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Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition of heterogeneous etiology. While it is widely recognized 
that genetic and environmental factors and their interactions contribute to autism phenotypes, their precise causal mechanisms 
remain poorly understood. This article reviews our current understanding of environmental risk factors of ASD and their pre-
sumed adverse physiological mechanisms. It comprehensively maps the significance of parental age, teratogenic compounds, 
perinatal risks, medication, smoking and alcohol use, nutrition, vaccination, toxic exposures, as well as the role of extreme 
psychosocial factors. Further, we consider the role of potential protective factors such as folate and fatty acid intake. Evidence 
indicates an increased offspring vulnerability to ASD through advanced maternal and paternal age, valproate intake, toxic 
chemical exposure, maternal diabetes, enhanced steroidogenic activity, immune activation, and possibly altered zinc–cop-
per cycles and treatment with selective serotonin reuptake inhibitors. Epidemiological studies demonstrate no evidence for 
vaccination posing an autism risk. It is concluded that future research needs to consider categorical autism, broader autism 
phenotypes, as well as autistic traits, and examine more homogenous autism variants by subgroup stratification. Our under-
standing of autism etiology could be advanced by research aimed at disentangling the causal and non-causal environmental 
effects, both founding and moderating, and gene–environment interplay using twin studies, longitudinal and experimental 
designs. The specificity of many environmental risks for ASD remains unknown and control of multiple confounders has 
been limited. Further understanding of the critical windows of neurodevelopmental vulnerability and investigating the fit of 
multiple hit and cumulative risk models are likely promising approaches in enhancing the understanding of role of environ-
mental factors in the etiology of ASD.
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Introduction

Autism spectrum disorder (ASD) is an early onset neurode-
velopmental condition defined in the DSM-5 by alterations 
in social communication and interaction in conjunction with 
repetitive, inflexible behaviors and circumscribed interests 
causing significant impairment in major life areas [1, 2] and 
reduced quality of life [3]. Neurodevelopmental conditions 
provide an umbrella term inclusive of disorders arising from 
extreme variations (neurodiversity) or qualitative altera-
tions in the maturation, architecture, and functioning of the 
developing brain and are present in a substantial minority 
(10–15%) of the general population [4]. The DSM-5 criteria 
for ASD includes a specifier recommending that the poten-
tial role of medical and genetic conditions, and environmen-
tal factors associated with atypical neurodevelopment lead-
ing to ASD be considered. Neurodevelopmental changes in 
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ASD impact broadly on cognitive abilities (e.g., executive 
function, top-down processing, social cognition), the social 
brain and other neural structures [5–8]. ASD also affects 
other major physiological systems including the immune, 
endocrine, and gut microbiota systems [9–12]. The cumula-
tive impact of ASD on health related outcomes is evidenced 
by an increased risk for somatic and psychiatric illness, and 
premature mortality [13–15]. Prevalence estimates and 
diagnoses rates of ASD have risen substantially in the last 
two decades reaching 1–2.5% [16, 17], with some regions 
reporting even higher figures [18]. While diagnosis in males 
exceeds that of females threefold, the rate of ASD among 
girls and women is likely underestimated by male-centric 
operationalization of the autism phenotype, female “cam-
ouflaging” and internalizing psychiatric comorbidity [19, 
20]. Increased understanding of the autism phenotype has 
underpinned the development of effective evidence-based 
behavioral interventions [21], and poor etiological insight 
limits the development of biological treatments or the dis-
covery of a “cure” [22]. The conceptualization of ASD as a 
psychiatric disease has been challenged by evolving societal 
perceptions and increasing tolerance of neurodiversity, and 
recognition of the role of environmental factors in support-
ing the functioning [23].

Nature and nurture

Although there is wide recognition that ASD has multi-
ple causes, both genetic and environmental in origin, pre-
cise understanding of the exact mechanisms underpinning 
atypical neurodevelopment is lacking. Autistic traits and 
(subclinical) broader phenotypes of ASD are heritable and 
continuously distributed in the general population, with eti-
ologies overlapping with clinical phenotypes [24]. Genome 
sequencing data indicates there are hundreds of genes asso-
ciated with ASD, both common and rare (inherited and de 
novo), with many shared with other neurodevelopmental, 
psychiatric, and neurological conditions [25]. Though the 
clinical utility of genetic evidence is presently limited, it 
is evolving, enabling in some cases genetic explanations of 
ASD, estimation of the likelihood of familial recurrence, and 
identification of other associated genetic risks [26]. While 
heritability estimates for ASD range from 38 to 55% and 
upwards to 95% [27, 28], recent twin and family studies sug-
gest heritability plays a smaller role than previously thought, 
indicating a greater role for environmental factors [29, 30]. 
While one twin study found shared environment plays a 
major role in ASD etiology [30], the majority of family and 
twin studies suggest non-shared environmental factors, or 
factors unshared between family members that make them 
dissimilar, are more influential. However, identifying spe-
cific non-shared environmental factors is challenging given 

they extend beyond aspects of nurturing, to factors including 
measurement error, social chance, random biological noise, 
immune reaction and neuroinflammation, and epigenetic and 
genetic differences in identical twins [31]. Evidence of non-
shared environmental influences has been found across the 
life span and autism spectrum, from autistic traits to extreme 
clinical phenotypes of ASD. Complicating the deciphering 
of the influence of non-shared environmental factors in the 
etiology of ASD is the fact that their key mechanism is likely 
cumulative frequency, rather than single causal agents [32]. 
Given monozygotic twins share 100% of their genetic vari-
ation at a DNA sequence level and dizygotic twins share on 
average 50%, twin studies provide a unique opportunity for 
modeling the relative contribution of environmental factors 
and genetics to ASD phenotypes. Comparing monozygotic 
and dizygotic twin pairs and their phenotypic concordance 
and discordance enables investigation of the genetic and 
environmental contributions (both shared and non-shared) 
to presentations of ASD (ACE model) [33].

The environment can be both causal if it is harmful and 
precedes ASD, mediating if it influences the causal chain 
between a genetic predisposition and ASD, moderating 
if it impacts the severity of autism, and protective if it 
decreases the risk of ASD. The biological environment 
comprises all chemical, bacterial, viral, or physical envi-
ronmental influences and exposures, directly and primarily 
acting on the physiology of the individual. Psychosocial 
environmental factors denote the psychological, social, 
and cultural environments that primarily act on mental 
functions and secondarily on physiology. Understanding of 
the causal role of environmental factors in the etiology of 
ASD can potentially inform both primary prevention and 
evidence-based interventions. While the environment is 
clearly key in mediating avoidable negative outcomes and 
of paramount significance in secondary and tertiary inter-
ventions and supporting autistic individuals in everyday 
life, the present article centers on its role in ASD etiology 
or putative ASD causality. Although there it is no doubt as 
to the role of the psychosocial environment in moderating 
ASD, its casual role in rare cases of early, extreme per-
sistent deprivation and hospitalization on psychopathol-
ogy including autistic-like patterns cannot be dismissed. 
Finally, while research has examined the role of environ-
mental factors in increasing autism risk, emerging research 
balances this focus, reconsidering the environment as a 
potentially protective factor in the etiology of ASD.

Research examining the genetic and environmental 
contributions to the etiology of ASD has largely exam-
ined factors in isolation, rather than considering the role 
of gene–environment interactions through processes such 
as epigenetic dysregulation. Epigenetic mechanisms mod-
ify gene expressions controlled by factors other than DNA 
sequencing and are potentially reversible. There is evidence 
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that epigenetic mechanisms [34, 35], such as DNA methyla-
tion, play a significant role in ASD etiology in combining 
genetic and environmental factors that dysregulate neu-
rodevelopmental processes [36, 37]. A body of emerging 
evidence points to multiple hit and threshold models, inte-
grating both genetic and environmental contributions such 
as the three-hit concept of vulnerability and resilience, and 
the Trigger–Threshold–Target model [38, 39], as fruitful 
approaches in understanding the etiology and development 
of the autism phenotype.

Environmental factors

Investigated biological environmental risk factors in ASD 
include maternal and paternal age, fetal environment (e.g., 
sex steroids, maternal infections/immune activation, obe-
sity, diabetes, hypertension, or ultrasound examinations), 
perinatal and obstetric events (e.g., hypoxia), medication 
(valproate, selective serotonin reuptake inhibitors), smoking 
and alcohol use, nutrition (e.g., short inter-pregnancy inter-
vals, e.g., vitamin D, iron, zinc, and copper), vaccination, 
and toxic exposures (air pollution, heavy metals, pesticides, 
organic pollutants). Surprisingly, the role of potentially pro-
tective factors such as folate and fatty acid intake and levels 
are far less frequently examined. Considering the psycho-
social environment, the relevance of extreme psychosocial 
institutional deprivation and maternal stress during flight 
and immigration has been discussed in relation to atypical 
behavior development, including autistic features. While 
there are many postulated mechanisms through which these 
environmental factors might generate autistic behaviors and 
clinical variants of ASD, inflammation and immune activa-
tion, oxidative stress, hypoxia, and endocrine disruptions 
are likely the most pivotal in contributing to atypical neu-
rodevelopment. Although the relevance of these factors may 
not be directly causal, but confounded by genetic factors, 
understanding is limited by the paucity of research examin-
ing gene–environment interactions.

This review summarizes our understanding of the role of 
environmental factors and their postulated mechanisms in 
the etiology of ASD. Although several reviews in this field 
have been published in recent years [40–42], the present 
state-of-the art review extends those previous in updating 
the literature, capturing studies to August 2018, providing 
additional methodological points of discussion, and includ-
ing recent research examining the significance of environ-
mentally mediated elemental metal dysregulation in autism 
etiology. Of note, while the DSM-5 definition is used today 
and soon ICD-11 [https​://icd.who.int/brows​e11/l-m/en] will 
be employed in international clinical practice, many studies 
reviewed in this article used DSM-IV-TR criteria of ASD 

and considered specific ASD diagnoses within the DSM-
IV-TR definition.

Parental age

The significance of advanced parental age is a well-estab-
lished risk factor for chromosomal aberrations, such as 
advanced maternal age in Down syndrome. There is accu-
mulating evidence of the relevance of older parental age in 
the etiology of psychiatric and neurodevelopmental condi-
tions [43] including bipolar disorder, schizophrenia, sub-
stance use disorders, ADHD, and ASD [44]. While various 
hypotheses have been posed as to the biological mechanisms 
of maternal and paternal age effects, an association between 
advanced parental age and increasing likelihood of malign 
de novo mutations has been suggested [45]. This is most 
likely explained by a cumulating risk for mutations during 
spermatogenesis across the life span [46]. Indeed, de novo 
mutations associated with ASD are more often paternal 
than maternal [47], with some evidence of linked autism 
risk in offspring of older fathers with detected age-related 
DNA methylation changes in their sperm [48]. Interestingly, 
these effects may even be intergenerational, with advanced 
grandparent paternal age on both mother’s and father’s side 
linked to ASD, suggesting that parental age-related risk 
might accumulate over generations [49]. Neurobiologically, 
increased paternal age has been associated with reduced cor-
tical thickness of the right ventral posterior cingulate cortex 
[50].

It has also been postulated that the increasing risk of 
ASD with advancing age is explained by males with autism 
risk, in the form of a subclinical broader autism phenotype, 
being more likely to father children later in life. If this is 
the case, the increasing risk of ASD with advancing pater-
nal age could be explained by genetic predisposition, rather 
than biological aging. However, this hypothesis is yet to be 
corroborated [51]. Countering this theory is evidence that 
young parental aged is associated with some neurodevelop-
mental disorders, for instance ADHD [52], a disorder often 
comorbid to ASD [53]. Here, psychosocial factors rather 
than biological, such as an unhealthy lifestyle, and economi-
cal and educational disadvantage associated with early par-
enthood, have been put forward as explanations for these 
associations [54].

Parental age-related risk in ASD has been found in 
cohorts across multiple geographic regions, with evidence 
that parental age-related risks for ASD presents indepen-
dently for maternal and paternal age. There is evidence 
that parental age-related risk is at its highest in offspring 
where both the mother and father are advanced in age, 
and that there is an increasing risk of ASD for couples 
with greater age differentials [55]. It is also possible that 
advanced paternal age generates a higher risk for female 

https://icd.who.int/browse11/l-m/en
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offspring and higher maternal age for male offspring [56, 
57]. Recently, a meta-analysis of 27 observational studies 
investigating the association between advanced parental age 
and risk of autism [58] found that the lowest parental age 
category was associated with a reduced risk of autism in off-
spring [odds ratio (OR) 0.89, 95% confidence interval (CI) 
0.75–1.06] and OR 0.81 (95% CI 0.73–0.89) for mothers 
and fathers, respectively. Further, the highest parental age 
category was associated with an increased risk of autism in 
the offspring, with ORs 1.41 (95% CI 1.29–1.55) and 1.55 
(95% CI 1.39–1.73) for mothers and fathers, respectively. 
Dose–response meta-analysis methods found no association 
between maternal age and reduced risk of autism (OR 0.93, 
95% CI 0.69–1.24), but a decrease of 10 years in paternal 
age was associated with a 26% reduced risk of autism (OR 
0.74, 95% CI 0.64–0.86). An increase of 10 years in mater-
nal age was associated with an 18% higher risk of autism 
(OR 1.18, 95% CI 1.10–1.26), and an increase of 10 years in 
paternal age was associated with a 21% higher risk of autism 
(OR 1.21, 95% CI 1.18–1.24).

Fetal environment

Numerous environmental prenatal exposures present within 
the immediate environment of the developing fetus such as 
sex hormone alterations, maternal obesity, diabetes, hyper-
tension, infections and immune activity, and ultrasound 
exposure have been considered in the context of ASD etiol-
ogy. While the origins of these risks might be in genetic 
disposition, environmental interactions involving both the 
mother and fetus with the potential to compromise the 
fetal–maternal–placental system cannot be ignored. Many 
of these factors may be the product of the combination of 
several underlying pathophysiological processes, such as 
the negative effects of imbalanced fetal sex hormone expo-
sure during critical time windows on gene transcription 
and expression [59, 60], and subsequent neurotransmitter, 
neuropeptide, or immune pathways [61]. Obesity bears 
an independent risk for obstetric complications, coronary 
heart disease, being overweight, diabetes, and several other 
medical conditions in the offspring [62]. Maternal obesity 
is also assumed to impact the brain development and cogni-
tive functions of offspring [63]. Severe maternal obesity and 
high-fat diet might impact on fetal and offspring neurode-
velopment, through processes including low-grade neuro-
inflammation, increased oxidative stress, insulin resistance, 
glucose, and leptin signaling, dysregulated serotonergic and 
dopaminergic signaling, perturbations in synaptic plasticity, 
and altered DNA methylation patterns [64, 65]. These and 
additional risks for neurodevelopment are amplified in the 
presence of co-occurring diabetes [66]. Hypertension dur-
ing pregnancy contributes substantially to perinatal mor-
bidity and mortality of both the mother and her child [67]. 

Hypertension can lead to sequelae of adverse utero condi-
tions, potentially altering fetal development and increasing 
the risk of long-term vascular, cognitive, and psychiatric 
outcomes in the offspring. High blood pressure is the pri-
mary driver of these adverse outcomes. This is particularly 
problematic when it is associated with preeclampsia, which 
presents with significant amounts of protein in the urine 
and risks of red blood cell breakdown, low blood platelet 
count, impaired liver function, kidney dysfunction, swell-
ing, shortness of breath due to fluid in the lungs, and visual 
disturbances [68]. Infection during pregnancy activates the 
maternal immune system, triggering cytokine signaling, 
passing through the placenta, and possibly causing numer-
ous adverse neural effects in the developing fetal brain [69]. 
Though not established in human studies, animal studies 
have linked ultrasound exposure in utero to alterations in 
neuroanatomy and function, for example in the hippocampus 
[70].

Sex steroids

Regarding hormonal alterations, it has been hypothesized 
that high fetal exposure to sex steroids may contribute to 
ASD risk [71]. This is linked to the male brain theory of 
autism which claims that autism can be characterized as 
an extreme variant of the male phenotype on the cognitive 
and other levels [72]. Evidence supporting this notion is 
apparent in the finding that fetal testosterone influences 
individual differences in typical development in eye con-
tact behaviors, vocabulary size, restricted interests, men-
talizing, empathy, systemizing, attention to detail, and 
autistic traits [59]. In line with this theory, neuroimaging 
studies indicate that fetal testosterone affects individual 
differences in structural and functional brain develop-
ment. These patterns are consistent with those seen in 
sexual dimorphism, autism, and other sex-biased devel-
opmental conditions [73–75]. A genetic study of autism 
found evidence that single nucleotide polymorphisms in 
sex steroid synthesis genes (ESR2, CYP11B1, CYP17A1, 
CYP19A1) were associated with autism traits and autism 
without intellectual disability and good verbal skills [76]. 
A study using a Danish Historic Birth Cohort and Dan-
ish Psychiatric Central Register of amniotic fluid samples 
of males measured concentration levels of sex steroids 
(progesterone, 17α-hydroxy-progesterone, androstenedi-
one and testosterone) and cortisol using liquid chroma-
tography–tandem mass spectrometry. Principal component 
analysis showed that a generalized latent steroidogenic 
factor accounted for the majority of data variance, with 
the autism group showing elevations across all hormones 
on the latent factor [77].

Fetal testosterone exposure is one of several hypoth-
eses which attempts to explain the male preponderance 
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of neurodevelopmental disorders, especially in ASD [61]. 
Polycystic ovary syndrome (POS), a syndrome affecting 
at least 5% of women of child-bearing age, drives altered 
prenatal sex hormone exposure leading to a pattern of 
elevated androgens in females and has been examined in 
the context of ASD [78]. A nested total population study 
of Swedish children aged 4–17 years (n = 23, 748 ASD, 
208,796 controls) showed increased odds for ASD for both 
female and male offspring (OR 1.59, CI 95% 1.34–1.88) of 
mothers with POS, with comorbid obesity further increas-
ing the odds for autism (OR 2.13, 95% CI 1.46–3.10) [60]. 
Another investigation, underpinned by the same sample, 
reported an increased autism risk in offspring in presence 
of maternal hirsutism, another condition associated with 
hyperandrogenism (OR 1.26–1.64; CI 95% 0.94–2.83) 
[79]. A further study examining autistic traits in offspring 
of mothers with POS showed higher levels of these traits 
in daughters, but not sons, compared to unaffected moth-
ers [80]. Finally, in this line, it has been both reported 
that women with POS themselves have an elevated rate of 
ASD (OR 1.55, 95% CI 1.32–1.81) [81], and that women 
with ASD are at risk for disorders related to steroids [82].

Obesity

Adiposity is a common global health condition, and while 
national rates vary greatly about 20% of adults worldwide are 
severely overweight [83]. Mixed findings have been reported 
in relation to the association between maternal weight and 
risk of ASD, with the overall effect of obesity on autism 
and neurodevelopment remaining unclear [84]. A Swedish 
study employing matched sibling analysis reported no sig-
nificant association between maternal obesity and offspring 
risk of autism [85]. Interestingly, children born to mothers 
who were both obese and underweight were at higher risk of 
ASD [86], indicating that extreme weight at both ends of the 
weight spectrum might be associated with autism. A recent 
review summarizing the associated risk of weight for autism 
and other neurodevelopmental disorders across 32 articles 
and 36 cohorts showed that compared with mothers of nor-
mal weight, the offspring of obese and overweight mothers 
had a 17% increased risk of experiencing any neurodevel-
opmental disorder (OR 1.17, 95% CI 1.11–1.24) and a 36% 
increased risk for ASD (OR 1.36; 95% CI 1.08–1.70) [87]. 
Extending this research, additional studies show excess risk 
for autism in the presence of maternal obesity when women 
gain additional weight during pregnancy [88].

Diabetes

Studies examining the effect of maternal diabetes on autism 
in offspring have yielded inconsistent results. A recent 

systematic literature review and meta-analyses synthesizing 
16 studies [89] demonstrated additional risk for autism in the 
presence of maternal diabetes (relative risk =  1.48, 95% CI 
1.26–1.75). While high levels of variation in study outcomes 
and publication bias were detected, these disappeared when 
meta-analysis was restricted to case–control studies, with 
the risk of ASD increasing by 62% among diabetic moth-
ers, compared with non-diabetic mothers. There is evidence 
that timing might be significant in the association between 
maternal diabetes and offspring with ASD. A retrospective 
study of 322,323 singleton Californian children born at 
28–44 weeks examined the effect of intrauterine exposure 
to preexisting type 2 diabetes and gestational diabetes. It 
reported exposure to maternal gestational diabetes mellitus 
diagnosed by 26 weeks’ gestation increased the risk of ASD 
in offspring by 42% [90].

Hypertension

At a population prevalence of approximately 10%, high 
blood pressure disorders are one of the most common preg-
nancy complications [91]. Theses disorders include chronic 
hypertension (essential/secondary), white-coat hyperten-
sion, masked hypertension, transient gestational hyperten-
sion, gestational hypertension, and preeclampsia (de novo 
or superimposed on chronic hypertension), with pregnancy-
related onset typically occurring in the second trimester 
[92]. A recent systematic review and meta-analysis examin-
ing the association between hypertensive disorders of preg-
nancy and risk of neurodevelopmental disorders in offspring 
identified 20 studies estimating the risk of ASD, 11 of these 
with adjusted estimates covering 777,518 participants with 
a pooled OR of 1.35 for ASD risk (95% CI 1.11–1.64) [93].

Infections and immune activation

Since the detection of the association between autism and 
congenital rubella infection, the role of infections and the 
immune system in the etiology of autism has been debated 
[94, 95]. Accumulating evidence suggests that the immune 
system and abnormal immune function, including inflamma-
tion, cytokine dysregulation, and anti-brain autoantibodies, 
influence trajectories of autism, playing a role in its etiology 
in at least a subset of cases. In addition to rubella, there are 
a number of other maternal viral and bacterial infections 
associated with ASD risk [96, 97]. In particular, maternal 
influenza bears a twofold risk for autism in offspring [98]. 
While maternal infection in the presence of fever correlates 
with risk of ASD, this is attenuated by the use of antipyretic 
drugs.

A Swedish nationwide register-based birth cohort, 
born from 1984 to 2007 with follow-up through to 2011 
of 2,371,403 persons with 24,414 ASD cases, identified a 
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30% increase for ASD associated with any maternal inpa-
tient diagnosis of infection [99]. Increased risk for ASD 
was associated with infection in all trimesters of pregnancy 
suggesting no effect of timing, contrasting the findings of 
previous research indicating the timing of infection during 
pregnancy was relevant [96]. There is also evidence that 
infections increase the risk for ASD with co-occurring intel-
lectual disability [99]. Although it has long been suggested 
that cytomegalovirus infection is associated with ASD its 
contribution to risk remains unclear, with a recent systematic 
review of this literature and meta-analyses of three obser-
vational studies finding that while there was a high rate of 
the cytomegalovirus in ASD cases, validity was seriously 
hampered by the low number of events in all studies [100].

The relevance of the pathogenesis of maternal infec-
tion to ASD risk may not be associated with the presence 
of viruses or bacteria per se, but in the immune response 
they invoke, a conclusion supported by research identifying 
elevated inflammatory markers and antibodies in pregnant 
women with autistic offspring [101, 102]. Additional support 
for the maternal immune activation hypothesis is available 
from rodent models of neurodevelopmental disorders, with 
direct infection in dams associated with behavioral changes 
in offspring, including those relevant to autism such as 
reduced socialization and vocalizations [103, 104]. Similar 
observations have been made following maternal immune 
activation in rhesus macaques [105]. While mounting evi-
dence points to the role of maternal immune activation in 
ASD risk, refining animal models to enable understanding of 
the role of timing in prenatal immune challenge, and paired 
and behavioral phenotyping, would potentially improve the 
reproducibility of results and maximize the translation of 
findings to understanding ASD [106].

Although the hypothesis of harmful immune response 
is well established, what remains less clear is how this 
response affects the fetus directly. While inflammatory or 
regulatory cytokine profiles are postulated to have a role in 
the risk of several neurodevelopmental disorders including 
autism, through the disruption of cytokine levels, observa-
tions to date are limited to rodent models [107, 108]. Several 
pathways to ASD through cytokines have been suggested: a 
maternal pathway, whereby cytokines from the mother cross 
the placenta; a placental pathway, where maternal immune 
activation leads to inflammation and cytokine production in 
the placenta; and a fetal pathway, through which maternal 
immune activation results in immune and gene dysregulation 
in the fetus itself [109]. The significance of serum or plasma 
maternal antibodies may not be limited to a single ‘window 
of infection’, with evidence that these are not transient, but 
persist for many years beyond the infection [110], raising the 
possibility that infections or auto-immune conditions prior 
to conception present a risk for ASD. Consistent with this 
line of thought, a study of the Simons Simplex Collection 

reported that mothers of children with ASD were four times 
as likely to have circulating antibodies [111].

The immune activation paradigm is underpinned by 
findings from exposure models to maternal autoantibodies. 
Applying injections of serum containing antibodies into 
pregnant mice yielded support for their causality in neurode-
velopmental adversity, with offspring displaying reduced 
behavioral exploration, motor control and sociability, higher 
anxiety, sensory alterations, and stereotypies compared to 
offspring of control dams [112–115]. Evidence corroborat-
ing these findings can be found in maternal antibody models 
in macaques, with antibody exposure causal in increasing 
brain growth and total cerebral volume [116, 117], a well-
established endophenotype of ASD [118].

Ultrasound

While medical ultrasound is generally considered safe, some 
studies have hypothesized that obstetric diagnostic sonogra-
phy is detrimental to neurodevelopment and may also pose 
an ASD risk. Although an older systematic review found no 
associated risks for obstetric diagnostic sonography, it high-
lighted that this conclusion was not definitive, as longitudi-
nal studies of neurodevelopmental outcomes were lacking 
[119]. A study applying diagnostic ultrasound to pregnant 
mice yielded less prosocial behaviors in offspring compared 
to sham-exposed controls [120]. Paralleling this research 
is the finding that ultrasound may have a role in a multi-
ple hit model of autism, in assaying a possible relationship 
between symptoms of autism, ultrasound exposure during 
the first trimester of pregnancy and a genetic predisposition 
to ASD. Consistent with this notion, findings drawn from the 
Simon’s Simplex Collection report that in male children with 
ASD, copy number variations and exposure to ultrasound 
was associated with lower non-verbal IQ and more repetitive 
behaviors, relative to control children [121].

Perinatal risk factors

There is a long history of research examining a large number 
of perinatal factors and their association with autism phe-
notypes including prematurity, cesarean delivery, low birth 
weight, low Apgar score, and hypoxia. While many of these 
factors may have a role in autism risk, they are unlikely to be 
primarily causal, but rather comprise part of the epiphenom-
ena of genetic autism disposition, with familial autism load 
itself increasing the likelihood of obstetric complications 
[122]. Clarity is lacking in regard to the load each of these 
factors bear in autism, with no specific pregnancy complica-
tion consistently connected to ASD and perinatal risk shared 
with other neurological, psychiatric, and neurodevelopmen-
tal disorders. Recently, several reviews and meta-analyses 
have attempted to synthesize these findings. An early review 
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examined 60 obstetric factors finding that abnormal pres-
entation, umbilical cord complications, fetal distress, birth 
injury or trauma, multiple birth, maternal hemorrhage, sum-
mer birth, low birth weight, small for gestational age, con-
genital malformation, low 5-min Apgar score, meconium 
aspiration, neonatal anemia, ABO or Rh incompatibility, and 
hyperbilirubinemia were associated with ASD risk [123]. A 
more current review found an increased risk for autism asso-
ciated with cesarean delivery, gestational age ≤ 36 weeks at 
birth, induced labor, no labor, breech presentation, and fetal 
distress, although most odds and relative risk ratios were 
modest [124]. Parity of four or more children was high-
lighted as a factor connected to decreased autism risk in 
one study. Of note, across meta-analyses models complica-
tions resulting from hypoxia emerged as the most consistent 
factors associated with ASD risk.

Medication

The safety of many medications in pregnancy and lactation 
is yet to be established, with the majority of therapeutic deci-
sions made during pregnancy underpinned by a paucity of 
evidence. Often studies examining the effects of medica-
tion on offspring are confounded by illnesses, behaviors, 
and other risk factors associated with psychiatric illness in 
mothers, including risks linked with untreated psychiatric 
illness during and after pregnancy. In the ASD literature, 
antidepressive and anticonvulsive medications have emerged 
as medications of potential relevance or interest.

Valproate

Valproic acid (VPA) or 2-propylpentanoic acid has long been 
used clinically as a treatment for epilepsy and as a mood 
stabilizer in bipolar disorder. The use of valproic acid in 
pregnancy poses multiple risks for offspring including con-
genital malformations, developmental delay, and cognitive 
malfunction [125]. Animal models demonstrate that expo-
sure to valproate impacts both short- and long-term neurode-
velopmental trajectories, interfering with neural migration 
pathways at critical points during embryonic development, 
and potentially contributing to neural tube defects [126, 
127]. In humans epigenetic mechanisms implicated in ASD 
may be a key mechanism through which valproate influences 
neurodevelopment [34–37]. Recently, a large comparative 
systematic review and meta-analysis of 29 cohort studies 
including 5100 infants examined the impact of using antie-
pileptic drugs during pregnancy or breast feeding on the 
neurodevelopment of infants, reporting that only valproate 
was associated with more children experiencing cognitive 
developmental delay compared with controls (OR 7.40, 95% 
CI 3.00–18.46). In a subset of studies examining autism risk 

(5 cohort studies, 2551 children, 12 treatments), this risk was 
amplified (OR 17.29, 95% CI 2.40–217.60) [128].

Selective serotonin uptake inhibitors (SSRIs)

Depression is one of the most commonly occurring men-
tal disorders worldwide, with 10% of women experiencing 
depression during pregnancy, and a subgroup of up to 10% 
of these of women in European countries receiving SSRI 
treatment during gestation [129]. SSRIs cross the placenta 
barrier, potentially triggering a cascade of adverse effects 
including reduced serotonin uptake, reduced uterine blood 
flow, and hypoxia resulting in brain damage. A systematic 
review of the literature aiming to assess the association 
between ASD and fetal exposure to antidepressants during 
pregnancy, from preconception and across each trimester 
of pregnancy, included ten studies with six case–control 
studies (117,737 patients) in a meta-analysis [130]. Find-
ings revealed a positive association between SSRI exposure 
and ASD, consistent across all trimesters (OR 1.81; 95% 
CI 1.49–2.20), which while partially mitigated by control-
ling for past maternal mental illness (OR 1.52; 95% CI 
1.09–2.12) remained significant. In line with these findings, 
a Swedish epidemiological study published subsequently 
to the aforementioned review reported that the risk posed 
by SSRI exposure may not be solely a byproduct of con-
founding variables. However, and importantly, the authors 
stressed that the absolute risk of autism linked with SSRI 
use was small, and that at a population level abstaining from 
SSRIs during pregnancy would probably prevent few cases 
of autism [131]. The reported association between SSRI use 
and ASD etiology has also been recently challenged by a 
Canadian retrospective cohort study drawing from 35,906 
singleton births finding no association between SSRI expo-
sure in utero and ASD [132]. Research has not found evi-
dence that paternal SSRI use around conception increases 
autism risk [131, 133, 134].

Smoking and alcohol

It has long been recognized that maternal (and paternal) 
lifestyle and substance use patterns impact fetal and infant 
development, with smoking and alcohol consumption among 
the most extensively researched and widespread [135, 136]. 
In a multitude of countries, the rates of smoking and alcohol 
use are decreasing [137]. Smoking exposes a developing 
fetus to many risks including thousands of potentially harm-
ful chemicals and oxygen deprivation, collectively causing 
changes in neurotransmitter activity within the developing 
brain [138, 139]. Ethanol consumption during pregnancy 
can trigger multiple forms of neurodevelopmental damage, 
including fetal alcohol syndrome in cases of heavy drinking 
[130, 140, 141].
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Research has consistently shown that both smoking and 
alcohol use in pregnancy are associated with neurologi-
cal, psychiatric and neurodevelopmental disorders, includ-
ing those often comorbid to ASD, such as ADHD [142]. 
However, specifically for autism phenotypes, the evidence 
is inconsistent and overall rather weak. Several studies have 
reported an association between smoking and increased risk 
for ASD with intellectual disability, but not without [143, 
144]. Two meta-analyses undertaken in in 2015, both inclu-
sive of 15 studies, showed no evidence for smoking as a risk 
factor in ASD, even after correcting for multiple confounds 
including socioeconomic status and parental psychiatric his-
tory [145, 146]. However, these findings must be interpreted 
with caution given that the majority of the primary research 
summarized in these meta-analyses failed to be adjusted for 
relevant confounders such as birth weight and employed 
self-report data collection methods likely biased by social 
desirability [147].

A more recent meta-analysis employing population-based 
smoking metrics as moderators pointed to the importance of 
investigating paternal and secondhand smoking exposure, 
in addition to maternal smoking, in understanding the risk 
smoking bears in ASD [148]. Research examining the risk 
that maternal alcohol consumption poses to autistic behav-
iors has largely focused on the context of fetal alcohol syn-
drome [149]. To date, five cohort or case–control studies 
have examined ASD risk through alcohol consumption more 
directly, indicating that mild to moderate maternal alcohol 
consumption poses no risk for autism [150–154]. Our review 
of the literature failed to identify any study examining the 
role of paternal alcohol use in the risk of autism.

Nutrition

Interpregnancy interval

Maternal nutrition significantly influences the trajectory 
of fetal development and is particularly crucial during 
pregnancy [155] given it largely determines the nutrients 
available to support the growing fetus, placenta and mater-
nal tissues. Deficient and malnourished diets can malign 
fetal programming and adversely impact developmental 
outcomes. Short intervals between pregnancies can tax 
a mother’s system with nutrients, particularly essential 
nutrients (9 amino acids, 2 fatty acids, 13 vitamins and 15 
minerals), remaining low for months to up to a year after 
delivery [156]. The depletion of essential nutrients in the 
mother is associated with adverse health outcomes for off-
spring [157] including increased autism risk. In a review 
of seven studies (N = 1,140,210), short intervals between 
pregnancies bore an increased risk for any ASD (OR 1.90, 
95% CI 1.16–3.09) with the association strongest for core 
autistic disorder (OR 2.62, 95% CI 1.53–4.50) [158].

Vitamin D

Multiple biological functions in the human body depend 
on vitamin D, including calcium homeostasis and metabo-
lism, with mounting evidence that hypovitaminosis D is 
associated with a higher incidence of fetal miscarriage, 
preeclampsia, gestational diabetes, bacterial vaginosis, 
and impaired fetal and childhood growth and development 
[159]. Vitamin D receptors and enzymes are active in brain 
neurons and glial cells, pointing to a role of vitamin D 
in neurodevelopment in utero [160]. A recent systematic 
literature review examined seven areas of interest relevant 
to the understanding of the association between ASD and 
vitamin D including: latitude, season of conception and 
birth, maternal migration and ethnicity, the vitamin D sta-
tus of mothers and ASD cases, and the role of vitamin D 
as an intervention in both the treatment and prevention of 
ASD [161]. This review concluded that there are indica-
tions that deficiencies in vitamin D during early devel-
opment interacts with other risks, possibly contributing 
to the etiology of autism. There was also some evidence 
that vitamin D may have therapeutic benefits in reducing 
autism symptomatology among diagnosed cases. A later 
Swedish whole population register-based study found, 
that although rare, vitamin D deficiency was associated 
with offspring risk of ASD with, but not without, intel-
lectual disability (ORs 2.51 and 1.28, 95% CI 1.22–5.16 
and 0.68–2.42) [162].

Iron

Iron deficiency is common in pregnant women affecting up 
to half of all mothers [163], with maternal iron deficiency 
being causal in fetal iron deficiency [164]. Iron is crucial for 
neural function in general, and fetal development in particu-
lar, contributing to neurotransmitter synthesis, myelination, 
and immune function [165]. Findings examining a possible 
association between autism and iron deficiency are conflict-
ing. In the CHARGE case–control study mothers with low 
iron intake had double the odds of having a child with ASD, 
especially in the presence of other autism risk factors (e.g., 
advanced age, diabetes, hypertension, obesity). However, 
this finding was not ratified in a Norwegian birth cohort 
[166, 167].

Zinc and copper

Deficiencies in maternal zinc during pregnancy can be harm-
ful to fetal development having been identified as causal 
in neural tube defects and as possibly contributing to ASD 
risk [168, 169]. Low levels of zinc have been measured in 
the infant hair of individuals with ASD [170], and in mouse 



1283The contribution of environmental exposure to the etiology of autism spectrum disorder﻿	

1 3

models zinc deficiency during development leads to altera-
tions in social behavior [171]. Disruptions in fetal copper 
homeostasis during brain development might contribute 
to ASD risk, with both elevated and decreased copper lev-
els linked with autism [172–174]. Employing a validated 
tooth matrix in a twin–cotwin design with monozygotic and 
dizygotic twins discordant for ASD, a study tested whether 
fetal and postnatal metal dysregulation increases ASD risk. 
Findings revealed significant divergences in metal uptake 
between ASD cases and their control twins during discrete 
developmental periods, and correlations between reduced 
zinc uptake and ASD severity and autistic traits [175]. These 
findings have been further corroborated in a follow-up study 
examining three independent teeth samples from the USA 
and UK, which identified the presence of alterations in 
fetal and postnatal zinc–copper rhythms in ASD in terms 
of cycling duration, regularity, and number of complex fea-
tures [176].

Vaccination

Despite strong evidence to the contrary, no hypothesized role 
for an environmental exposure in the etiology of autism has 
been pursued with as much sustained vehemence as that of 
the combined mumps, measles, and rubella (MMR) vaccina-
tion. Initially based on 12 cases of clinical gastroenterologi-
cal symptoms, this now retraced study proposed a pathway 
from MMR vaccination to inflammatory bowel syndrome 
to ASD [177]. This study generated worldwide attention 
and belief, and is possibly the single most significant factor 
contributing to the harmful drop of vaccination rates and 
measles outbreaks across a range of countries, where mea-
sles was previously eradicated [178]. For more than a dec-
ade, a multitude of large-scale epidemiological studies have 
provided evidence refuting this notion [179, 180] including 
the role of vaccinations containing thiomersal in the ASD 
etiology [181]. Importantly, the initial paper has now proven 
to have been falsified in many aspects, including 3 of the 
12 cases never being diagnosed with autism at all, 3 of 9 
cases experiencing no regression, and all 12 cases report-
edly typically developing prior to vaccination revealed to 
have preexisting developmental concerns [182]. Finally, it 
later emerged that the author of the initial study was paid 
to undermine the combined MMR vaccination by a lawyer 
attempting to raise a speculative class action lawsuit against 
drug companies manufacturing the triple vaccine [183], with 
the consequence that he was barred from practicing medi-
cine in the UK.

Toxic exposures

The modern world has generated a universe of some 80,000 
environmental chemicals released from indoor (furniture, 

colors, building material, cosmetics) and outdoor sources 
(vehicles, industry, agriculture), with approximately 1000 of 
these demonstrating neurotoxicity and many others under or 
unstudied. Neurotoxins fall into the categories of air pollut-
ants, heavy metals, persistent organic pollutants, pesticides, 
and non-persistent organic pollutants. Xenobiotic agents 
may act through diverse pathophysiological pathways in 
the immune, gut–brain and endocrine systems, interacting 
with genetic factors, thus altering the neurodevelopment of 
neural circuitry and synapses, cell migration and connectiv-
ity [184].

Air pollutants

There is a growing body of literature documenting the asso-
ciation between airborne pollutants and ASD, with epidemi-
ological studies undertaken during the last decade recently 
summarized in several reviews [185, 186]. Adverse reactions 
linked to air pollution include neuroinflammation and oxida-
tive stress [187–190], with a recent systematic review and 
meta-analysis identifying 23 studies examining its associa-
tion with autism reporting ORs of 1.07 (95% CI 1.06–1.08) 
per 10-μg/m3 increase in PM10 exposure (k = 6 studies) and 
2.32 (95% CI 2.15–2.51) per 10-μg/m3 increase in PM2.5 
exposure (k = 3 studies) [191], concluding that modest evi-
dence exists for the toxicity of air pollution during early 
development. These findings provide support for public 
health policies aiming to limit exposure to harmful airborne 
contaminants.

Heavy metals

Toxic metals occur both naturally and are produced by 
industrial processes, being present in ambient air, soil, water 
and plants, and medical products. Exposure to heavy metals 
can detrimentally impact many bodily functions, inducing 
neurological and behavioral impairment [191–195]. Several 
toxic metals bare a risk in the etiology of autism, in particu-
lar mercury and lead. A recent systematic review and meta-
analysis examining the link between toxic metals and autism 
found 48 relevant case–control studies measuring levels of 
toxic metals (antimony, arsenic, cadmium, lead, manga-
nese, mercury, nickel, silver, and thallium) in whole blood, 
plasma, serum, red cells, hair and urine) [196], with hair 
concentrations of antimony [standardized mean difference 
(SMD) = 0.24; 95% CI 0.03–0.45] and lead (SMD = 0.60; 
95% CI 0.17–1.03) in ASD cases significantly higher than 
those of control subjects. ASD cases presented with higher 
levels of erythrocyte lead (SMD = 1.55, 95% CI 0.2–2.89) 
and mercury (SMD = 1.56, 95% CI 0.42–2.70), and higher 
blood lead levels (SMD = 0.43, 95% CI 0.02–0.85). Sensi-
tivity analyses revealed that ASD cases in developed, but 
not in developing countries, had lower hair concentrations 
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of cadmium (SMD = − 0.29, 95% CI − 0.46 to − 0.12). 
Similarly, analyses indicated that autistic individuals in low 
income, but not high-income countries, had increased lead 
concentrations in their hair (SMD = 1.58, 95% CI 0.80–2.36) 
and mercury (SMD = 0.77, 95% CI 0.31–1.23). For heavy 
metals in ambient air, positive and statistically significant 
effects have been found, although the effects are generally 
small and not consistent [191].

Pesticides

Herbicides, insecticides, insect repellents, animal repellents, 
antimicrobials, fungicides, disinfectants, and sanitizers are 
summarized under the label of pesticides. They are all agents 
discouraging pests and are explicitly designed to harm and 
kill organisms. Several of the active ingredients of these 
products target living organisms through their nervous sys-
tems, inhibiting acetylcholinesterase production in the brain, 
altering GABA neurotransmission [197, 198]. A review 
comprising of seven epidemiological studies conducted in 
2014 noted that all studies documented an association across 
all classes of pesticides and ASD risk, with several associa-
tions reaching significance. These effects were the largest 
for exposures in weeks 1–7 of pregnancy, and postnatally in 
weeks 4–12 [185]. A more recent case–control study draw-
ing on data from the CHARGE study [199] found that prox-
imity to organophosphates during pregnancy was associated 
with a 60% increase in ASD risk. This risk was amplified 
for exposures during the third trimester (OR 2.0; 95% CI 
1.1–3.6), and exposures to chlorpyrifos during the second 
trimester (OR 3.3; 95% CI 1.5–7.4). Pyrethroid insecticide 
exposure immediately prior to conception or during third 
trimester posed an increased risk for both ASD and devel-
opmental delay, with ORs ranging from 1.7 to 2.3.

Non‑persistent organic pollutants

These toxins mainly include phthalates and bisphenol, used 
primarily in the production of plastics. While they do not 
persist in the human body, being at least partially cleared by 
bodily processes, their presence in the modern environment 
is ubiquitous, potentially posing a risk to the reproductive, 
respiratory, and endocrine systems, being possibly involved 
in carcinogenesis and adversely effecting neurodevelop-
ment [200, 201]. The role of phthalates in ASD was recently 
reviewed and summarized across seven studies, inclusive 
of five human studies, three case–control in design and two 
cohort studies [202]. One cohort and two case–control stud-
ies reported an association between phthalate and autism. 
Concerning bisphenol A, the published literature, mostly 
characterized by smaller case–control studies is also con-
flicting, reporting associations ranging from none to rather 
substantial links with clinical autism and autistic traits 

[203–206]. A recent animal model study of maternal and 
paternal bisphenol exposure indicated behavioral effects in 
the area of anxiety, rather than social behaviors [207].

Persistent organic pollutants

Organic compounds resistant to environmental degradation 
accumulate in the environment and food chains with the 
potential to negatively influence human health, particularly 
through the consumption of animal fat and breast milk. The 
Stockholm Convention on Persistent Organic Pollutants was 
ratified in 2001, with the aim of banning these pollutants 
worldwide. A recent review summarized the evidence of 
the potential association between autism and autism rele-
vant phenotypes and persistent organic pollutants for three 
major agents: dichlorodiphenyltrichloroethane (DDT), poly-
chlorinated biphenyls (PCBs), and polybromated diphenyl 
ethers (PBDEs) [208]. Collectively, these agents have shown 
adverse endocrine, immune, and neurodevelopmental effects 
in humans [209]. Two studies have investigated the influence 
of the pesticide DDT on neurodevelopment in humans and 
rats, demonstrating a negative impact on cognitive skills (IQ, 
memory) and gene expression in the hypothalamus [210, 
211]. Studies on PCBs, previously used in coolant fluids in 
electrical apparatus, have focused on cognitive skills, dem-
onstrating negative effects on various intellectual, motor and 
verbal outcomes of relevance to autism [212, 213]. A recent 
larger case–control study also found organochlorine com-
pounds during pregnancy were associated with ASD [214]. 
While PBDEs, historically used as fire retardants in furniture 
and other products negatively impact on neurodevelopment 
[215], the CHARGE study reported no differences in plasma 
PBDE levels in autism and typical control cases [216].

Psychosocial factors

Owing to the long-lasting false hypothesis of a psychogenic 
causation of autism [217], any possible contributions of 
the psychosocial environment to autism etiology have been 
largely avoided by research. However, conceptualizations of 
mental disorders and maladaptation must not stop at the indi-
vidual, but be understood at a societal level, considering the 
potential mismatch between an individual’s skills and needs 
and societal expectations and demands. It is well known 
and accepted that the psychosocial environment, independ-
ent of etiological considerations, plays a role in modifying 
the severity, quality of life and functional outcomes or level 
of impairment associated with ASD. Access to early identi-
fication and intervention, supportive and understanding envi-
ronments maximizing adaptation to an autistic individual’s 
needs (“inclusion”), and appropriate education and employ-
ment are critical in determining functional abilities and dis-
abilities [3, 218]. Psychosocial factors may also have a role 
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beyond purely modifying outcomes. For instance, it is now 
established in human and animal models that intense mater-
nal stress during pregnancy may have long-term biological 
and behavioral effects on the child [219–221]. In addition, 
extreme deprivation in infancy such as that experienced in 
institutions with impoverished levels of care, stimulation, 
and attention may have adverse effects on developmental 
psychopathology and physical development [222].

Maternal migration

Neurodevelopmental biological correlates associated with 
prenatal stress in offspring include cognitive function, cer-
ebral processing, and functional and structural brain connec-
tivity involving amygdalae and (pre)frontal cortex, changes 
in hypothalamo-pituitary–adrenal axis and the autonomous 
nervous system [223]. In autism, the major life event of 
maternal immigration has been the most studied cause of 
maternal stress, and possibly associated with immune acti-
vation (see above). An alternative explanation, not linked to 
stress, is reduced vitamin D levels in dark skinned migrants 
moving to the northern hemisphere [224]. Results examining 
the association between maternal immigration and autism 
are mixed. A 2015 review including ten studies found a 
positive association with immigration in three studies, no 
connection in five, and a reverse association in two studies 
[225]. Six of the ten studies found that giving birth postma-
ternal migration increased ASD risk. A large registry study 
from Sweden, not included in the review, reported that third 
trimester prenatal stress increased ASD risk (OR 1.58, 95% 
CI 1.15–2.17) [226]. Another later Finnish hospital dis-
charge diagnosis study on the matter, focusing on Asperger 
syndrome only, found a reduced risk in immigrant families, 
including those from Sub-Saharan Africa [227].

Natural disasters

The association of exposure to prenatal maternal stress 
(PNMS) and ASD risk or ASD-related cognitive features 
has been studied in the context of natural disaster cohorts 
that mimic the random allocation of experimental designs. 
The Project Ice Storm, the QF2011 Queensland Flood Study, 
and a study on the association between the prevalence of 
ASD and tropical storms in Louisiana are examples of this 
research approach [221, 228, 229]. In the Project Ice Storm 
[221], mothers’ objective stress, and subjective distress 
during the early stages of pregnancy explained between 23 
and 42.7% of the variance in autistic symptoms in 6-year-
olds. Exposure to tropical storms in Louisiana [228] from 
1980 to 1995 was employed as a model, examining if risk 
for ASD increases in a dose–response pattern parallel with 
the severity of PNMS (as inferred from storm severity), 
and sensitivity of gestational periods to ASD risk. While a 

dose–response relationship for ASD emerged across cohorts, 
in contrast to the findings of Project Ice Storm, this was par-
ticularly strong for exposures occurring during the middle 
and end stages of gestation. The QF2011, Queensland Flood 
Study [229] examined the association between PNMS and 
theory of mind challenges. Higher subjective stress, but not 
objective hardship predicted poorer theory of mind skills in 
130 children at 30 months of age.

Institutional deprivation

Children adopted from globally deficient orphanages may 
initially show a variety of atypical behaviors, including ste-
reotyped self-stimulation, inability to form deep or genu-
ine attachments, indiscriminate friendliness, and difficulty 
establishing appropriate peer relationships. Severe early 
deprivation may also be a major contributor to delayed 
development and longer-term extreme behaviors, with such 
experiences possibly particularly impactful between 6 and 
18 months of life [222]. The Romanian adoptee study com-
pared 144 children initially raised in Romanian institutions, 
but then adopted by UK families, and later followed up at 
ages 4, 6, and 11 years with a non-institutionalized sample 
of 52 domestic adoptees. Sixteen of the Romanian children 
were found to have “quasi-autism” with additional children 
presenting with autistic features, while none of the domestic 
adoptees presented with any signs of autism. However, by 
age 11, a quarter of the children had “lost” their autistic-
like behaviors, with the remaining children demonstrat-
ing both similarities and differences to classic ASD [230]. 
Importantly, despite their early extreme deprivation, only a 
minority of cases developed quasi-autism with the majority 
recovering from their early experiences. These findings are 
of limited relevance to understanding the etiology of autism 
outside of institutional settings given that symptoms resulted 
from exposure to extreme psychosocial deprivation.

Protective factors

While the overwhelming majority of research has examined 
environmental risk in autism, there is an emerging body of 
research examining the role of potentially protective factors, 
largely from the field of nutrition and food supplementation, 
with several underpinned by findings from the risk factor 
literature. Studies indicate prenatal vitamin supplementa-
tion close to delivery might reduce the risk of autism in off-
spring, with folate (vitamin, B9, folic acid, folacin) receiving 
considerable attention [231–233]. Folate is essential in the 
production and maintenance of cells, to DNA and RNA syn-
thesis and methylation, in preventing changes to DNA and 
various other cellular processes, and centrally involved in 
cancer prevention [234]. There is wide evidence that pre and 
periconceptional folate supplementation supports neural and 
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neurobehavioral development, bolstering social, cognitive 
and verbal functioning [235–237]. It has been hypothesized 
that in autism, folate may act as a methyl donor, supporting 
remethylation during early embryogenesis [232, 233]. While 
folate is generally considered not to protect against ASD, it 
may buffer additional risks, such as in mothers or infants 
who are carriers of gene variants impacting the efficiency 
of folate-dependent one-carbon metabolism or fetuses with 
neural tube alterations.

Fatty acids including the omega-3 group are assumed to 
play a key role in neurodevelopment during early childhood 
as well as in regulating cognitive functioning across the life 
span [238], with supplementation studies revealing their 
benefits to neural efficiency [239]. In autism, the few studies 
examining the effect of maternal fatty acid supplementation 
or intake on autism and autistic trait outcomes have revealed 
inconsistent results. This research is equally counterbal-
anced, with two studies each both identifying and failing to 
identify an association between maternal omega 3/omega 6 
intake or status and autism related outcomes [240–242]. The 
many connections between brain functioning and develop-
ment, and gastrointestinal functioning, have been increas-
ingly highlighted in the field of psychiatry, and specifically 
in ASD [243, 244]. The role of the gastrointestinal tract, the 
largest immune organ in the human body, and the role of 
several aspects of immunity and inflammation potentially 
relevant to the etiology of ASD have been discussed earlier 
in this review. There is evidence that some probiotic bacteria 
migrate from the mother to the child [245], with probiotic 
supplementation during pregnancy a promising, but as yet 
unexplored field of future investigation in autism protective 
factors [246].

Discussion

Research examining the etiology of autism across the last 
25 years has been dominated by a focus on genetic factors; 
however, there is increasing awareness of the potential sig-
nificance of environmental influences in the etiology of 
ASD. The results of recent twin and family studies point 
toward a greater role for environmental contributions [29, 
30], with pessimism toward such approaches decreasing, 
some of which was historically fueled by fake research in 
the area including unproven claims of vaccinations being 
causal of ASD [177]. In addition, given the global increase 
in diagnoses rates of ASD and the increasing availability 
of funding for research, researchers from all fields of envi-
ronmental science are more and more engaging in autism 
research.

In this review, an up-to-date overview of the potential 
environmental contributions to autism development and 
presumed pathophysiological mechanisms is provided for 

parental age, several aspects of the immediate fetal environ-
ment, obstetric complications, medication during pregnancy, 
smoking and alcohol use, nutrition, diverse toxic exposures, 
as well as protective nutritional factors and the role psy-
chosocial factors. Evidence, both positive and negative, is 
mounting in relation to the role these risks play in the etiol-
ogy of ASD. Several areas are now underpinned by rela-
tively large bodies of evidence such as parental age and SSRI 
medication [58, 130–132], while others lines of inquiry have 
generated relatively little specific evidence such as smoking 
and alcohol use [145, 146, 150–154].

In the presence a plethora of existing agents, evidence 
regarding the impact of environmental toxins on human 
health and development in general, and autism in particular, 
is lacking. Although the generalizability of animal studies 
to humans remains relatively unknown, animal models have 
yielded many intriguing insights into the effects and mecha-
nisms of inflammation and immune activation, as well as 
the role of toxic agents, in inducing autism-like behaviors in 
rodent and other species [103, 104, 112–115, 207]. Overall, 
understanding the role of environmental exposures in the 
etiology of ASD is a broad and complex field, still largely 
in its infancy with many current limitations, but also with 
many future opportunities.

Limitations

The etiology of ASD is heterogeneous, as are its phenotypes. 
It is both a clinically relevant phenomenon, and a quantita-
tive trait in the general population, with broader subclini-
cal phenotypes frequently present in relatives [247, 248]. In 
clinical cases, other neurodevelopmental conditions, psychi-
atric disorders and somatic disorders are often co-occurring 
complications [13–15]. Finally, diagnoses rates have risen 
dramatically in the last 20 years, with a parallel widening of 
the diagnostic concept undoubtedly one of the driving fac-
tors. The etiology of ASD is complex, with causal factors 
unknown in many cases. Collectively, these factors make 
research aimed at improving our understanding of the etiol-
ogy of pure autism challenging. Today, up to 15% of autism 
variants can be linked to genetic determinants, with future 
projections that as much as to 50% of genetic etiologies are 
discoverable using sequencing approaches [26]. Even if this 
is realized, it leaves considerable space for speculation as to 
the etiological role of environmental contributions. Expo-
sure to many factors occurs at a population level, such as in 
the case of air pollutants, with their role in autism etiology 
far from fully understood. While still largely unexplored, 
some effects may result from interactions between environ-
mental factors and genes acting to increase ASD risk, with 
several intriguing examples emerging such as between MET 
rs1858830 CC genotype on the one hand, and early life stress 
and air pollutant exposure on the other [249, 250]. A related 



1287The contribution of environmental exposure to the etiology of autism spectrum disorder﻿	

1 3

issue is the importance of epigenetic modulation, such as 
alterations in DNA methylation through which PCBs, lead, 
and bisphenol confer a risk for ASD [251].

Reported autism–environment associations may not be 
causal, for example there is doubt as to the causal role of 
obstetric complications, which are perhaps more likely to be 
epiphenomena of primary genetic risks [122]. In addition, 
parental age might be confounded by parents with autism 
traits having children later in life, or choosing partners with 
high autism traits [252, 253]. Maternal SSRI risks might be 
confounded with maternal depression diagnosis and broader 
autism phenotypes [254]. These are only a few examples of 
the multitude of possible confounders of environmental risk 
factors. Many have received little attention in research, such 
as the cultural bias apparent in the association of migration 
and autism risk, with one study reporting a reduced risk of 
Asperger syndrome among immigrant families in Finland. 
Such findings might be explained by cultural and famil-
ial factors with clinical experience suggesting that milder 
variants of ASD might not be perceived as equally atypi-
cal or impairing by Finnish and immigrant families (with 
immigrant families having a higher threshold for perceiving 
deviance), leading to referral and diagnostic bias. It might 
also be possible that neurodevelopmental disorders are 
more stigmatized among immigrants, leading to a tendency 
to avoid clinical assessment. Another challenge, remaining 
largely unaddressed, is the additive and interactive effects 
across environmental factors. For instance, a recent study 
showed that associations between pesticide exposures and 
ASD were modulated by folate intake during the first month 
of pregnancy [255] with evidence of a cumulative risk for 
environmental effects in autism [32].

Published research in this field has many shortcomings 
in relation to design, with the majority of studies being 
retrospective, cross-sectional, case–control, and cohort 
approaches, with very few employing experimental or 
prospective designs with a priori statement of hypotheses 
restricting conclusions in relation to causality. Further, the 
majority of case–control studies have been small with impre-
cise measures of exposure. For example, research examining 
air pollution exposure employing indirect measures of expo-
sure (such as distance to a freeway where emissions were 
measured) have reported associations to autism [256], while 
studies measuring emission levels close to the individuals’ 
homes have not [257]. Further, this line of research should 
consider the role of both cultural factors and residential area 
in confounding the relationship between pollution exposure 
and autism, a notion consistent with positive associations 
originating largely from the USA and negative results 
emerging from Europe, with socioeconomic status likely to 
play a role in both. As in other fields of autism research, 
there are high levels of variability in outcome assessments, 
ranging from register-based to clinical gold standard, with 

both categorical and dimensional scales, limiting compa-
rability. Given the evolving nature of autism as a concept 
and changes in community awareness and understanding, it 
might be difficult to compare older and new studies in terms 
of the autism measured.

Opportunities

Viewed optimistically, the various limitations outlined 
above provide many opportunities in directing and improv-
ing future research. Key to understanding the role of envi-
ronmental factors in the etiology of autism is mapping the 
critical time points of vulnerability in pregnancy and early 
development. Alterations to neural migration, laminar dis-
organization, neuron maturation and neurite outgrowth, syn-
aptogenesis and reduced neural network functioning likely 
play a crucial role in autism development [258], with vary-
ing levels of susceptibility to adverse environmental influ-
ences during various stages of pregnancy. These critical time 
points are still largely unmapped for most agents in relation 
to their risk of ASD, with points likely to vary across envi-
ronmental hazards. While an increasing number of studies 
have attempted to address this issue, for instance in regards 
to the role air pollution plays in ASD risk [259], findings 
remain insufficiently robust to support firm conclusions. A 
likely fruitful line of research would be for basic human 
research and neighboring fields to focus explicitly on the 
risk various environmental exposures pose for ASD across 
the stages of pregnancy [260].

Clearly, more cross-discipline research is needed to 
understand autism etiologies. Multi-hit models of ASD 
included genetic and environmental factors and their inter-
action. While they are theoretically well-accepted, the 
empirical evidence of their causality in ASD remains weak. 
The literature contains several attempts to design such risk 
models, for example in examining the association between 
genetic disposition and maternal antidepressant use [261]. 
Despite the evidential methodological challenges, the utility 
of these multiple hit models in understanding ASD etiology 
should be further explored.

While research to date has largely focused on examin-
ing the environmental risk factors of ASD, examining envi-
ronmental protective factors might be equally, if not more 
valuable. Despite wide speculation, very few protective fac-
tors have been systematically studied in ASD, and evidence 
is emerging as to the potentially protective role folate and 
other nutritional factors might play in buffering ASD risk. 
This line of research presents many opportunities including 
the identification of mechanisms of prevention and poten-
tial interventions. For instance, the finding in mice models 
that risk for obese mothers to have offspring with behavio-
ral problems linked with autism is ameliorated by dietary 
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intervention during pregnancy and lactation might be trans-
latable to humans [262, 263].

A promising and still largely ignored line of environmen-
tal research relates to trends in the prevalence of autism. 
Specifically, data from Swedish regional registries [18] 
show that the increase in ASD rates observed in high-
income countries in recent years is almost exclusively 
accounted for by ASD in the normative intellectual range, 
while ASD linked with intellectual disability is decreasing. 
Other surveillance systems, such as the Center of Disease 
Control Autism and Developmental Disabilities Monitor-
ing (ADDM) Network in the USA (cdc.gov/ncbddd/autism/
addm.html), have also identified this trend. Further, ASD 
risk associated with environmental exposures has been sta-
ble for air pollutants and pesticides, with lifestyle risk factors 
such as smoking and alcohol consumption and other poten-
tial hazards related to nutrition and medication in decline 
[264]. The potential association between the downward tra-
jectory in the number of ASD cases with associated intel-
lectual disability and the curtailing of several environmen-
tal risk factors is worth investigating. While ASD presents 
across all levels of intellectual functioning, the distinction 
between ASD with and without challenges is commonly 
made on the basis of intellect, making this an important line 
of research to pursue. Stratifying ASD on the basis of fac-
tors other than solely intellect, generating more homogenous 
groups, would still likely support more conclusive findings 
in relation to the etiology of autism. However, despite effort 
to subtype ASD and look at environmental and genetic risk 
factors within subtypes including sex, comorbidities, ver-
bal abilities, neurocognitive and biological endophenotypes, 
these attempts have thus far not been very fruitful [265]. 
Nevertheless, there are still multiple options for stratifica-
tion to be explored. Several major collaborative efforts in 
ASD, such as the EU-AIMS (eu-aims.eu) specifically aim to 
understand biomarkers potentially relevant to stratification 
[266–268]. Other ongoing longitudinal large-scale projects 
such as the Norwegian Mother and Child Cohort Study (fhi.
no/moba-en) [269],the Swedish Lifegene Study (lifegene.
se) [270] or the National Institutes of Health Environmen-
tal influences on Child Health Outcomes Program (nih.gov/
echo) offer opportunities to study the environmental risk 
factors in autism and other conditions in detail.

Although ASD is no longer considered a rare condition, 
autism research is challenged by studies employing small 
sample sizes. The evolving body of autism research shows 
that autism is not a tightly bounded clinical entity, but that 
traits from low to extreme exist more broadly in the gen-
eral population. Viewing autistic phenotypes as continuous, 
rather than categorical, provides an opportunity to under-
pin studies with larger samples, increasing their sensitiv-
ity to small and medium effects. Finally, twin studies pro-
vide a unique opportunity to examine both the genetic and 

environmental contributions to ASD etiology. In particular, 
contrasting the phenotypes of discordant and monozygotic 
twins enables control of genetic factors, providing a pow-
erful strategy to identify disease-associated environmental 
factors, independent of underlying genomic sequence vari-
ation [271]. The Roots of Autism and ADHD Twin Study 
Sweden (RATSS) [272], a sub-study of the population-based 
Child and Adolescent Twin Study Sweden (CATSS) [273], is 
the largest collection of deeply clinically phenotyped autism 
twins. It primarily applies twin–cotwin analyses to identify 
environmental risks contributions to autism phenotypes 
on the behavioral and neurobiological level controlling for 
genetic and familial factors. It has generated several novel 
findings and hypotheses related to the role of non-shared 
environment in ASD, such as the potential significance of 
altered zinc-copper cycles and dysregulation of other essen-
tial and toxic metals during critical pre- and postnatal devel-
opmental windows [32, 175, 176, 274, 275].

In conclusion, this review provides a broad and updated 
review of the potential environmental risks in the etiology 
of autism, discussing the limitations of current research and 
identifying likely fruitful pathways for future research. The 
majority of current research is preclinical in design, limiting 
its ability to inform prevention and intervention strategies 
in the real world. The ultimate goal of all medical research 
must be to make discoveries that improve people’s lives. 
Hopefully, future research aimed at understanding the role of 
environmental factors in the etiology of ASD will reach this 
stage. The current review shows that designing population-
level studies, informed by findings from basic research, is 
likely to work toward achieving this goal.
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