
Vol.:(0123456789)1 3

Current Genetics (2019) 65:307–327 
https://doi.org/10.1007/s00294-018-0887-8

REVIEW

Yeast genetic interaction screens in the age of CRISPR/Cas

Neil R. Adames1   · Jenna E. Gallegos1   · Jean Peccoud1 

Received: 17 August 2018 / Revised: 14 September 2018 / Accepted: 18 September 2018 / Published online: 25 September 2018 
© The Author(s) 2018

Abstract
The ease of performing both forward and reverse genetics in Saccharomyces cerevisiae, along with its stable haploid state 
and short generation times, has made this budding yeast the consummate model eukaryote for genetics. The major advantage 
of using budding yeast for reverse genetics is this organism’s highly efficient homology-directed repair, allowing for precise 
genome editing simply by introducing DNA with homology to the chromosomal target. Although plasmid- and PCR-based 
genome editing tools are quite efficient, they depend on rare spontaneous DNA breaks near the target sequence. Conse-
quently, they can generate only one genomic edit at a time, and the edit must be associated with a selectable marker. How-
ever, CRISPR/Cas technology is efficient enough to permit markerless and multiplexed edits in a single step. These features 
have made CRISPR/Cas popular for yeast strain engineering in synthetic biology and metabolic engineering applications, 
but it has not been widely employed for genetic screens. In this review, we critically examine different methods to generate 
multi-mutant strains in systematic genetic interaction screens and discuss the potential of CRISPR/Cas to supplement or 
improve on these methods.

Keywords  Genetic interaction screens · Synthetic genetic array · CRISPR/Cas9 · Functional genomics · dSLAM · Green 
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Introduction

The budding yeast Saccharomyces cerevisiae has been a 
workhorse model organism for genetics for over 50 years 
now. One of the major advances in yeast genetics was the 
generation of loss-of-function (LOF)-mutant strain collec-
tions by systematically deleting all non-essential annotated 
open reading frames (Winzeler et al. 1999). These collec-
tions are derived from a common set of background strains 
and include haploid strains, homozygous diploid strains, and 
heterozygous diploid strains. To supplement these collec-
tions, groups have also generated collections of strains (in 
the same genetic background) carrying temperature-sensi-
tive, transcriptionally repressible, or hypomorphic alleles of 
essential genes (Mnaimneh et al. 2004; Breslow et al. 2008; 
Li et al. 2011; Wang et al. 2015; Kofoed et al. 2015).

While functional analyses of single-gene perturbations 
are useful, by combining LOF mutations in the same cell, 
one can uncover suppressing or enhancing epistatic inter-
actions that provide clues about the network structures of 
cellular pathways (Salminen and Novick 1987; Adams et al. 
1990, 1993; Bendert and Pringle 1991; Costigan et al. 1992; 
Frank et al. 1992; Scidmore et al. 1993). There are two types 
of genetic interactions (GIs) that can occur when two or 
more LOF mutations are combined in the same cell–syn-
thetic suppression or synthetic enhancement. An extreme 
example of synthetic suppression is synthetic rescue, when 
one or more of the single mutants is inviable, but the syn-
thetic combination is viable. An extreme example of syn-
thetic enhancement is synthetic lethality, when all single 
mutants are viable, but the synthetic combination is lethal.

Gain-of-function (GOF) mutations are routinely gener-
ated by gene overexpression (dosage) from a plasmid or an 
integrated construct using a strong promoter. Dosage screens 
in yeast are largely successful because there is little dosage 
compensation at the single-gene level (Deutschbauer et al. 
2005; Springer et al. 2010; Ishikawa et al. 2017).

LOF mutations can also be combined with GOF alleles 
in the same cell and assessed for dosage interactions. The 
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extreme case of dosage suppression is dosage rescue of 
an otherwise lethal mutation. The extreme case of dosage 
enhancement is dosage lethality, in which neither overex-
pression of gene x nor the mutation of gene y are lethal, 
but the combination is. One can also overexpress two genes 
to find double dosage lethality, but this is not a common 
approach (Youn et al. 2017).

The goal of these mutant combinations is to identify 
epistatic GIs from which one can infer pathway hierarchies 
(Forsburg 2001; Boone et al. 2007; Costanzo et al. 2010; 
Magtanong et al. 2011). For example, synthetic suppression 
and dosage enhancement are both consistent with a network 
in which the two gene products are functionally antagonistic. 
In contrast, synthetic enhancement and dosage suppression 
are both consistent with gene products that work together or 
in parallel in the same cellular process.

Traditionally, GIs were discovered by random mutagen-
esis of LOF or GOF mutant query strains, or by transforming 
such strains with high copy number cDNA or genomic DNA 
plasmid libraries, followed by a selection regimen or visual 
screen to find suppressing or enhancing interactions (Reed 
et al. 1989; Albertini and Zimmermann 1991; Costigan et al. 
1992; Chowdhury et al. 1992; Flescher et al. 1993; Puz-
iss et al. 1994; Blázquez and Gancedo 1994; Machin et al. 
1995; Kroll et al. 1996; Kaytor and Livingston 1996; Akada 
et al. 1997; Mullen et al. 2001; Stevenson et al. 2001; Kita-
zono and Kron 2002; Bogomolnaya et al. 2004; Kaplan and 
Kupiec 2007; Carlsson et al. 2018). Although the process 
of screening using mutagenesis or pooled plasmid librar-
ies is relatively quick and easy, the resulting strains require 
extensive characterization to ensure screen “saturation” (i.e., 
obtaining multiple alleles of the same genes), and to identify 
the genes responsible for the interactions.

Now, GI screens are routinely performed using systematic 
arrayed yeast strain collections or arrayed plasmid collec-
tions, which ensure comprehensive genomic coverage. There 
are several approaches researchers have taken to perform 
such screens—transformation of a systematic collection 
of overexpression (OE) plasmids into one or a few mutant 
query strains, transformation of one or a few query plasmids 
into a systematic collection of yeast mutant strains, or cross-
ing one or a few query mutant strains to a systematic collec-
tion of mutant strains and obtaining haploid double mutants. 
Although such screens require complex high-throughput 
protocols up front, the back-end analysis and identification 
of the interacting genes is much faster and easier than in 
traditional GI screens.

In the following sections, we will examine and compare 
traditional methods to perform systematic GI screens and 
discuss the advantages and limitations of each approach. 
These approaches combine mutations either by crossing 
mutant strains, or by introducing a common mutation into 
a collection of pre-existing mutants. In both approaches, 

query mutations are introduced into cells by homology-
directed repair (HDR) with transformed donor DNA [for a 
comprehensive review of how HDR works, see (Gallagher 
and Haber 2018)]. Chromosomal recombination with the 
donor DNA depends on the spontaneous generation of dou-
ble-strand breaks (DSBs) at the target locus. These methods 
require a selectable marker in the donor DNA to select for 
the rare recombinants and are also too inefficient to per-
form more than one type of edit at a time (multiplexing). 
Sequence-specific endonucleases improve editing efficiency 
enough to allow markerless and multiplexed edits (Guha and 
Edgell 2017). CRISPR/Cas is the most popular method of 
endonuclease-mediated gene editing because of the ease of 
programming the target specificity. We will discuss how 
CRISPR/Cas has the potential to complement and stream-
line current methods of performing GI screens. Our hope is 
that this review will help yeast geneticists to make informed 
decisions about what approaches best suit their particular 
genetic screens.

Traditional genetic interaction screens

Overexpression plasmid transformation

The simplest approach to dosage interaction screens is to 
transform overexpression (OE) plasmids into mutant strains. 
These screens can be performed systematically using the 
genomic collections of yeast strains we mentioned earlier 
or genomic collections of OE plasmids.

To introduce plasmids into large arrays of different yeast 
strains, or to introduce large arrays of different plasmids 
into the same yeast strain, transformations can be readily 
performed in 96-well plates to accommodate 4000 or more 
strains or plasmids (Fleming and Gitler 2011) (Fig. 1).

Using plasmid transformation, systematic GI screens have 
been performed in two different ways. First, one could trans-
form query mutants with systematic arrays of OE plasmids 
to find synthetic dosage enhancement or lethality interac-
tions (Zimmermann et al. 2017), or to find dosage suppres-
sion or rescue interactions (Magtanong et al. 2011; Patra 
et al. 2017) (Fig. 1a). The alternative approach is to trans-
form a query OE plasmid into a systematic mutant strain 
collection. We do not know of any examples in which this 
approach was performed to find synthetic dosage interac-
tions using the entire yeast deletion collection, but it has 
been done with a collection of mutants (Kroll et al. 1996) 
(Fig. 1b). One could also transform a query OE plasmid into 
a subset of the haploid deletion strains that show low fitness, 
or into hypomorphic/conditional essential gene collections 
to find dosage suppression interactions.

Available systematic collections of plasmids for dosage 
screens have been constructed by inserting PCR-amplified 
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ORFs behind a strongly galactose-inducible GAL1 promoter 
(Zhu et al. 2001; Gelperin et al. 2005; Hu et al. 2007), or by 
cloning the entire PCR-amplified gene, including its natural 
promoter and terminator, into a 2 µ plasmid (Moriya et al. 
2006; Magtanong et al. 2011). 2 µ plasmids use an origin 
of replication that replicates independently of the host’s cell 
cycle. These plasmids replicate to high copy number, but 
because they do not have centromeres, they randomly seg-
regate to daughter cells and are present in the population of 
cells at a wide range of copy numbers. Both the inducible 
and 2 µ plasmids are maintained as episomal circular DNA.

When performing a systematic search for negative GIs 
such as synthetic dosage lethality, high copy number plas-
mids should be avoided. The reason for this is that a lack 
of growth of the transformants could be due to synthetic 
dosage lethality or simply a technical failure of the transfor-
mation. Using an inducible overexpression system avoids 

this problem because transformants can be selected under 
uninduced conditions before exposing them to overexpres-
sion conditions.

In addition, about 20% of genes can have negative effects 
on cellular growth on their own (Makanae et al. 2013). One 
way to study synthetic dosage interactions with these genes 
is to control the level of their expression. When using the 
inducible OE plasmid collections, there is little ability to 
tune the level of overexpression because the GAL1 promoter 
used to drive gene overexpression responds to the presence 
of galactose in the medium in a switch-like manner (Hawk-
ins and Smolke 2006). Some overexpression genomic DNA 
libraries and systematic collections use a 2 µ plasmid car-
rying the URA3 selection marker and a second marker con-
sisting of a partial loss-of-function leu2-89 (LEU2-d) allele 
(Moriya et al. 2006; Carlsson et al. 2018). Growth of the 
transformants on media lacking uracil alone allows cells to 

Fig. 1   Dosage GI screens using OE plasmids. a The dosage inter-
action screen starts with two 96-well plates. One plate contains an 
arrayed OE plasmid library as DNA, each well overexpressing a dif-
ferent single ORF. Every well in the second plate contains the same 
query mutant strain denoted by your favorite gene yfg1∆. b The dos-
age interaction screen starts with a query overexpression plasmid and 
a 96-well plate containing an array of haploid deletion strains, each 
well containing a different deletion strain. Transformations are per-
formed in liquid in 96-well plates. Transformants may undergo selec-
tion in liquid by transferring cells into fresh plates or by replica pin-
ning to agar selection plates (shown). In this example, selection of the 

plasmid is maintained by growth on media lacking uracil (SD-ura), 
and selection of the gene deletions is maintained by adding G418 as 
the deletion collections carry kanMX. Transformants are assayed for 
growth under non-induced (SD-ura) and induced (SGal-ura) condi-
tions. Transformants should be quadruplicated to 384 arrays for sta-
tistical measurements of growth. Plates are imaged and colony sizes 
are measured to determine if two genes interact. Red text indicates 
how many days are required for each step in the workflow. kanMX: 
G418-resistance marker, OE: overexpression, yfg1∆: deletion of your 
favorite gene, Gal: galactose; colored wells indicate that the contents 
of each well are different
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maintain a relatively low average copy number, but restrict-
ing or removing leucine in the medium selects for cells with 
higher copy numbers to allow sufficient production of leu-
cine from the weakened Leu2-89 enzyme. Therefore, the 
copy number and gene dosage can be tuned with the con-
centration of leucine in the medium.

In theory, a special class of plasmids called yeast integrat-
ing plasmids (YIps) could be used in systematic GI screens 
(Sikorski and Hieter 1989). YIps do not carry a yeast origin 
of replication and, consequently, the only way they are stably 
inherited is by chromosomal integration. Stable integration 
of YIps is accomplished in two steps using yeast’s very effi-
cient homology-directed repair (HDR) machinery for initial 
integration of the linearized YIp after transformation, and 
recombination and counterselection of the plasmid backbone 
(Storici et al. 2001; Nair and Zhao 2009) (Fig. 2a, b). YIps 
can be used to introduce gene expression cassettes or gene 
deletions (Rudolph et al. 1985; Alani et al. 1987; Lopes et al. 
1989; Parekh et al. 1996; Voth et al. 2001; Akada et al. 2002; 
Sakai et al. 2004; Sadowski et al. 2007). However, YIps 
are only used for systematic GI screens as query plasmids 
because there are no systematic YIp collections.

Synthetic genetic arrays (SGA)

Prior to the synthetic genetic array (SGA) method, it was not 
practical to systematically cross mutants to test GIs. Genetic 
crosses were performed in small batches and the haploid 
segregants could only be obtained in one of two ways—tet-
rad dissection or random spore analysis (Sherman 2002). 
In tetrad dissection, the sporulation mix, which consists 
of unsporulated diploid cells and sporulated haploid seg-
regants encased in asci, is mildly digested with a glycosidase 
to break open the asci. The mix is spread on a plate and the 
tetrad spores from each ascus (still clustered together) are 
individually dissected onto different grid positions on the 
plate and allowed to form clonal colonies. In random spore 
analysis, sporulation mixes are treated with diethyl ether to 
kill off all diploids while leaving a small set of resistant 
viable haploid spores. The treated mix is then spread onto 
plates to obtain colonies from each surviving spore. In both 
methods, colonies are assessed for mating type and the pres-
ence of each marked mutation to find the desired mutant 
combinations by replica plating to various types of media.

The power of the SGA approach is that it utilizes a 
haploid-specific reporter gene to select for haploids of one 
mating type. This haploid selection reporter uses a MATa-
specific promoter, specifically those driving a-factor or 
α-receptor expression (MFA1pr or STE2pr, respectively), 
to drive expression of the HIS3 auxotrophic marker in 
his3 mutant strains. MATa haploid cells are selected on 
media lacking histidine. The original reporter, MFA1pr-
HIS3, showed leaky expression and could recombine with 

the small his3∆1 deletion allele present in BY4741/2/3 
strains, allowing growth of diploids and MATα strains. 
An improved version of the haploid reporter uses the more 
stringent STE2pr driving expression of the Schizosaccha-
romyces pombe ortholog Sphis5 to prevent recombina-
tion with his3∆1 (Daniel et al. 2006). The reporter also 
knocks out the CAN1 arginine permease gene for better 
haploid selection using the toxic arginine analog canava-
nine. Heterozygous diploid CAN1/can1∆::STE2pr–Sphis5 
cells have an intact copy of the permease, which allows 
canavanine into the cells leading to death. The his + MATa 
haploids are can1∆ and resistant to canavanine. This addi-
tional selection prevents the growth of diploids that have 
undergone gene conversion to MATa/MATa, a source of 
false negatives (Tong and Boone 2007).

A single-query strain carries the LOF or GOF allele of 
interest plus the haploid reporter gene (Tong and Boone 
2006). Introduction of these alleles into the SGA haploid 
selection strain can be done by crossing an existing mutant 
strain with the SGA parent strain, or by directly gene 
editing the SGA parent strain. Gene editing of the query 
strain is routinely done by YIp-mediated gene deletion/
replacement or integration of an overexpression cassette 
(Fig. 2a, b) or by PCR-mediated gene deletion/replace-
ment or expression cassette integration (Fig. 2c, d), but 
query strains may also carry episomal plasmids for gene 
overexpression.

The query strain is then mated to arrayed colonies from 
a strain collection (Fig. 3). The query mutation must be 
linked to a selectable marker that is different from the 
marker used in the strain collection to allow selection 
of double mutants. Hundreds of different marked dele-
tion strains can be arrayed on each rectangular agar plate, 
pinned on top of the query strain to allow each pair of 
strains to mate, and replica pinned onto double selection 
media to select for diploids. The diploids are then sporu-
lated, and haploid cells carrying the desired mutant com-
binations are selected.

The explosion in yeast genetic analyses over the past dec-
ade enabled by the SGA method was due to the ability to 
make thousands of pairwise genetic crosses in parallel (as of 
this writing, a PubMed search for “synthetic genetic array” 
and “cerevisiae” produces 120 publications since 2001). At 
last count, GIs have been tested for over 75% of yeast genes, 
and a little under 1/3 of all possible ~ 18,000,000 pairwise 
combinations of annotated yeast genes have been tested 
(Costanzo et al. 2010).

SGAs were initially used to find synthetic lethal GIs 
(Tong et al. 2001, 2004; Davierwala et al. 2005; Ooi et al. 
2006). Subsequent SGA screens and its variations analyzed 
more subtle effects of GIs on cellular fitness, including 
positive (suppression) as well as negative (enhancement) 
synthetic interactions (Schuldiner et al. 2005; Collins et al. 
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Fig. 2   Gene editing approaches to make query mutant strains for GI 
screens YIp- or PCR-based methods for gene editing introduce donor 
DNA that serves as a template for homology-directed repair (HDR) 
when a spontaneous DNA double-strand break (DSB) occurs in the 
target locus denoted by your favorite gene yfg1∆. a, b YIp-based 
gene editing is performed in two steps. In the first step, the YIp lin-
earized at a short cloned region of homology is integrated into the 
homologous chromosome region (red). The integrated construct gen-
erates direct repeats, which can spontaneously recombine and “pop-
out” the construct. However, recombination is more likely to occur 
at the longer repeat region (green), resulting in stable integration of 
the construct. Recombinants are obtained by counterselection. a This 
Yip is designed to delete YFG1 and replace it with the kanR (kanMX) 

marker. b This YIp is designed to integrate an expression cassette 
(exp cass) in an intergenic chromosomal target. c, d PCR-based gene 
editing uses plasmid cassettes that contain a selectable marker. The 
target sequences are encoded in 40–60 nts of the PCR primer at 5′ 
overhangs (red and green). The primers also have ~ 20 nts of homol-
ogy to the plasmid backbone flanking the cassettes at their 3′ ends 
(arrows). The same gene-specific primers can be used to insert vari-
ous types of cassettes at the chromosomal target (red and green). c 
PCR-based gene deletion/replacement with a selectable marker. 
d PCR-based insertion of a marked expression cassette. kanMX: 
G418-resistance marker; YFG1: wild-type your favorite gene; X: 
homologous recombination event, chromI: chromosomal locus; exp 
cass: expression cassette, cs marker: counterselectable marker
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2010; Costanzo et al. 2010; Baryshnikova et al. 2010; Lin-
dén et al. 2011; Piening et al. 2013; Stundon and Zakian 
2015).

SGA has also been used to find synthetic dosage inter-
actions by crossing query strains carrying integrated over-
expression cassettes with the deletion collection (Youn 
et al. 2017), by crossing query strains transformed with OE 
plasmids (Measday et al. 2005; Douglas et al. 2012) to the 
deletion strain collection, or by crossing query strains to a 
collection of strains in which each carries a different OE 
plasmid (Sopko et al. 2006; Liu et al. 2009; Duffy et al. 
2016). Usually, the resulting LOF–GOF double mutants are 
analyzed as arrays, but they can also be pooled to perform 
batch analysis of growth by quantifying unique barcodes (by 
microarray or sequencing) in the arrayed strain collection 
(Douglas et al. 2012).

Although the SGA approach allows high-throughput 
genetic crosses, making thousands of strains carrying just 
two genetic modifications remains a daunting endeavor that 
requires specialized robotic equipment (about one-third of 
SGA publications have come from the Boone lab). Although 

a less expensive semi-automated robotic system has been 
developed (Rotor HDA by Singer Instruments) to allow 
SGA automation within the scope of a NIH R01 grant, this 
tactic also reduces the throughput, adds significant cost to 
the consumables, and increases the manual labor required. 
Because of the cost of consumables and extra labor, one 
should perform a cost–benefit analysis of the Rotor HDA 
system compared to more automated systems using fewer 
consumables (e.g., S&P Robotics Inc. systems) using rea-
sonable expectations of the scope and frequency of SGA 
screens to be performed within 5–10 years.

Another technical limitation of SGA is that it tends to 
produce false-negative interactions. One reason for this is 
that haploid deletion strains are under selective pressure 
to grow faster and often pick up suppressor mutations or 
become disomic with both the deletion allele and the wild-
type gene. For example, when testing purchased haploid 
deletion strains upon arrival, we found a suppressing muta-
tion in WHI5 (a transposon insertion) in the MATa cln3∆ 
strain (YSC6273-201934719)(unpublished data), and dis-
omy in the MATa kar9∆ mutant (YSC6273-201917550), 

Fig. 3   GI screens using SGA. a Schematic of the DNA molecules 
and manipulations resulting in the generation of a double mutant by 
SGA. b The SGA workflow starts with two agar plates of arrayed 
colonies. Each colony on the arrayed deletion collection plate is a 
different deletion strain marked with the same selection marker and 
in the same mating type. The query deletion strain, denoted by your 
favorite gene yfg1∆, is arrayed on a second plate and carries a differ-
ent selection marker and has the opposite mating type. Colonies from 
the two parent plates are replica pinned onto the same plate to mix 
two mutants and allow them to mate and form a heterozygous dip-
loid zygote. The diploids are replica pinned onto sporulation media. 

The resulting sporulation mix is plated on a series of selection media 
to obtain haploid strains carrying both parental deletions. Double 
mutants should be quadruplicated to 384 arrays for statistical meas-
urements of growth. Plates are imaged and colony sizes are meas-
ured to determine if two genes interact. Red text indicates how many 
days are required for each step in the workflow. yfg1∆::natMX: query 
mutation of your favorite gene deleted and replaced with nourseo-
thricin-resistance marker, genex∆::natMX: haploid strain collection 
gene deletion replaced with G418-resistance marker, STE2pr-HISMX 
MATa: haploid selection marker that confers growth on media lacking 
histidine
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which normally has a chromosome segregation defect and 
is likely aneuploid (unpublished data).

Another technical problem with SGA is cross-contamina-
tion from neighboring wells in both the deletion collection 
and during the SGA process. For example, we found that 
the MATa msn5∆ strain (YSC6273-201934942) consisted 
mostly or entirely of a strain deleted in the adjacent ORF/
plate well, MRX8 (unpublished data). The integrity of the 
haploid deletion strains is also an issue when transforming 
a query plasmid into a haploid collection for systematic dos-
age screens.

Finally, it may be impossible to obtain diploids from 
strains with strong mating defects or combinations of strains 
that have bilateral mating defects. However, if one images 
all diploid selection plates, the missing crosses can be 
excluded from subsequent SGA analysis of haploid mutant 
combinations.

Diploid‑based synthetic lethality analysis 
on microarrays (dSLAM)

Our lab and others have avoided the problem of modi-
fier mutations in the haploid strain collections using fresh 

haploid deletion strains derived from the heterozygous 
deletion strain collection. There is little to no selection for 
modifier mutations in the heterozygous diploids. However, 
this approach requires sporulation and dissection or random 
spore analysis of haploid spores to derive strain arrays for 
SGA and is not practical for genome-wide SGA screens. 
In a streamlined variation of this approach, diploid-based 
synthetic lethality analysis on microarrays (dSLAM) intro-
duces the SGA haploid reporter construct into pooled strains 
of the heterozygous diploid deletion collection (Pan et al. 
2004) (Fig. 4). The pooled diploid strains are then trans-
formed with a YIp to delete or overexpress a gene. The pool 
of double mutants is selected and then sporulated. After 
sporulation haploid double mutant progeny are selected 
and the pool is analyzed by microarray (or sequencing) 
for the relative abundances of unique barcodes associated 
with each deletion in the strain collection compared to the 
control strains, in which YFG1 is replaced by wild-type 
YFG1::URA3. Because strain identification is performed 
by microarray or sequencing of each gene deletion’s unique 
barcode, strain identity cannot be misattributed as it can with 
potentially cross-contaminated plate arrays. In addition, the 
various heterozygous diploid strains largely grow at the 

Fig. 4   GI screens using dSLAM. a Schematic of the DNA molecules 
and manipulations resulting in the generation of a double mutant by 
dSLAM. b The dSLAM workflow starts with a pool of various (usu-
ally the entire collection) competent diploid heterozygous deletion 
strains that contain the SGA MATa selection marker. The pooled cells 
are transformed with a query YIp that will introduce a gene edit such 
as a deletion (denoted by your favorite gene yfg1∆) or an overexpres-
sion cassette. The edited cells undergo selection for the edit (nat) and 
the gene deletions (kan), and are sporulated. After sporulation, MATa 
haploid cells are selected on media lacking histidine, and then double 

mutant haploids are selected. The barcode abundances of the various 
deletion strain are measured by microarray or sequencing. Depletion 
of barcodes indicates a negative GI with the query mutation. gene 
1/2∆::kanMX: heterozygous strain collection gene deletions replaced 
with G418-resistance marker, YFG1: wild-type your favorite gene, 
yfg1∆::natMX: query mutation of your favorite gene deleted and 
replaced with nourseothricin-resistance marker, MFA1pr-HISMX 
MATa: haploid selection marker that confers growth on media lacking 
histidine and marked with G418-resistance marker striped regions—
barcodes unique to each gene deletion
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same rate, avoiding the bias in gene representation seen in 
pooled haploid deletion strains.

To our knowledge, dSLAM has been used only by the 
group that developed the method. The lack of widespread 
adoption of this approach is likely due to the technical com-
plexity of barcode quantification by microarray hybridi-
zation or sequencing. Both methods require very careful 
bioinformatics analysis of the raw data that are beyond the 
capabilities of labs that do not routinely use such genomic 
methods and do not have a bioinformatician on staff. Never-
theless, dSLAM has been used to screen for synthetic lethal, 
dosage synthetic lethal, dosage suppression, and synthetic 
suppression interactions (Pan et al. 2004; Kim et al. 2009).

Although dSLAM seeks to avoid many of the limitations 
of SGA, it is very likely to lose completeness of genome 
coverage due to lack of transformation of random deletion 
strains in the pool of strains. More than 5% of genes will be 
excluded from any given analysis because the deletion strain 
did not integrate the query mutation or the marked wild-type 
query allele for the control (Pan et al. 2004). Moreover, some 
of the diploid deletion barcodes have been mutated during 

strain construction and do not hybridize well to microar-
rays, which are designed for the haploid strain barcodes (Pan 
et al. 2004). Using sequencing approaches to quantify the 
barcodes (amplifying from flanking universal primer tags) 
should solve this problem.

The Green Monster

An approach to multi-mutant strain construction, called the 
Green Monster, is essentially SGA performed with a pooled 
collection of strains (Fig. 5). Different ORFs are replaced 
with a green fluorescent protein (GFP) expression cas-
sette in strains carrying the SGA haploid selection markers 
(Suzuki et al. 2011). Using GFP, the Green Monster method 
bypasses the need to mark each gene deletion with a dif-
ferent selectable marker. The authors found a near-linear 
correlation between fluorescence intensity and the number 
of deletions. Combinations of deletions are made by mat-
ing and sporulating pools of deletion/GFP strains and then 
passing them through a fluorescence activated cell sorter 
to find progressively brighter cells. One may also perform 

Fig. 5   GI screens using green monster. a Schematic of the DNA 
molecules and manipulations resulting in the generation of a double 
mutant by Green Monster. b The Green Monster workflow starts with 
various strains from MATa and MATα haploid deletion collections in 
which the kanMX marker is replaced with a Tet-induced GFP expres-
sion cassette (denoted by your favorite gene yfg1∆ and yfg2∆). The 
MATa strains also carry a GMToolkit-a (kanMX-STE2pr-HISMX) 
and the MATα strains carry a GMToolkit-α (natMX-STE3pr-LEU2), 
both of which are derived from the SGA haploid selection reporter. 
These strains are randomly mated in bulk, and diploids are grown 
under double selection conditions. The resulting heterozygous dip-
loids are sporulated and haploids of both mating types are selected. 

FACS analysis sorts cells that have twice the GFP intensity of the sin-
gle mutants and, therefore, carry two deletions. The entire culture can 
be re-mated without FACS analysis to make mutants that carry 3, or 
more gene deletions. Red text indicates how many days are required 
for each step in the workflow. yfg1/2∆::Tet-GFP: query deletions of 
your favorite genes deleted and replaced with Tet-inducible GFP, 
kanMX-STE2pr-HISMX MATa: haploid selection marker that confers 
growth on media lacking histidine and marked with G418-resistance 
marker, natMX-STE3pr-LEU2 MATα: haploid selection marker that 
confers growth on media lacking leucine and marked with nourseo-
thricin-resistance marker
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multiple rounds of mating, sporulation, and haploid selec-
tion and only sort cells after numerous rounds to save time. 
Performing all steps in liquid cultures saves time and cost 
of media, and, because strains bearing multiple deletions 
from previous rounds can mate, fewer rounds of crosses are 
needed to obtain cells carrying all of the gene deletions in 
the pool compared to SGA.

Suzuki et al. (2011) used the Green Monster method 
to make a mutant in which 16 different ABC transporter 
genes associated with multi-drug resistance are deleted. The 
mutant’s drug sensitivity spectrum was analyzed and com-
pared to the wild-type parent and a mutant carrying dele-
tions of eight different ABC transporters. To the best of our 
knowledge, this study is the only use of the Green Monster 
for genetic analysis.

Although this method is much faster than SGA, it still 
requires multiple rounds of crosses and also careful quantifi-
cation of GFP by fluorescence-activated cell sorting (FACS). 
Furthermore, finding specific intermediate strains requires 
considerable screening of sorted cells and it is difficult to 
determine if the inability to find certain combinations of 
mutations is due to negative GIs or technical problems, 
especially when using large numbers of deletion strains. The 
authors obtained intermediate strains by crossing pools of 
subsets of all the deletion strains. The requirement for sin-
gle-cell sorting and screening to find intermediate mutants 
and for precise fluorescence measurements by FACS has 
probably limited adoption of this method, although few 
researchers have attempted to make large numbers of strains 
carrying 4 or more mutant alleles.

Genetic screens in the age of CRISPR/Cas

The efficiency of gene editing by HDR with donor DNA 
is vastly improved when a DSB is introduced at the tar-
get locus using a sequence-specific endonuclease (Guha 
and Edgell 2017). Because of the ease of programming its 
sequence specificity, the most versatile endonuclease-based 
genome editing system is CRISPR/Cas (Fig. 6a). There 
are several excellent reviews on the discovery and mecha-
nism of CRISPR/Cas (Lander 2016; Stovicek et al. 2017; 
Raschmanová et al. 2018).

Yeast CRISPR/Cas systems

The CRISPR/Cas system was first adapted for gene editing 
in mammalian cells (Jinek et al. 2013; Cong et al. 2013; Mali 
et al. 2013), soon followed by applications in many other 
organisms, including budding yeast (Dicarlo et al. 2013). In 
the case of mammalian cells, DSBs generated by endonu-
cleases are usually repaired by non-homologous end joining 
(NHEJ) even in the presence of donor DNA for HDR (Guha 

and Edgell 2017). Mammalian cell researchers have used a 
variety of methods to increase the frequency of HDR (Koo-
istra et al. 2004; Pöggeler and Kück 2006; Choquer et al. 
2008; Fox et al. 2009; Certo et al. 2012; Delacôte et al. 2013; 
Verbeke et al. 2013; Ran et al. 2013; He et al. 2014; Lin 
et al. 2014; Schwartz et al. 2017). However, in S. cerevisiae, 
efforts to increase HDR over NHEJ are not necessary. In 
fact, NHEJ in yeast is so rare that only HDR is used for edit-
ing (although CRISPR/Cas is useful for mechanistic studies 
of NHEJ) (Gallagher and Haber 2018; Lemos et al. 2018).

There are over two dozen CRISPR/Cas toolkits for S. 
cerevisiae, most of which have been described in detail 
by Stovicek et al. (2017) and Raschmanová et al. (2018). 
Most CRISPR/Cas editing tools combine the naturally sepa-
rate CRISPR RNA (crRNA) and trans-activating CRISPR 
RNA (tracrRNA) in a hybrid small guide RNA (sgRNA). 
The generic term gRNA refers to either tracrRNA-crRNA, 
crRNA, or sgRNA. The main differences between the vari-
ous yeast CRISPR/Cas systems are their plasmid structures.

There are a few systems that integrate the Cas9 expres-
sion construct into the yeast genome (Fig. 6b) (Horwitz et al. 
2015; Mans et al. 2015; Vanegas et al. 2017), but most sys-
tems express Cas9 from a plasmid (Fig. 6c–f). Integration of 
Cas9 has several advantages. It circumvents the requirement 
for transformation with a Cas9 expression plasmid (leaving 
more available markers for multiplexing) and subsequent 
counterselection of the plasmid to remove Cas9. The inte-
grated Cas9 cassettes are also inducible. However, to remove 
the potential influence of the integrated Cas9 on strain phe-
notype (due to leaky basal expression), the Cas9 cassette 
should be removed by targeting it with a further gRNA 
and replacing the endogenous locus (Finnigan and Thorner 
2016). In some yeast CRISPR/Cas systems, the Cas9 and 
gRNA expression cassettes are on the same plasmid, which 
improves the efficiency of transformation (Fig. 6c, d). How-
ever, single plasmid systems are incompatible with some of 
the gRNA cloning approaches. For example, because Cas9 is 
large and generating a Cas9-gRNA plasmid by PCR amplifi-
cation can be challenging (Ryan and Cate 2014). In addition, 
editing efficiencies are much higher if Cas9 is expressed 
before introduction of the gRNA (Walter et al. 2016), mak-
ing CRISPR/Cas editing inefficient when using a single 
Cas-gRNA plasmid. Finally, making many different mutant 
combinations of genes by multiplexing could be more easily 
accomplished by having separate expression cassettes for 
each gene (Fig. 6e, f).

There is significant variability in efficiency between dif-
ferent loci and gRNAs, probably due to differences in gRNA 
secondary structure that affect gRNA binding to its target 
and/or nucleosome occupancy at or near the target sequence 
(Smith et al. 2016; Horlbeck et al. 2016; Thyme et al. 2016). 
Because of this unpredictable variability, several gRNAs 
must be tested for each target gene (Ryan et al. 2014; Shalem 
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et al. 2014; Wang et al. 2014; Koike-Yusa et al. 2014; Zhou 
et al. 2014; Konermann et al. 2015; Chen et al. 2017; Smith 
et al. 2017; Sadhu et al. 2018). It is generally presumed that 
as more gRNAs are tested in yeast, empirical or mechanis-
tic design rules will improve. An additional and important 
consideration in designing gRNAs is the potential for off-
target DNA binding due to sequence similarities. Although 

off-target mutations when using CRISPR to edit genes are 
of debatable concern in higher eukaryotes (Fu et al. 2013; 
Cho et al. 2014; Wang et al. 2015, 2018a, b; Iyer et al. 2015, 
2018; Muhammad et al. 2016; Zhang et al. 2018), off-target 
mutations are considered to be unlikely in yeast due to their 
small genomes (making it easier to find stringent target 
sequences) and low error-prone NHEJ activity (Ryan et al. 

Fig. 6   Using CRISPR/Cas for genome editing. a Schematic show-
ing how Cas9-gRNA generate DSBs at programmed target sites. b–f 
Different expression systems for CRISPR/Cas9 editing in yeast. b A 
yeast strain expressing inducible Cas9 from an integrated cassette 
requires a plasmid expressing sgRNA. c A CRISPR/Cas expression 
system requiring only one plasmid expressing both Cas9 and sgRNA. 
d A multiplex CRISPR/Cas system expressing Cas9, a tracrRNA, 
and a CRISPR/Cas array containing different crRNAs. e A multi-
plex CRISPR/Cas system expressing Cas9 and two or more sgRNAs 
on separate plasmids. f A multiplex CRISPR/Cas system expressing 
Cas9 from one plasmid, and using in vivo gap repair of a selectable 
plasmid by linear sgRNA cassettes to generate the sgRNA expres-
sion plasmid. g Schematic showing how nCas9 (D10A mutation in 
the RuvC1 endonuclease active site) generates a nick on the opposite 
strand of the target site. h Schematic showing how nCas9 (H840A 
mutation in the HNH endonuclease active site) generates a nick on 
the same strand of the target site. i Schematic showing how catalyti-

cally inactive dCas9 can be fused to an activation domain (AD) to 
recruit RNA polymerase (RNAP) and promote transcription of the 
target gene. j Schematic showing how catalytically inactive dCas9 
can be fused to a repressor domain (RD) to inhibit RNA polymerase 
(RNAP) and prevent transcription of the target gene. k Schematic 
showing how catalytically inactive dCas9 can be fused to cytidine 
deaminase (CD) to convert a cytosine to a uracil. A round of repair 
and replication either converts the U back to C, or converts the U to a 
T to generate a TGA STOP codon. PAM: protospacer adjacent motif, 
gRNA: guide RNA including the Cas-interacting stem-loop structure, 
tracrRNA: gRNA portion that hybridizes with crRNA and contains 
stem-loop, crRNA: gRNA portion that hybridizes with crRNA and 
contains DNA targeting sequence, sgRNA: a gRNA that combines 
the tracrRNA and crRNA in a single RNA molecule, AD: activation 
domain, RD: repressor domain, CD: cytidine deaminase, RNAP: RNA 
polymerase II, TSS: transcription start site
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2014; Jakočiunas et al. 2015a). Consistently, deep sequenc-
ing of CRISPR edited strains showed no off-target mutations 
(Jakočiunas et al. 2015a).

Nevertheless, off-target editing is likely to depend largely 
on the gRNA sequence and Cas9 activity. Reducing the 
likelihood of off-target mutations can be accomplished with 
numerous online gRNA design tools (reviewed in Stovicek 
et al. 2017). One can also ensure target specificity using 
Cas9n, a nickase in which one of the two endonuclease 
active sites is mutated (Fig. 6g, h), with two closely spaced 
gRNAs. Off-target DNA nicking by a single Cas9n will be 
quickly repaired, but only the combination of two close nicks 
on opposite strands will produce a (staggered) DSB.

CRISPR/Cas has seen only limited use for systematic 
functional genomics or genetic screens in yeast (Smith et al. 
2016, 2017; Chen et al. 2017; Roy et al. 2018; Sadhu et al. 
2018; Guo et al. 2018), largely because there were already 
many different genomic mutant collections when CRISPR/
Cas gene-editing was developed. Nevertheless, CRISPR/Cas 
has been used to probe gene function in ways that current 
strain collections cannot, including examining ORFs that are 
not mutated in any strain collection. In addition, CRISPR/
Cas editing can be markerless and scarless, avoiding possi-
ble phenotypic effects of selectable markers and exogenous 
DNA (Acton et al. 2017; Elison and Acar 2018). When mak-
ing markerless/scarless edits, if the desired mutation(s) does 
not occur in an available gRNA target, the donor DNA must 
include multiple silent mutations in the PAM and/or target 
sequence to prevent cyclic re-cutting (Horwitz et al. 2015). 
Of course, in non-coding regions, neutral mutations cannot 
be predicted. One can avoid making silent mutations using 
a two-step process in which one first replaces the PAM-
target sequence with heterologous “stuffer” donor sequence 
(Biot-Pelletier and Martin 2016; Elison and Acar 2018). The 
stuffer can then be replaced with donor DNA encoding only 
the desired point mutation by exchanging the original gRNA 
with a gRNA targeting the stuffer. The second donor DNA 
can reconstitute the original PAM-target sequence without 
consequence.

Yeast CRISPR/Cas libraries

Several yeast CRISPR/Cas libraries have been designed for 
generating LOF mutants. In the library produced by Sadhu 
et al. (2018), gRNAs are paired with donor DNA designed 
to introduce STOP codons. This library was designed to 
target all annotated essential genes in yeast consisting of 
~ 10,000 gRNA-donor plasmids targeting different portions 
of ~ 1000 essential genes (Sadhu et al. 2018). The gRNAs 
were designed to replace the cas-binding protospacer adja-
cent motif (PAM) sites (NGG) in the target DNA with stop 
codons (TGA or TAG). This functional genomic screen 
showed that many essential genes could tolerate C-terminal 

truncations. Guo et al. (2018) similarly used a paired gRNA-
donor CRISPR/Cas library to make small START codon 
deletions in a set of ~ 300 verified ORFs and an equal num-
ber of unverified small ORFs (smORFs) to determine which 
of these ORFs (which are not deleted in the KO collection) 
are functional (Guo et al. 2018). Roy et al. (2018) used a 
gRNA-donor CRISPR/Cas library to individually intro-
duce ~ 35,000 natural sequence variants (SNPs and indels) 
from a wine yeast into the S288C lab strain (Roy et al. 2018). 
The sequence variants were selected based on whether they 
altered a PAM or nearby sequences that would be included 
in the gRNA sequence.

Rather than developing gRNA libraries, a number of 
groups have developed donor DNA libraries for massive 
editing of a handful of genomic loci with just a few gRNAs. 
For instance, Kuivanen et al. developed a synthetic pro-
moter library for multiplexed promoter replacement (Kuiv-
anen et al. 2018). Si et al. (2017) developed a cDNA library 
that expresses sense or anti-sense RNA depending on the 
orientation of the ORF in a standard expression cassette. 
This library included > 90% of annotated genes. They then 
used CRISPR/Cas9 to integrate the pooled library into mul-
tiple ∂ sites in a yeast strain that expresses RNAi machinery 
(Dicer, Ago2 and TRBP; S. cerevisiae does not naturally 
perform RNAi) (Si et al. 2017). Sense strand cassettes gener-
ated GOF alleles while anti-sense cassettes generated LOF 
alleles. They used this approach to perform multiplex inte-
grations of random GOF and LOF alleles and screened the 
pooled transformants for improvements in several metabolic 
traits.

Instead of directly editing genes to analyze LOF muta-
tions, CRISPR/Cas can also be used to modulate gene 
expression to find GOF or LOF phenotypes. One approach 
is to use dCas9, a catalytically inactive cas9 mutant, fused 
to a transcriptional activator or repressor domain to pro-
duce GOF or LOF conditions—CRISPRa and CRISPRi, 
respectively (Fig. 6i, j) (Larson et al. 2013; Perez-Pinera 
et al. 2013; Gilbert et al. 2013, 2014; Maeder et al. 2013; 
Konermann et al. 2015). Smith et al. (2016) developed a 
pooled plasmid library of 989 gRNAs against the 5′UTRs 
of 20 genes to perform CRISPRi for a chemical genetics 
screen (Smith et al. 2016). This group subsequently devel-
oped an arrayed strain collection in which a CRISPRi gRNA 
library and inducible dCas9 were chromosomally integrated 
to knock-down 1357 essential yeast genes in 3,832 strains 
(Smith et al. 2017). In contrast, Chen et al. (2017) searched 
for GOF interactions by developing a yeast CRISPRa pooled 
plasmid library consisting of ~ 107 random gRNAs, which 
they used in conjunction with a dCas9-VP64 synthetic 
transcriptional activator (Chen et al. 2017). They used this 
gRNA library to perform a screen for sgRNAs that sup-
pressed lethality of human α-synuclein overexpression.
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So far, the studies of Si et al. (2017) and Chen et al. 
(2017) are the only uses of CRISPR/Cas to perform sys-
tematic GI screens, and both employed CRISPRi/a without 
mutating genes. There are several limitations to adoption 
of CRISPR/Cas editing to perform systematic GI screens. 
Most important is the lack of genome-wide gRNA plas-
mid libraries suitable for GI screens. LOF gRNA libraries 
that could be used to transform query mutant strains for GI 
screens include the premature termination codon library of 
Sadhu et al. (2018) and the small deletion library of Guo 
et al. (2018). However, both libraries focus on ORFs not 
represented in the haploid deletion strain collections namely 
essential genes and smORFs, respectively. The only genome-
wide (and random) gRNA library currently available is the 
GOF (CRISPRa) library of Chen et al. (2017). Second, all 
current systematic gRNA plasmid libraries are designed to 
generate genetic variation in pooled strains, requiring one to 
select for, or screen variants within a heterogenous popula-
tion of transformants (Smith et al. 2016; Chen et al. 2017; 
Sadhu et al. 2018; Guo et al. 2018). Although, identifying 
genetic changes associated with phenotypes can be deter-
mined by sequencing the gRNA expression cassettes or asso-
ciated barcodes, it is not possible to consistently find and 
measure the fitness of strains exhibiting subtle GIs in these 
pools. Finally, with the exception of the Chen et al. (2017) 
CRISPRa gRNA library, current gRNA plasmid libraries 
pair the gRNA with donor DNA on the same plasmid, lock-
ing in the type of gene edit.

Crucially, in all of these studies, transformations were 
performed in a manner to ensure that most cells receive only 
one plasmid, preventing multiplexing. Even if transforma-
tions were performed with high titers of plasmid, there is 
no way to select for rare multi-mutant transformants in such 
pools as the donor DNA is unmarked. In the Chen et al. 
(2017) study, multiple genes were down-regulated using a 
single gRNA—in essence mirroring multi-gene LOF GIs. 
Whether the gRNA was able to directly target each of these 
genes, or whether it knocked down a common transcription 
factor for these genes was not determined. They also found 
suppressed strains carrying multiple gRNAs, but did not 
study these further (Chen et al. 2017).

None of the CRISPR/Cas libraries discussed above have 
been deposited in commercial or public repositories, but 
some should be available by request.

Hypothetical workflow comparison of SGA 
and CRISPR/Cas

Regardless of the availability of CRISPR/Cas plasmid 
libraries, if one is interested in a few dozen genes, using 
CRISPR/Cas to make thousands of possible combinations 
of edited versions of these genes is very feasible from a cost 

perspective, and could be accomplished much faster than 
could be done by SGA (Fig. 7).

For example, if one would like to test all combinations of 
two to six deletions of a set of 10 genes (837 possible com-
binations) to find synthetic suppressor/enhancer interactions, 
one would have to perform 5 consecutive SGA crosses to 
first make double mutants, then triple mutants, etc. These 
iterations with single mutants are necessary because the 
products of SGA crosses cannot be combined, for example, 
to make quadruple mutants from two sets of double mutants 
made by SGA of single mutants (Tong and Boone 2006).

CRISPR/Cas does not require crossing strains and/or 
sporulation of diploids and, therefore, is much faster than 
SGA, dSLAM, and Green Monster approaches. To make the 
same mutants by CRISPR/Cas, one would start by design-
ing, cloning, and testing 2–3 gRNAs and 10 donor DNAs, 
one for each of the 10 genes to determine which gRNAs are 
best able to perform the desired edits. Multiple gRNAs are 
tested for each target gene because of the aforementioned 
problems in predicting gRNA efficiency. Using CRISPR/
Cas with validated gRNAs, one could potentially make all 
837 mutant strains by performing transformations in 96-well 
plates with the appropriate combination of gRNA plasmids 
and donor DNA in each well (Fig. 7b). Although markerless 
edits would be possible, the screening process would not 
easily translate to a high-throughput workflow, especially 
when dealing with editing efficiencies of < 25% for 4 + mul-
tiplexed edits. Therefore, this process would benefit from 
the use of a different selectable marker for each gene in the 
desired combination.

Using CRISPR, a separate strain does not have to be 
made for each deletion and marker pair to facilitate crosses. 
Instead, each deletion is encoded in a donor DNA-gRNA 
pair that can be combined with other donor DNAs and 
gRNAs to multiplex gene deletions. These donor DNAs 
are easily generated using a single primer pair with homol-
ogy arms specific to each target gene to PCR amplify a set 
of marker cassettes using common primer binding sites 
(Fig. 2a). Nevertheless, planning which gRNAs and donor 
DNAs go into each well and minimizing the number of 
CRISPR/Cas donor DNAs required to make the desired 
genetic combinations could benefit from automated work-
flow design (Pratapa et al. 2018).

An alternative application of CRISPR/Cas that would 
bypass the requirement for plasmid and donor DNA trans-
formation employs a gene drive CRISPR/Cas cassette. In 
this approach, the cassette replaces an ORF in a haploid 
strain and consists of inducible Cas9 and sgRNA expression 
constructs (DiCarlo et al. 2015; Roggenkamp et al. 2017; 
Vaschetto 2018). The sgRNA targets the wild-type sequence 
of the gene deleted by the gene drive cassette. Mating the 
query strain to an array of collection strains such as the OE 
collection, produces a heterozygous diploid. Subsequent 
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Cas9 induction will cut and convert the wild-type gene into 
the gene drive cassette, thus generating a homozygous dip-
loid that can be assessed for synthetic dosage interactions. 
The cassette could also include a recessive allele of the tar-
get gene rather than a deletion (Roggenkamp et al. 2017). 
This method bypasses the need to sporulate and select for 
haploids, thus shaving a few weeks off the standard SGA 
approach, and has been used in Candida albicans to generate 
arrays of a few hundred double mutants targeting genes with 
related functions (Shapiro et al. 2018).

Discussion and future work

Despite the small size and simplicity of the S. cerevisiae 
genome, systematically interrogating its pairwise GI spec-
trum has occupied yeast geneticists for nearly two decades, 
and is ongoing (Costanzo et al. 2010). It is clear from this 
massive effort that there exists a significant level of robust-
ness in yeast cells, partly due to network architecture result-
ing in compensatory feedback mechanisms and alternative 
pathways, and partly due to functional redundancy between 
genes (Gu et al. 2003; Guan et al. 2007; Bajić et al. 2014; 
Bauer et al. 2015; Bader et al. 2015; Cohen et al. 2016; 

Patra et al. 2017; Ishikawa et al. 2017; Veitia 2017). To bet-
ter understand genetic robustness and genotype–phenotype 
relationships, it is imperative that we map multi-gene inter-
actions. Efforts to do so are in their infancy (Haber et al. 
2013; Kuzmin et al. 2018), largely because performing such 
systematic screens is technically demanding with current 
methods. So far, the multiplexing capabilities of CRISPR/
Cas have been exploited mostly by metabolic engineers and 
synthetic biologists constructing complex genetic circuits 
and biosynthetic pathways in a handful of strains (Shao et al. 
2009; Mikkelsen et al. 2012; Hasunuma et al. 2014; Ryan 
et al. 2014; Stovicek et al. 2015; Tsai et al. 2015; Jakočiunas 
et al. 2015b; Ronda et al. 2015; Walter et al. 2016; Jessop-
Fabre et al. 2016; Shi et al. 2016; Garst et al. 2017; Kuivanen 
et al. 2018). However, geneticists could also take advantage 
of the multiplexing capabilities of CRISPR/Cas to perform 
systematic GI screens to generate large numbers of strains 
carrying three or more alleles.

We have described a variety of methods that have been 
utilized to perform systematic GI screens. In Table 1, 
we compare and contrast the main features of these 
approaches. Only three methods—SGA, the Green Mon-
ster, and CRISPR/Cas editing—are capable of system-
atically generating strains carrying three or more mutant 

Fig. 7   GI screens using multiplexed CRISPR/Cas gene editing. a 
Schematic of the DNA molecules and manipulations resulting in the 
generation of a double mutant using multiplexed CRISPR/Cas to 
generated two gene deletions replaced with two different selectable 
markers. b High-throughput workflow to generate multiplex edits. All 
CRISPR/Cas manipulations are performed in 96-well plates. In this 
example, all wells carry competent cells of the same strain (wild-type 
or mutant), but two different sgRNA-Donor plasmids are combined in 

each well. All wells also receive the same Cas9 expression plasmid. 
After selection of triply transformed cells, Cas9 expression is induced 
for multiple generations. Counterselection of the Cas9 plasmid shuts 
off gene editing, and doubly edited cells are selected (each edit has 
a different selectable marker). The red text indicates how many days 
are required for each step in the workflow. kanMX: G418-resistance 
marker, natMX: nourseothricin-resistance marker; colored wells indi-
cate that the contents of each well are different
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alleles. However, it is unclear if the generation of strains 
carrying three or more mutations is even practical by itera-
tive SGA. Because of the high frequency of false nega-
tives, the SGA approach requires validation of the progeny 
strains before using them in further crosses. Studies that 
have generated triple mutants by SGA have all started with 
double mutant query strains (Haber et al. 2013; Kuzmin 
et al. 2018).

Moreover, the reagents do not currently exist for the 
Green Monster to perform systematic screens, which would 
require the replacement of the kanMX cassette with the GFP 
cassette in at least a large proportion of the ~ 5000 haploid 
KO strains. Finally, current CRISPR/Cas gRNA libraries do 
not include most of the non-essential ORFs and these librar-
ies are not well-suited to multiplexing because their donor 
DNAs are unmarked. To use unmarked alleles in a high-
throughput genetic screen would require multiplex editing 
efficiencies of nearly 100% (in practice < 75% for 3 edits), 
particularly when one is searching for negative GIs, as cells 
that do not incorporate the desired edits would have growth 
advantages.

One might wonder what benefit genome-scale yeast 
CRISPR/Cas libraries could have over current yeast strain 
collections? Even when analyzing singly edited strains, the 
use of CRISPR/Cas libraries have produced more specific 
genetic modifications than current collections, resulting 
in new insights into gene structure and function (Sadhu 
et al. 2018; Guo et al. 2018). In addition, even simple LOF 
genome-scale CRISPR/Cas libraries have the potential to 
quickly assess highly combinatorial GI networks by editing 
existing systematic mutant strain collections. However, to 

expand their combinatorial potential, future CRISPR/Cas 
library designs will have to enhance multiplexing.

Although the gRNAs are the smallest component of 
CRISPR/Cas systems, the cost of automation and DNA rea-
gents to make genome-scale gRNA plasmid collections is 
likely prohibitive for most labs. As we mentioned above, 
gRNA libraries must include several gRNAs for each tar-
get, making the size of genome-wide gRNA libraries very 
large (tens or hundreds of thousands), even for a small 
genome like yeast. Smith et al. (2017) addressed this issue 
by developing a more cost-effective method of generating 
genome-wide sequence-verified gRNA libraries (several 
thousand dollars in reagents and a few months of labor), 
and applied this method to the construction of a collection 
of CRISPRi strains allowing inducible knockdowns of most 
essential genes (Smith et al. 2017). In addition to the cost 
of gRNA oligonucleotide libraries, cloning of the gRNAs 
into expression vectors is a labor-intensive process, even 
with streamlined methods of cloning [reviewed in (Stovicek 
et al. 2017)].

Making genome-wide CRISPR/Cas libraries in yeast 
could also be simplified by using Cas9 derivatives that do 
not use HDR and donor DNA. We already discussed how 
CRISPRa/i can produce knockdown or dosage effects by 
directly influencing expression of the target genes without 
needing to also introduce a donor DNA (Gilbert et al. 2013; 
Smith et al. 2016, 2017; Chen et al. 2017). However, posi-
tioning of the dCas9 fusion protein is crucial to transcrip-
tional activity. Therefore, the gRNA libraries for CRISPRi/a 
tend to be even larger than the knock-out libraries since each 
gene is targeted by more gRNAs (e.g., 10 per target gene). 

Table 1   Comparison of GI screen methods

a Starting with single-gene alleles. Not including genotyping of strains. Approximate time given in days
b DS dosage suppression, DE dosage enhancement including synthetic dosage lethality, SS synthetic suppression, SE synthetic enhancement 
including synthetic lethality
c Sopko et al. (2006), Douglas et al. (2012), Youn et al. (2017), also deletion strain collections can be used in conjunction with a query plasmid
d Giaever et al. (2002)
e Giaever et al. (2002) the haploid KO collection is used as the base strain, but the kanMX cassettes must be converted to the Green Monster GFP 
cassette
f Smith et al. (2017)
g Zhu et al. (2001), Gelperin et al. (2005), Moriya et al. (2006), Hu et al. (2007), Magtanong et al. (2011)
h Smith et al. (2016), Chen et al. (2017), Guo et al. (2018), Sadhu et al. (2018)
i For dosage screens, the query strain can carry an episomal OE plasmid or an integrated OE cassette

Method Available sys-
tematic strain
collections

Available sys-
tematic plasmid
libraries

Time to com-
bine 2 allelesa

Time to com-
bine 3 allelesa

Types of GIsb Selection method Plasmids required

OE plasmid Yesc Yesg 3 days N/A DS, DE 2 markers Episomal
SGA Yesd Yesg 17 days 34 days DS, DE, SS, SE 2 + markers Noi

dSLAM Yesd No 11 days N/A DS, DE, SS, SE 2 markers YIp
Green Monster Noe N/A 11 days 22 days SS, SE GFP intensity No
CRISPR/Cas Yesf Yesh 7 days 7 days DS, DE, SS, SE 2 + markers Episomal
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Another CRISPR/Cas method that does not require donor 
DNA uses a catalytically inactive dCas9 fused to cytidine 
deaminase to change targeted CAG, CGA, CAA or TGG to 
the STOP codons TAG, TGA or TAA, respectively, after 
a round of repair and replication (Fig. 6k) (Nishida et al. 
2016; Komor et al. 2016; Kuscu et al. 2017; Billon et al. 
2017). The mismatch repair machinery of the cell has a 
50–50 chance of repairing the U instead of the G, but by 
making a nick in the G-containing strand using an Cas9n-
cytidine deaminase fusion, one can trick the cell into sav-
ing the modified base. Unfortunately, the deaminase tends 
to also modify off-target cytidines, so future improvements 
to this method will couple the deaminase activity to PAM-
target binding (Komor et al. 2016).

Because efficient gene editing in S. cerevisiae has been 
possible for more than 20 years, CRISPR/Cas has not been 
as widely adopted as in other model systems. Consequently, 
there are not yet many yeast CRISPR/Cas libraries, and these 
are pooled, requiring microarrays or sequencing to identify 
mutants that grow better or worse. In contrast, because 
yeast plasmid libraries and strain collections are arrayed, 
the function of each gene can be assessed for more com-
plex phenotypes than relative growth/fitness in a popula-
tion. Although they are more labor-intensive than pooled 
libraries, arrayed CRISPR/Cas libraries would allow one to 
perform more diverse phenotypic tests, including high con-
tent imaging (Henser-Brownhill et al. 2017; de Groot et al. 
2018). Arrayed libraries also ensure that no genomic targets 
are missed, a distinct possibility when using pooled plasmid 
libraries that require occasional amplification. The genera-
tion of arrayed yeast CRISPR/Cas libraries is an inevitable 
next step.

Almost all of the current yeast strain systematic collec-
tions have been generated by gene editing using transfor-
mation with PCR products amplified from plasmids carry-
ing cassettes of selectable markers alone or combined with 
protein-tagging or promoter-replacement sequences (Län-
gle-Rouault and Jacobs 1995; Longtine et al. 1998; Baker 
Brachmann et al. 1998; Bähler et al. 1998; Goldstein and 
McCusker 1999; Gueldener 2002; Janke et al. 2004; Hentges 
et al. 2005; Akada et al. 2006). CRISPR/Cas could be used 
to modify existing genomic strain collections using a single 
gRNA and, in most cases, a single-donor DNA, in a manner 
akin to integrating a target sequence into various chromo-
somal loci and using a single gRNA to edit at all locations 
(Finnigan and Thorner 2016; Giersch and Finnigan 2017), 
except that the target sequences are already integrated in the 
yeast strain collection.

Using CRISPR/Cas to edit deletion strain collections, one 
could remove the kanMX marker from the deletion strains 
and replace it with markerless donor DNA fragments homol-
ogous to the two ends of the kanMX cassette. Although other 
methods have been used to make markerless deletions from 

the deletion collection, they also remove the deletion bar-
codes (Carvalho et al. 2013; Soreanu et al. 2018). Similarly, 
one could swap the kanMX marker from the deletion strains 
with other MX markers. Marker swapping methods using 
plasmids or PCR cassettes have been in use for over a decade 
(Alani et al. 1987; Longtine et al. 1998; Baker Brachmann 
et al. 1998; Goldstein and McCusker 1999; Voth et al. 2003). 
However, none have been used to systematically swap the 
markers of genomic collections. Marker-swapped collections 
would be useful for SGA, facilitating comprehensive SGA 
screens and also making the production of three or more 
edited combinations easier. One could use CRISPR/Cas to 
replace deletion strain markers with the GFP expression 
cassette used for the Green Monster method allowing for 
systematic construction of multi-deletion strains faster than 
possible using SGA. A systematic collection of gene drive 
deletion strains could be generated by replacing the kanMX 
cassette with gene drive cassettes containing an sgRNA spe-
cific to the wild-type copy of each deleted gene. This collec-
tion could be used to make double mutants using an SGA 
approach to cross query gene drive strains to the gene drive 
collection and inducing Cas9 to generate homozygous dou-
ble mutants. Finally, one could introduce fiducial markers at 
any chromosomal location to study chromatin-chromosome 
dynamics. For example, using CRISPR/Cas9, Soreanu et al. 
(2018) replaced a natMX gene deletion with a TetO array in 
cells expressing TetR-tdTomato (Soreanu et al. 2018). The 
same approach could be used to systematically mark posi-
tions along all chromosomes using the deletion collection, 
or using a gRNA library paired with a dCas9-fluorescent 
protein (Chen and Huang 2014).

Using CRISPR/Cas to edit the GFP or TAP strain collec-
tion, one could replace the C-terminal fusion cassette with 
modern variants of GFP, other fluorescent protein deriva-
tives, or other protein fusion tags. Replacement of the old 
cassettes could simultaneously remove the marker. Roggen-
kamp et al. (2017) tested a CRISPR/Cas method to do just 
this, but so far this approach has only been used to modify 
a few strains at a time (Roggenkamp et al. 2017). One could 
also replace the C-terminal tag cassette with a markerless 
MS2 or PP7 cassette for mRNA tagging. However, in this 
approach, the homology arms of the donor DNA would have 
to be specific to each ORF to assure that the mRNA tag 
alone is integrated between the STOP codon and 3′UTR.

Despite the versatility and ease of gene editing in yeast, 
the generation of genome-wide strain collections is a costly 
and time-consuming process usually performed by a consor-
tium of labs. Consequently, yeast cell biologists and geneti-
cists have had to rely on strain collections that are sometimes 
not optimal for their needs. Moreover, current high-through-
put methods of generating multi-mutant strains rely on slow 
methods that all require the production of multi-mutant 
diploids and sporulation to obtain multi-mutant haploids. 
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CRISPR/Cas has the potential both to rapidly enhance our 
current genomic strain collections and to systematically 
generate genome-wide 3-way or even higher dimensional 
GI maps.
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