmental health published in the past five years. 

We identified three general classes of approaches: multiple informant models, distributed lag 

models, and Bayesian approaches. Key features of these statistical methods for identifying 

periods of susceptibility are summarized in Table 1.

Multiple Informant Models

Multiple informant models, originally developed to evaluate data from different sources that 

relate to the same underlying construct (18, 19), can be adapted to the setting of multiple 

exposure measures from the same individual (16). This model jointly estimates exposure-

outcome associations for each period, defined a priori, and produces a statistical test of 

whether the period-specific estimates differ from one another. Models can be fit using 

generalized estimating equations or maximum likelihood (see (16) for details and code). 

This method can be applied in settings with a single exposure with sparse measures over 

time; however, it is not well-suited to high-dimensional or highly correlated data. Moreover, 

the method does not jointly adjust the exposure-outcome association at one period for the 

exposure-outcome associations in other periods.

In the Health Outcomes and Measures of the Environment (HOME) Study, we have applied 

multiple informant methods to identify susceptible periods to several classes of 

environmental chemicals in studies of child neurobehavior and thyroid hormone levels (20–

29). Notably, we found that urinary triclosan concentrations at the time of delivery, but not 

during pregnancy or childhood, were inversely associated with child intelligence quotient at 

age 8 years (29). In addition, we found that urinary bisphenol A concentrations during 

pregnancy but not childhood were associated with more parent-reported behavioral problems 

in girls from ages 2 to 8 years (30).

Distributed Lag Models

Extensions of distributed lag models (DLMs) can be used to examine susceptible periods 

when exposures are measured with fine temporal resolution, such as weeks (31, 32). 
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Generally, DLMs describe exposure-lag-response relationships of a time-varying exposure 

with a time-fixed outcome, and distributed lag non-linear models apply a smoothing function 

or penalty to flexibly model the time-varying exposure effects (33). Because DLMs use a 

data-driven approach for estimating period effects rather than averaging over pre-defined 

periods (e.g. trimesters of pregnancy), they can identify narrow or protracted periods of 

susceptibility (17).

In a simulation study, DLMs provided unbiased estimates and correctly identified 

susceptible periods while models using pre-specified, period-averaged exposure (with or 

without simultaneous adjustment) resulted in biased estimates (17). Susceptible periods for 

perinatal and pediatric health outcomes have been investigated using DLMs in studies of air 

pollutants (34–37), temperature (38–41), and tooth manganese levels (42). For example, 

Chiu et al. estimated associations of PM2.5 with child neurodevelopment using 1) pre-

specified trimester- or pregnancy-averaged PM2.5 exposure modeled using multivariable 

linear regression models, and 2) weekly-averaged PM2.5 exposure modeled with DLMs (34). 

DLMs identified susceptible periods that were not evident using period-averaged models.

Others have extended the DLM framework to assess susceptible periods for exposure 

mixtures by developing lagged weighted quantile sum (WQS) regression and a tree-based 

DLM (43). The lagged WQS approach, based on penalized regression, models longitudinal 

exposure mixture trajectories over time and can accommodate missing or unequally-timed 

exposure data (43). A limitation of lagged WQS is the requirement that effects of all 

exposures at all periods are constrained to be in the same direction (i.e., positive or 

negative), which may not be reasonable in some settings. The tree-based method applies a 

non-parametric random forest algorithm to model summed mixture effects of exposures that 

must be measured at identical, discrete time intervals for all subjects (43). In simulations, 

both of these novel approaches performed better than generalized additive models using 

thin-plate splines in settings with more than 3 chemicals and 5 periods. The authors 

demonstrate the two DLM-based methods using a study of neurobehavior in relation to 

longitudinal metal exposures measured in deciduous teeth, where both approaches found 

similar periods of susceptibility in relation to the metal mixture and identified manganese as 

the largest contributor to the mixture effect (43).

Bayesian Approaches

Bayesian extensions of DLMs have been developed to investigate susceptible periods in 

complicated data structures. Bayesian DLMs can incorporate prior information on the shape 

of period-specific effects over time (44) and have been applied to identify susceptible 

periods without the need to specify time intervals a priori (45). Bayesian distributed lag 

interaction models were developed to formally investigate and test susceptible periods in the 

context of effect measure modification, where the timing of susceptible periods may depend 

on a modifier (32). This method has been applied to examine whether child’s sex or 

maternal stress modify the timing of susceptibility in studies of early life pollutant exposures 

and perinatal or pediatric health outcomes (46–49).

Lagged Bayesian kernel machine regression (LKMR) combines the DLM framework with 

Bayesian Kernel Machine Regression (BKMR) to identify periods of susceptibility to 
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exposure mixtures (50). LKMR allows the effect of a mixture on an outcome to differ over 

time, allowing for non-linear and non-additive effects as well as interactions among 

exposures and within exposures over time. When applying LKMR to examine tooth metal 

mixtures in relation to child neurodevelopment, Liu et al. identified a time-varying 

association of manganese with visual spatial ability that was modified by zinc level (50). 

While LKMR is fit in a DLM framework, it is best-suited to exposure data with low 

temporal resolution such as biomarker data (50).

Warren and colleagues developed a flexible Bayesian spatial-temporal hierarchical probit 

regression model that applies a data-driven approach to determining susceptible periods for 

multiple pollutants, allowing that susceptible periods may differ spatially and by pollutant 

(51, 52). By incorporating spatial flexibility, this model accommodates the fact that air 

pollution constituents vary regionally and may lead to different biological effects. Warren 

and colleagues have applied this method to examine susceptible periods for associations of 

weekly-averaged air pollution exposures with preterm birth, cardiac defects, and low 

birthweight (51–53). Joint modeling of multiple outcomes and multiple exposures is also 

possible in this framework, such as the assessment of susceptible periods for multiple 

species of PM2.5 in relation to the development of multiple classes of cardiac defects (52, 

54). This model was adapted to examine time-varying exposure effects on time-to-event 

outcomes, and notably applied to assess associations of PM2.5 with preterm birth that 

allowed associations to depend both on timing of exposure and timing of preterm birth 

treated as a time-to-event outcome (55).

Considerations for Future Research

Ideally, evaluation of susceptible periods is informed by developmental biology or 

toxicology studies that provide insight into the importance of exposure timing on disease 

etiology. In the absence of prior data for specific environmental exposures, investigating 

susceptible periods is often warranted based on the general concept of developmental 

plasticity or by analogy to effects of other exposures on the outcome of interest. Continued 

basic biological and toxicological research to understand developmental processes and 

susceptible periods will strengthen future epidemiologic work. Likewise, findings of unique 

susceptible periods in epidemiologic studies can inform experimental work exploring 

mechanisms underlying heightened susceptibility. Of particular importance for both 

experimental and observational research is assessment of susceptible periods outside of 

gestation, including preconception and adolescence (4).

Examination of susceptible periods requires repeated exposure measurements collected at 

times corresponding to the underlying susceptible period(s). For studies using biomarker 

assessments of exposure, longitudinal biospecimens are logistically difficult to collect and 

repeated assays are expensive to perform. While within-subject pooling can reduce exposure 

measurement error by providing a better estimate of long-term exposure, it precludes 

analysis of susceptible periods within the timeframe of the pooled samples and may even 

increase measurement error if specimens collected during a susceptible period are pooled 

with those from irrelevant periods (56). A balance in terms of cost might be achieved by 

collecting repeated samples but initially analyzing biomarkers in within-subject pooled 
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samples; if an association is observed, archived samples can be subsequently analyzed to 

identify susceptible periods. While we are not aware of an application, an alternative 

approach warranting further study is to analyze repeated samples in a subset of participants 

and apply measurement error correction methods (57–59) to estimate period-specific 

associations.

As exposures are measured in a greater number of susceptible periods, we expect a shift in 

assessing independent effects of single exposures during single periods towards the 

examination of joint effects of several exposures in multiple susceptible periods. Such work 

will build on toxicological studies identifying multiple susceptible periods for the same 

health effect (60) and an expanding literature assessing effects of exposure mixtures (61, 

62). Epidemiologists will need statistical tools capable of leveraging high-dimensional 

longitudinal data to answer such questions. To our knowledge, LKMR is the only statistical 

approach that has been applied to identify susceptible periods that allows for interaction 

between multiple exposures and among exposures over time (50). Additional work 

evaluating potential bias arising from correlation among repeated exposure measures is also 

needed as few studies have investigated the influence of exposure measurement error (63), 

correlated exposure measurement error (64, 65), or amplification bias (66) in the setting of 

multiple or repeated exposures.

Finally, it will be critical to determine if periods of heightened susceptibility are observed 

across populations. Given the potential for spurious results when examining numerous 

exposures in multiple time intervals, there is a compelling need for replication in separate 

study populations. However, lack of replication may also be due to differences in factors that 

modify susceptibility to environmental exposures at different developmental periods. In the 

United States, the NIH Environmental Influences on Child Health Outcomes (ECHO) 

Consortium is one resource that could be useful and well-powered for replication studies 

given that it includes several cohorts that have repeatedly assessed multiple exposures at 

similar developmental stages.

Conclusions

Statistical approaches to investigate susceptible periods have been developed for a range of 

complex data settings. Whereas traditional approaches require a priori specification of 

exposure periods, distributed lag models and Bayesian approaches allow for data-driven 

determination of periods of heightened susceptibility that may provide more nuanced insight 

into underlying mechanisms. We find Bayesian methods to be highly customizable, with the 

ability to assess susceptible periods while addressing correlated exposure data, high-

dimensional data, effect measure modification, and other common statistical challenges. As 

approaches continue to be developed and validated, availability of software packages will be 

critical to facilitate their uptake by children’s environmental health researchers interested in 

examining periods of susceptibility.
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Table 1.

Key features of selected statistical approaches to identify periods of susceptibility in children’s environmental 

health research

Approach

Adjusts for 
confounding by 

exposure in 
other periods

Formally tests 
period effect 
heterogeneity

Accommodates 
highly time- 

resolved exposure 
data

Stabilizes 
highly 

correlated 
exposure 
periods

Key references

Single-period regression models N/A

Multiple-period regression models X N/A

Generalized linear mixed models X X (15)

Multiple informant models X (16)

Distributed lag models X X X (17, 31)

Bayesian extensions of distributed lag 
models X X X X (32, 50)

Bayesian spatial-temporal hierarchical 
probit model X X X X (51)
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