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Tight coupling of astrocyte energy
metabolism to synaptic activity revealed
by genetically encoded FRET nanosensors
in hippocampal tissue

Iván Ruminot1,2, Jana Schmälzle1, Belén Leyton2,3,
L Felipe Barros2 and Joachim W Deitmer1

Abstract

The potassium ion, Kþ, a neuronal signal that is released during excitatory synaptic activity, produces acute activation of

glucose consumption in cultured astrocytes, a phenomenon mediated by the sodium bicarbonate cotransporter NBCe1

(SLC4A4). We have explored here the relevance of this mechanism in brain tissue by imaging the effect of neuronal

activity on pH, glucose, pyruvate and lactate dynamics in hippocampal astrocytes using BCECF and FRET nanosensors.

Electrical stimulation of Schaffer collaterals produced fast activation of glucose consumption in astrocytes with a parallel

increase in intracellular pyruvate and biphasic changes in lactate. These responses were blocked by TTX and were absent

in tissue slices prepared from NBCe1-KO mice. Direct depolarization of astrocytes with elevated extracellular Kþ or

Ba2þ mimicked the metabolic effects of electrical stimulation. We conclude that the glycolytic pathway of astrocytes in

situ is acutely sensitive to neuronal activity, and that extracellular Kþ and the NBCe1 cotransporter are involved in

metabolic crosstalk between neurons and astrocytes. Glycolytic activation of astrocytes in response to neuronal Kþ

helps to provide an adequate supply of lactate, a metabolite that is released by astrocytes and which acts as neuronal fuel

and an intercellular signal.
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Introduction

Neural activity is accompanied by fast changes in local
extracellular glucose and lactate in the cerebral
cortex.1–5 These changes reflect the fast adaptation of
local metabolism to the energy demands of neurons,
mainly for the recovery of ion gradients challenged by
excitatory synaptic activity and action potentials, a
phenomenon termed neurometabolic coupling. While
it is clear that most of the energy is consumed in
neurons, astrocytes are interposed between blood-
borne glucose and neurons, thus strategically poised
to control the local consumption of glucose and pro-
duction of lactate. The contribution of astrocytes to
neurometabolic coupling has been investigated using
diverse glucose analogues in culture, in tissue slices
and in vivo, with conflicting results.6–13 More direct
measurement of glucose with a FRET-based

nanosensor that permits the estimation of the glycolytic
rate14 has shown that extracellular Kþ, which is
released by neurons during excitatory synaptic activity
and action potentials, induces fast glycolytic activation
of astrocytes in culture, a phenomenon mediated by the
sodium/bicarbonate cotransporter NBCe1.15,16

The present study was designed to investigate
whether astrocytes also respond to Kþ in brain tissue,
and whether the NBCe1 contributes to the glycolytic
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response of astrocytes to excitatory neurotransmission.
To this aims, we expressed the FRET glucose nanosen-
sor in organotypical hippocampal slices prepared from
NBCe1 KO mice, and also measured the dynamics of
pyruvate and lactate in astrocytes. We opted for orga-
notypical slices over acute slices as they are healthier
from the metabolic point of view. The slicing procedure
acutely depletes the slices of glycogen, which is followed
by a recovery phase that varies among labora-
tories.17–19 Organotypical slices have been shown to sus-
tain gamma oscillations in the absence of glucose, in a
DAB- and CP-316819-sensitive manner,20 which indi-
cates that two weeks in culture is an adequate period
of recovery. Our results support a major role for
extracellular Kþ and the NBCe1 in activity-dependent
modulation of brain tissue glucose and lactate, and the
astrocytic involvement in neurometabolic coupling.

Materials and methods

Standard reagents and inhibitors were acquired from
Sigma. Adenoviral serotype four vectors encoding
FRET sensors Ad FLII12Pglu-700m�6,21 Ad
Pyronic22 and Ad Laconic23 were custom-made by
Vector Biolabs. Fluo-4-AM and BCECF were pur-
chased from Invitrogen.

Preparation of organotypic hippocampal slices

Procedures involving animals were carried out accord-
ing to the Guide for the Care and Use of Laboratory
Animals, National Research Council, USA. Procedures
involving animals were approved by the
Landesuntersuchungsamt Rheinland-Pfalz, Koblenz
(23 177–07) and by the Centro de Estudios Cientı́ficos
Animal Care and Use Committee. The reports of the
procedures comply with the ARRIVE guidelines.
Organotypic hippocampal slice (OHS) cultures were
prepared as described by Stoppini et al.24 and
Schneider et al.25 with some modifications. Briefly, hip-
pocampal slices (400mm) were cut with a McIlwain
Tissue Chopper (Mickle Laboratory Engineering
Company, United Kingdom) from five to seven-day-
old C57BL/6 mice under sterile conditions. Slices
were maintained on Biopore membranes (Millicell
Standing Inserts, Merck Millipore, Germany) in an
interface between a humidified normal atmosphere
(5% CO2, 36.5

�C) and in a culture medium that con-
sisted of 50% Minimal Essential Medium, 25% Hank’s
balanced salt solution, 25% horse serum plus 2mM L-
glutamine and 10mM D-glucose at pH 7.4 in a
Memmert incubator (Germany). The culture medium
(1ml) was replaced three times per week.

After seven days of culture, the slices were trans-
duced by overnight incubation with 5� 106 plaque-

forming unit (PFU) of Ad FLII12Pglu-700m�6, Ad
Pyronic or Ad Laconic and imaged after another four
to eight days.

NBCe1A KO mice were on a C57BL/6J back-
ground, with wild-type (WT) age-matched littermates
serving as controls. Animals were genotyped by PCR
analysis.26

Fluorescence imaging and Schaffer collateral
stimulation

Detailed protocols describing the use of fluorescent
glucose, pyruvate and lactate sensors are avail-
able.21–23,27,28 Intact Biopore membranes carrying
OHS were submerged into the recording chamber of a
Zeiss LSM 700 confocal microscope or an upright
microscope (BX50WI, Olympus) equipped with a
monochromator (Polychrome IV, TILL Photonics),
Optosplit (Cairn, UK) and a cooled CCD camera
(TILL Photonics). The slices were continuously super-
fused at 2ml/min with a 95%O2/5% CO2-gassed buffer
containing (in mM): 136 NaCl, 3 KCl, 2 CaCl2, 1
MgCl2, 24 NaHCO3, 1.25 NaH2PO4; 2 glucose, 1 lac-
tate, pH 7.4 at room temperature (22–24�C). To esti-
mate the rate of glucose consumption in single cells
with a resolution of seconds, we used the glucose trans-
porter blocker strategy.14 For Ca2þ and Hþ imaging,
OHS were loaded at room temperature for either
30min with 5 mM Fluo-4A-M or for 10min with
2 mM BCECF A-M and imaged with a Zeiss LSM
700 confocal microscope while being continually super-
fused with a 95% O2/5%CO2-gassed buffer described
above. Additionally, OHS were stained for 20min with
0.5 mM sulforhodamine 101 to obtain astrocytic red
fluorescent signals. Schaffer collaterals were stimulated
using a Grass SD9 stimulator. Trains of electrical
stimulation were applied to the hippocampal CA3
area with a frequency of 20 Hz and for a duration of
5 to 30 s at 10 V. Imaging was performed at a distance
of 200 mm from the stimulation area.

Toluidine blue staining and immunohistochemistry

Slice cultures were fixed for 1 h in 4% paraformalde-
hyde and rinsed in PBS. Thereafter, slice cultures were
exposed for 20min to toluidine blue working solution,
which was a mixture of 5ml stock solution (1 g tolui-
dine blue O in 100ml of 70% ethanol) and 45ml of 1%
NaCl solution, pH 2.0–2.5. Thereafter, 96% ethanol
(100ml of 96% ethanol and four drops of acetic acid)
was used for color differentiation of the staining. The
differentiation step with strong acid removes nonspeci-
fic staining of weak acidic structures and, thus,
increases the contrast between background and stained
cells. The process was stopped with PBS after the
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differentiation was clearly visible. After a brief rinsing
with double-distilled water, slice cultures were placed
on object plates and dried overnight. The slices were
then exposed to xylol (Sigma-Aldrich) for 10min and
embedded with Entellan Neu (Merck Millipore).25

OHS expressing FRET-nanosensors were fixed for
1 h in 4% paraformaldehyde. The slices were then care-
fully washed three times in phosphate-buffered saline
(PBS) for 5min followed by incubation in citrate
buffer (10mM citric acid, 0.05% Tween 20, pH 6.0)
for 20min. Preincubation in blocking solution (3%
bovine serum albumin, 10% normal goat serum,
0.1% Triton X-100) for 2 h was followed by incubation
with the primary antibody (mouse anti-GFAP, BD
Biosciences-US, 1:500) in PBS containing 3% bovine
serum albumin overnight at 4�C. The following day,
slices were washed three times in PBS for 5min and
then incubated for 2 h at room temperature with the
secondary antibody (goat anti-mouse IgG coupled
with Alexa 543) in PBS containing 5 mM Hoechst.

After a final washing step in PBS, slices were
mounted on slides with self-hardening embedding
medium (glycerol 40%, polyvinyl alcohol 16%,
phenol 0.7%, Tris 0.05mM). OHS were scanned with
a Zeiss LSM 700 at a resolution of 2048� 2048 pixels
using the following sequential laser lines; 488 nm
(Citrine), 534 nm (Alexa 543) and 440 nm (Hoechst).

Statistical analysis

Time courses illustrate the behaviour of representative
single cells. Normality of distribution was tested using
the Shapiro–Wilk test. Data are presented as
means� SEM. Differences in mean values were evalu-
ated with the Student’s t-test or with ANOVA. P
values< 0.05 were considered statistically significant
and are indicated with asterisk (*). P values> 0.05
were considered non-significant and are shown as N.S.

Results

Functional expression of FRET-based nanosensors
in cultured OHS

In order to check the integrity and organization of the
hippocampal tissue under culture conditions, we per-
formed Toluidine blue staining at 7, 14 and 21 days
in vitro (d.i.v.), with acute hippocampal slices used as
a control. Figure 1(a) shows that the CA region and
dentate gyrus can be easily distinguished at all d.i.v. We
observed reduced cell density during culture as well as
reduction of tissue thickness, attributable to cell death
at the surface due to the slicing procedure and reorgan-
ization of the hippocampal tissue.29 This occurs early
within four to five days in vitro and is reaching a final

thickness of between 150 and 200 mm.24,30 Next, we
tested the expression and sensitivity of the FRET nano-
sensors for glucose, pyruvate and lactate in OHS trans-
duced with adenoviral vectors that have positive
tropism to astrocytes. Glucose sensor expression was
restricted to 30–40% of protoplasmic astrocytes along
the hippocampal tissue, as confirmed by GFAP immu-
nostaining in OHS expressing the glucose sensor
(Figure 1(b)). The same pattern of expression was
observed for the pyruvate and lactate nanosensors
(Figure 1(d) and (e)). To estimate the dynamic range
of the nanosensors for glucose, pyruvate and lactate in
astrocytes from OHS, we saturated the glucose sensor
with a saline solution containing 10mM glucose
(Figure 1(c)), the pyruvate nanosensor with a solution
containing 3mM pyruvate (Figure 1(d)) and the lactate
nanosensor with a saline containing 10mM lactate
(Figure 1(e)), followed by removal of glucose, pyruvate
and lactate, respectively. To deplete intracellular lactate
and pyruvate, we take the advantage of a property of
MCTs called transacceleration, which has been used
in vitro to deplete intracellular lactate or pyruvate
levels respectively in erythrocytes.31 This effect is
based on a property of monocarboxylate transporters
(MCTs) called trans-acceleration, where the presence of
extracellular monocarboxylates stimulates transporter
substrate efflux. This process involves a facilitated con-
formational switch of the substrate binding site across
the cell membrane when an adequate substrate is
bound.32–34 To deplete intracellular pyruvate and lac-
tate, we trans-accelerated MCTs by adding 10mM of
lactate or monochloroacetate (MCA), respectively.

The astrocytic pyruvate signal does not significantly
change upon lactate application (Figure 1(d)), indicat-
ing that the intracellular pyruvate concentration is vir-
tually zero in the absence of glucose. The lactate signal
is rapidly depleted upon the application of the non-
metabolizable MCTs substrate monochloroacatate
(Figure 1(e)), indicating that astrocytes maintain an
intracellular pool of lactate, a phenomena also
observed in astrocytes in vitro.47 The delta ratio
between saturation and deprivation of the glucose
sensor was 26.9� 0.6% (Figure 1(c)), 35� 3.3%
(Figure 1(d)) for the pyruvate nanosensor and
16.4� 1.2% (Figure 1(e)) for the lactate sensor.
Similar responses were observed in FRET nanosensors
expressed in primary astrocytic cultures.14,22,23

By using the in vitro KD of the glucose sensor and
the delta ratio obtained in Figure 1(c), we later esti-
mated the basal glucose concentration in astrocytes
from OHS. In the presence of 2mM extracellular glu-
cose, organotypic hippocampal astrocytes maintained a
steady-state intracellular glucose concentration aver-
aging 1.16mM (n¼ 23 cells). This concentration is
well over the KM of hexokinase (50mM) suggesting
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Figure 1. Dynamics of FRET-based nanosensors and integrity of cultured mouse organotypical hippocampal slices, OHS. (a)

Toluidine blue staining shows that OHS morphology is preserved over a three-week cultivation period (d.i.v.¼ days in vitro) (n¼ 3, 2

animals). (b) Expression of the glucose sensor (FLIP12Pglu-700m�6) in OHS (bar is 20 mm). Confocal images show that the glucose

sensor colocalises with the astrocytic marker GFAP, nuclei staining with Hoescht. (c) Dynamic range of the glucose nanosensor in

astrocytes from OHS perfused with HCO3
�/CO2 saline. Cells were exposed to 2 mM glucose followed by the addition of 10 mM

glucose and depleted by superfusion of saline without glucose. (d) Expression and dynamic range of the pyruvate sensor in astrocytes.

Cells were exposed to a saline without extracellular pyruvate followed by application of 10 mM lactate and superfusion of 3 mM

pyruvate. (e) Expression and dynamic range of the lactate sensor in astrocytes. Cells were exposed to a saline containing 1 mM lactate

followed by application of 10 mM lactate and superfusion of 10 mM MCA to deplete intracellular lactate. All traces represent individual

astrocytes. Bar graphs summarise the percentage of change after saturation or depletion of glucose, pyruvate and lactate nanosensors.

(f) The Schaffer collateral stimulation in OHS loaded with Fluo-4 A.M in. The protocol consist of three trains of pulses (5 s at 20 Hz)

separated by 3 min. The number of experiments is represented as n� of cells/ n�slices/ n�animals.
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that glycolysis is not limited by glucose availability.
Similar steady-state intracellular glucose concentration
was obtained in a previous study using a similar proto-
col of organotypical slice preparation.35 To evaluate the
integrity and connectivity of the OHS, we performed
Ca2þ imaging in CA1 by using electrical stimulus trains
of 20Hz for 5 s in CA3, a protocol that induces reliable
extracellular Kþ, Naþ and Ca2þ transients in OHS.36

Stimulation induced a robust and reproducible Ca2þ

increase in cells located in the stratum radiatum of
CA1 located 200 mm away from the stimulation elec-
trode (Figure 1(f)). Ca2þ responses were suppressed in
the presence of TTX (Figure 1(f)), indicating that (i) the
electrical stimulation caused Ca2þ transients dependent
on neuronal activity, and that (ii) the Ca2þ rise in CA1
is not caused by a stimulation artefact nor is it a result
of direct depolarization by the electrode.

NBCe1 is required for Kþ-dependent glycolytic
activation in hippocampal astrocytes

Excitatory synaptic activity increases extracellular Kþ,
which depolarizes the highly Kþ-permeable astrocytic
plasma membrane. The astrocytic depolarization leads
to the influx of bicarbonate via the abundant electro-
genic sodium bicarbonate cotransporter NBCe137–41

resulting in cytosolic alkalinization and acute
stimulation of glucose consumption.16 To explore the
relevance of this mechanism in hippocampal tissue, we
have evaluated the effect of high extracellular Kþ

(6 and 12mM) on the rate of glucose consumption
and intracellular pyruvate in astrocytes from OHS
expressing glucose and pyruvate FRET-nanosensors.
We observed a robust and dose-dependent activation
of glucose consumption in WT hippocampal astrocytes
upon increases of extracellular Kþ, 252� 3% and
305� 5% of stimulation for 6 and 12mM Kþ, respect-
ively (Figure 2(a) and (c)). We observed a significant
reduction (145� 5%) in Kþ-dependent glycolytic acti-
vation in hippocampal astrocytes from NBCe1-KO
mice (Figure 2(a) and (c)). The Kþ-dependent glycolytic
activation was also present in OHS perfused with a
cocktail of pre- (TTX) and postsynaptic inhibitors
(MK-801 - CNQX), indicating that the stimulatory
effect of Kþ is not mediated by neurons (Supp.
Figure 1). To mimic membrane depolarization induced
by extracellular Kþ, we tested the effect of 3mM Ba2þ

on the rate of astrocytic glucose consumption. Barium
elicited a glycolytic activation of similar magnitude to
that induced by high Kþ, but was dramatically dimin-
ished in hippocampal astrocytes from NBCe1-KO mice
(Figure 2(b) and (c)). The concentration of Ba2þ used
here has also been reported to block the Na/K-ATPase
at the cytosolic side;42 however, we did not observe
inhibition of glycolysis, as shown previously for the

known Na/K-ATPase blocker ouabain.15 Considering
that the effect of Ba2þ on astrocytic glycolysis was fully
developed immediately after exposure, we think that a
direct effect of Ba2þ on the Na/K-ATPase during the
first seconds of exposure is probably minor.

Increased extracellular Kþ produced a sudden rise in
intracellular pyruvate in WT astrocytes, but not in
astrocytes from NBCe1-KO mice (Figure 2(d) and
(e)). We conclude that the NBCe1 metabolic pathway
is required for Kþ- and Ba2þ-dependent glycolytic acti-
vation in hippocampal tissue. These signals depolarize
astrocytes, stimulating NBCe1 in the inward going
mode resulting in alkalinization and glycolytic activa-
tion in these cells.

Impact of neuronal activity on pH and glucose
dynamics in astrocytes from WT and NBCe1-KO
mice

Although an increased extracellular Kþ in the saline
solution evokes a fast NBCe1-dependent activation of
glucose consumption in astrocytes, there is no evidence
that this glycolytic effect can be produced by endogen-
ous Kþ released by neurons. To evaluate the impact of
neuronal stimulation on astrocytic glucose, we applied
three consecutive electrical stimulus trains of 20Hz for
30 s, a protocol that induces reliable increases of extra-
cellular Kþ in hippocampal slices.36,43 As a control of
NBCe1 activity, we performed Hþ imaging in
astrocytes from OHS co-loaded with BCECF and sul-
forhodamine 101 (data not shown), a dye which is
selectively taken up by astrocytes in the brain.44

Upon stimulation, WT astrocytes responded with
alkaline transients, in contrast to astrocytes from
NBCe1-KO mice, which responded with small acid
transients (Figure 3(b) to (d)). Furthermore, electrical
stimulation evoked fast and reversible decreases of
intracellular glucose concentration in WT astrocytes
(Figure 3(e) and (g)), responses that were abolished
by 1 mM TTX (Figure 3(f) and (g)). In contrast, hippo-
campal astrocytes from NBCe1-KO mice responded
with a TTX-sensitive increase of intracellular glucose
upon neuronal stimulation (Figure 3(h), (i) and (j)).

We conclude that neuronal stimulation leads to
stimulation of NBCe1 with the consequent intracellular
alkalinization and glycolytic activation in hippocampal
astrocytes.16,45,46

Neuronal stimulation activates astrocytic glycolysis
via the NBCe1 metabolic pathway

To explore the effect of neuronal activity on the rate of
glycolysis, we estimated the rate of glucose consump-
tion before and during neuronal stimulation in
astrocytes from WT and NBCe1-KO mice.
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Stimulation of Schaffer collaterals (20Hz, 30 s) acutely
activated astrocytic glycolysis in WT astrocytes
(Figure 4(a) and (c)). Electrical stimulation did not
alter the glucose consumption rate in hippocampal
astrocytes from NBCe1-KO mice (Figure 4(b) and
(c)). Taking advantage of a newly developed pyruvate
FRET nanosensor,22 we addressed the following
question: Does acute glycolytic activation observed in
astrocytes upon increased neural activity produce a rise
in intracellular pyruvate, the end product of the
glycolytic pathway? Astrocytes responded to neuronal
activation with a rapid and reversible increase in intra-
cellular pyruvate, a phenomenon that was absent in
wild type slices perfused with 1 mM TTX and in astro-
cytes from NBCe1-KO mice (Figure 4(d) to (f)). To
investigate whether the rise of pyruvate is instrumental
to lactate increase upon glycolytic activation, we
measured intracellular lactate23 in wild type astrocytes

challenged to neuronal activity. Upon neuronal stimu-
lation, wild type astrocytes responded with an early fall
in lactate, which was maintained or even recovered with
an overshot during the stimulation protocol
(Figure 4(g), (h) and (k)). The blocking of action poten-
tials by TTX suppressed both lactate decrease and over-
shot (Figure 4(i) and (k)), indicating that both
phenomena are dependent of neuronal signals released
during the stimulation protocol. The early depletion of
intracellular lactate, which also was reported recently in
astrocytes in vitro and in vivo, has been attributed to
the opening of a novel lactate-permeable chloride chan-
nel gated by cell depolarization.47

Discussion

We have used genetically encoded FRET-based nano-
sensors to explore the dynamics of energy metabolites

Figure 2. Astrocytic depolarization induced by Kþ or Ba2þ activates glycolysis in wild-type astrocytes but not in NBCe1-KO mice.

Organotypical hippocampal astrocytes expressing the glucose sensor were continuously perfused with HCO3
�/CO2 buffer containing

2 mM glucose and 1 mM lactate. (a and b) Cytochalasin B (Cyto B, 20 mM) was applied to determine the effect of Kþ (6 and12 mM) or

Ba2þ (3 mM) on the glucose consumption rate in WT and NBCe1-KO astrocytes. (c) Bar graphs summarise the percentage of

glycolytic rate modulation upon stimulation with Kþ or Ba2þ in astrocytes from WT and NBCe1-KO mice. (d and e) Effect of Kþ

(12 mM) on intracellular pyruvate from WTastrocytes and from NBCe1 KO mice. The number of experiments is represented as n� of

cells/ n� slices/ n� animals.
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such as glucose, pyruvate and lactate in hippocampal
astrocytes that surround active neurons. The two main
findings of this work are: (i) astrocytic glycolysis is
coupled to neuronal activity and (ii) the NBCe1
metabolic pathway plays a crucial role in neuron-glia
metabolic coupling in hippocampal tissue. Excitatory
synaptic activity induced by Schaeffer collateral stimu-
lation caused a rapid activation of glucose consumption
by hippocampal astrocytes and a concomitant rise in
intracellular pyruvate. The glycolytic effect was effect-
ively mimicked by increasing extracellular K þ to an
extent similar to that elicited by Schaeffer collateral
stimulation.36,37 Thus, we conclude that Kþ contributes
a major part of the astrocytic glycolysis stimulation
triggered by neuronal activity. As previously reported

in cultured cells, the stimulation of glycolysis by Kþ in
tissue slices was abrogated by genetic deletion of the
NBCe1. The stimulation of astrocytic glycolysis has
been attributed to pH rather than the simultaneous
rise in intracellular bicarbonate.45

In spite of the activation of glucose consumption
and accumulation of pyruvate, we observed a rapid
decrease of intracellular lactate. Previously, a cytosolic
reservoir of lactate was described in astrocytes in vitro
and in vivo,34,47 which is quickly released to the extra-
cellular space by high extracellular Kþ and in response
to electrical stimulation.47 This phenomenon has been
attributed to the opening of a novel 37 pS lactate-
permeable chloride channel gated by cell depolariza-
tion, whose molecular identity is under current

Figure 3. Neuronal activity causes alkaline transients and a drop in intracellular glucose in astrocytes from wild-type but not

NBCe1-KO mice. (a–d) Effect of Schaffer collateral stimulation (20 Hz, 30 s) on intracellular pH in wild-type and NBCe1-KO orga-

notypic hippocampal astrocytes loaded with BCECF-AM. (e–j) Effect of Schaffer collateral stimulation (20 Hz, 30 s) on intracellular

glucose in wild-type and NBCe1-KO hippocampal astrocytes perfused with HCO3
�/CO2 saline containing 2 mM glucose and 1 mM

lactate in the presence or absence of 1 mM TTX. All traces represent individual astrocytes. Bar graphs summarise the percentage of

change of the BCECF-AM ratio or percentage of FRET change. The number of experiments is represented as n� of cells/ n� slices/ n�

animals.
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Figure 4. NBCe1 is required for fast glycolytic activation and a rise in pyruvate in hippocampal astrocytes challenged by neuronal

stimulation. Glucose, pyruvate and lactate imaging in astrocytes from OHS perfused with HCO3
�/CO2 saline containing 2 mM glucose

and 1 mM lactate. (a–c) Cytochalasin B (20 mM) was applied to block glucose transporters and determine the effect of neuronal

stimulation on astrocytic glucose consumption in WT and NBCe1-KO astrocytes. (d–f) Effect of Schaffer collateral stimulation (20 Hz,

30 s) on intracellular pyruvate of astrocytes from WT and NBCe1-KO astrocytes perfused with HCO3
�/CO2 saline containing 2 mM

glucose and 1 mM lactate in the presence or absence of 1 mM TTX in wild-type. (g–i, k) Effect of Schaffer collateral stimulation (20 Hz,

30 s) on intracellular lactate in astrocytes perfused with HCO3
�/CO2 saline containing 2 mM glucose and 1 mM lactate in the presence

or absence of 1mM TTX in wild-type. (j) Pie chart representing the distribution of lactate responses in WT astrocytes challenged to

neuronal stimulation. All traces represent individual astrocytes. Bar graphs summarise the percentage of change of glucose, pyruvate

or lactate FRET sensors upon stimulation/TTX in astrocytes from WT and NBCe1-KO hippocampal slices. The number of experi-

ments is represented as n� of cells/ n� slices/ n� animals.

520 Journal of Cerebral Blood Flow & Metabolism 39(3)



investigation. The sensitivity to TTX demonstrated for
the first in the current study reinforces the notion that
the astrocytic lactate depletion is mediated by a neur-
onal signal, i.e. Kþ. Thanks to this channel astrocytes
are capable of extruding lactate in spite the strong
intracellular alkalinization induced by Kþ,47 a condi-
tion that is unfavorable for the housekeeping Hþ-
coupled MCTs. MCT-independent lactate extrusion
from astrocytes has also been demonstrated for hemi-
channels48 The increase in glucose consumption and
pyruvate production mediated by Kþ- NBCe1 may
therefore be understood as a mechanism to replenish
the astrocytic lactate reservoir.34,47

Report of activity-dependent rat astrocytic alkalini-
zation in vivo38,39 was followed by the demonstration in
leech central nervous system40 and rat hippocampus41

that the pH change was mediated by stimulation of the
NBCe1 by Kþ-dependent membrane depolarization.49

Recently, the kinetics of NBCe1-dependent alkaliniza-
tion was found to closely follow astrocytic depolariza-
tion during evoked network activity in OHS.50 RNAseq
analysis and protein quantification have shown much
stronger NBCe1 expression in astrocytes than in neu-
rons, in both mouse and human.51–53 We observed that
afferent stimulation caused fast alkaline transients in
WT astrocytes as compared with slight acidification
transients in astrocytes from NBCe1-KO mice. The
fact that in vivo cortical activity and evoked network
activity in OHS resulted in astrocytic intracellular alka-
linization shows that the effect of Kþ surpasses the
acidification by glutamate.16,54

Kþ is released by active neurons during glutamater-
gic neurotransmission but also at Ranvier nodes dur-
ing the action potential, at serotonergic synapses, and
at cholinergic synapses, e.g. the neuromuscular
junction. It therefore serves as a general signal for neu-
rometabolic coupling. Glial cells are heterogeneous in
terms of NBCe1 transporter, Kþ channel expression
and resting membrane potential,51,55 which may deter-
mine different basal NBCe1 activities, different pH
responses to extracellular Kþ and perhaps different
metabolic responses.

The role of extracellular Kþ acts as a modulator of
glucose metabolism in astrocytes has been controversial.
Some reports have shown that increased extracellular
Kþ marginally activates56–59 and even inhibits glucose
metabolism in astrocytes.60 With the benefit of hind-
sight, possible explanations for the diversity of results
are exposure times, the presence of neurons in the cul-
tures, and the presence of bicarbonate and supraphysio-
logical Kþ in experimental solutions. Another metabolic
effect of extracellular Kþ on astrocytes is the mobiliza-
tion of glycogen mediated by the bicarbonate-sensitive
soluble adenylate cyclase sAC.61 The degradation of
glycogen is also NBCe1-dependent but it seems to be

much slower than the stimulation of glycolysis, because
the rise in astrocytic cAMP levels occurred several min-
utes after the onset of Kþ stimulation.

The use of OHS cultures in combination with the
expression of genetically-encoded FRET nanosensors
for energy metabolites, provides optical access for ima-
ging in single cells and allows the study of brain energy
metabolism in tissue by using physiological concentra-
tions of energy metabolites. Although many aspects of
hippocampal slice cultures resemble the in vivo state,62

excitatory neurons in this experimental system are
known to exhibit increased axonal sprouting, which is
likely to facilitate epileptiform activity.63 Using orga-
notypic slices also meant that the astrocyte population
consisted of both protoplasmic astrocytes and reactive
astrocytes, which is probably related to the trauma
associated with the slicing procedure.64 Worthy of spe-
cial note is our observation of intracellular alkaliniza-
tion and glycolytic activation in all astrocytic
morphologies during neuronal stimulation, suggesting
that metabolic coupling of astrocytes to neuronal activ-
ity is a general feature of astrocytes.

Based on the consistent results obtained in culture,
in vivo and now in tissue slices, we propose that Kþ is
the main signal responsible for fast neurometabolic
coupling and that the astrocytic NBCe1 is the key elem-
ent of its signal transduction pathway.
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