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Patterns of molecular coevolution can reveal structural and func-
tional constraints within or among organic molecules. These
patterns are better understood when considering the underly-
ing evolutionary process, which enables us to disentangle the
signal of the dependent evolution of sites (coevolution) from
the effects of shared ancestry of genes. Conversely, disregard-
ing the dependent evolution of sites when studying the history
of genes negatively impacts the accuracy of the inferred phylo-
genetic trees. Although molecular coevolution and phylogenetic
history are interdependent, analyses of the two processes are
conducted separately, a choice dictated by computational conve-
nience, but at the expense of accuracy. We present a Bayesian
method and associated software to infer how many and which
sites of an alignment evolve according to an independent or a
pairwise dependent evolutionary process, and to simultaneously
estimate the phylogenetic relationships among sequences. We
validate our method on synthetic datasets and challenge our pre-
dictions of coevolution on the 16S rRNA molecule by comparing
them with its known molecular structure. Finally, we assess the
accuracy of phylogenetic trees inferred under the assumption of
independence among sites using synthetic datasets, the 16S rRNA
molecule and 10 additional alignments of protein-coding genes of
eukaryotes. Our results demonstrate that inferring phylogenetic
trees while accounting for dependent site evolution significantly
impacts the estimates of the phylogeny and the evolutionary
process.
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Molecular coevolution is the evolutionary process by which
interactions between distant sites of a molecule, or sites

of different molecules, are maintained such as to preserve
advantageous functional or structural properties. For instance,
coevolving fragments within protein sequences are involved
in folding constraints and informative of folding intermedi-
ates, peptide assembly, or key mutations with known roles in
genetic diseases (1, 2). The ever-growing availability of molec-
ular sequences (nucleotides and amino acids) provides us with
an unprecedented amount of data that hold a strong potential
to reveal genes and gene regions evolving under a constrained
process (3, 4).

There exist several methods to infer coevolution from
sequence data alone (based on matching patterns between sites,
as reviewed in refs. 5 and 6). However, these methods do not
exploit a key component in modeling the underlying evolution-
ary processes: the phylogenetic tree describing the relationships
between molecular sequences. Incorporating the phylogenetic
signal in the analysis of coevolution is crucial because it enables
us to distinguish between truly coevolving patterns and similar
patterns induced by the shared history of sequences (5, 7). To
this end, several methods have been developed to infer coevolu-
tion while accounting for phylogenetic relationships (7), but only
a few of these explicitly model the process of coevolution along a
given phylogenetic tree (8–11).

All phylogeny-aware methods to detect coevolution rely on
the assumption that the phylogenetic relationships between
sequences are known and can be treated as “observed data.” Typ-
ically, phylogenetic trees are themselves inferred from molecular
data (12), but their inference is based on a fundamental assump-
tion that each site evolves independently of all of the others (13).
This assumption, which is evidently violated in the presence of
coevolution, has benefits in terms of computational tractability,
because the likelihood of an alignment given a phylogenetic tree
is the product of the individual likelihood of each site. This sim-
plification of the evolutionary mechanism in the presence of non-
independent sites has been shown to decrease the accuracy of the
inferred phylogenetic trees (14, 15). However, datasets with strong
functional or structural constraints are often analyzed within phy-
logenetic frameworks that assume independence among sites. For
instance, the small ribosomal subunit (16S) is frequently used
to estimate the earliest evolutionary relationships between the
major lineages of the tree of life (16, 17), neglecting its numerous
structural constraints and evidence of coevolution (18).

The presence of coevolutionary patterns across many nucle-
otide and amino acid sequences extends far beyond the 16S
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gene and is supported by a large body of evidence (9, 19).
Ignoring the interdependencies between the phylogenetic his-
tory of the sequences and the constrained processes govern-
ing the evolution of nucleotides or amino acids can severely
hamper our ability to infer correct phylogenetic trees (14, 15)
and accurately detect coevolution (5, 7). However, the infer-
ence of these interdependent processes is still conducted sepa-
rately for mathematical convenience, at the expense of assuming
independence among sites which was originally described as
“not necessarily biologically valid” by Felsenstein in 1983, at
the dawn of likelihood-based molecular phylogenetics (13). To
address this issue, we present a Bayesian framework to analyze
a nucleotide alignment and jointly estimate (i) the number of
pairs of sites that coevolve and their position in the sequence,
thus differentiating from a background model of independent
evolution, (ii) the parameters of the independent and depen-
dent models of substitution, and (iii) the phylogenetic tree
describing the relationships between sequences. Our method is
called CoevRJ and the software implementing it is available at
https://bitbucket.org/XavMeyer/coevrj.

We evaluate the performance of CoevRJ in reconstructing
phylogenetic trees and inferring coevolution based on an exten-
sive range of simulated datasets, an alignment of the highly
coevolving 16S rRNA and 10 empirical eukaryote datasets of
protein-coding genes. We show that CoevRJ provides an accu-
rate identification of the coevolving sites, as validated by sim-
ulated and empirical data. We assess the effects of coevolu-
tion on phylogenetic estimates by comparing our results with
those obtained under the assumption of independent evolution
and demonstrate the importance of accounting for dependence
among sites when inferring phylogenetic trees on datasets subject
to coevolution.

Results
CoevRJ: A Bayesian Framework to Jointly Estimate Phylogeny
and Molecular (Co)evolution. The CoevRJ method simultane-
ously infers the phylogenetic relationships between molecular
sequences as well as the number and position along the sequence
of the sites (if any) that evolved in a dependent fashion. The
method estimates the posterior probability of the many scenarios
of evolution considered, as well as their parameters values using
the reversible jump Markov chain Monte Carlo (RJMCMC)
algorithm (20) (Fig. 1).

Our approach, further described in Materials and Methods,
includes a mixture of two evolutionary models that can accom-

modate many possible scenarios of dependent and independent
evolution among sites within a gene. Sites are not a priori
assigned to either category; rather, their mode of evolution is
estimated from the data. Independent sites are considered to
evolve under a general time-reversible substitution model with
rate heterogeneity among sites modeled by a Gamma distribu-
tion [GTR+Γ model (21)]. The mean rate of substitution is set
to 1 and the shape of the Gamma distribution is modeled by a
single parameter α and discretized into a finite set of rate multi-
pliers to incorporate varying substitution rates across all sites of
the alignment.

Dependent sites are modeled with an adapted version of the
Coev model (11), under which coevolving pairs of sites evolve
in a dependent fashion, such that the nucleotides at both sites
remain within a predefined set of nucleotide pairs, defined as
the “coevolving profile.” A substitution in one site of a coe-
volving pair is expected to trigger a subsequent substitution at
the other site such that the nucleotides combination remains in
the profile. A coevolving profile contains between two and four
nucleotide pairs encompassing the possible cosubstitutions. For
instance, pairs (AA, CC, TT, GG) or the Watson–Crick base
pairs (AT, CG) may form a coevolving profile. However, the
Watson–Crick base pairs augmented with the wobbling pair GT
cannot form a profile since the wobbling pair differs by a single
substitution from the two other pairs (11). The coevolution pro-
cess is modeled as a reversible continuous-time Markov chain
with rate parameters distinguishing among single site substitu-
tions (i) leading to the profile (rate d), (ii) breaking the profile
(rate s), and (iii) allowing the pairs of sites to evolve within
out-of-profile pairs (rate r).

The combination of GTR+Γ and Coev forms a mixture of
models parameterized by the number of coevolving pairs of sites
and their position within the molecular alignment. This mixture
of models ranges from sites being fully independent and evolv-
ing under a pure GTR+Γ model to all sites being involved in
nonoverlapping coevolving pairs. Independent and coevolving
sites, regardless of the configuration of the mixture, are assumed
to evolve on the same phylogeny (including topology and branch
lengths), and therefore both contribute to its estimation. The
branch lengths are, however, decoupled between models by scal-
ing their respective rate matrices to yield an expected value of
one substitution per branch length unit and by applying a unique
branch length (or rate) multiplier ν for sites under coevolution.

Estimating all these parameters represents a significant
computational challenge that we overcome by making some

Fig. 1. CoevRJ analysis flow. (1) A multiple sequence alignment containing nucleotides must be provided as input for CoevRJ. (2) After the analysis of the
dataset, CoevRJ produces log files containing samples from the joint posterior distribution. These samples enable the estimation of the posterior probability
of (i) the parameters of the evolutionary processes (GTR+Γ and Coev), (ii) the tree topologies and the branch lengths, and (iii) the pairs of sites and their
profile. Further postanalyses with CoevRJ define the significance threshold for the coevolving pairs and provide easily readable summary statistics.
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simplifying assumptions. We assume the coevolving pairs to
follow a homogeneous (co)evolutionary process and share the
same substitution rates (d , s, r). This (co)evolutionary process
is mainly characterized by parameters d and s that define the
attraction of a pair of sites to their coevolving profile. As these
two rate parameters are not expressed in the GTR+Γ model, we
considered the rate parameters of coevolving and independent
sites as independent. Finally, we infer the profile of each coevolv-
ing pair from a reduced set of profiles limited to the nucleotide
pairs observed at the corresponding sites in the alignment. Under
these assumptions, Bayesian inference of the GTR+Γ and Coev
mixture of models is tractable with the CoevRJ method, as
we demonstrate in the following sections using synthetic and
empirical datasets.

CoevRJ Accurately Estimates Pairs of Sites and the Phylogeny. To
assess the performance of CoevRJ, we generated a total of 250
alignments of nucleotides each with 1,000 sites and 50 taxa, with
a proportion of coevolving sites ranging from 0% (independent
evolution) to 50% of the sites. CoevRJ correctly recovered the
number of pairs of coevolving sites and their position (if any)
under each scenario, with accuracy equal to 0.99 or higher (SI
Appendix, Table S1). For datasets simulated under independent
evolution, CoevRJ identified at most one pair over the 1,000
simulated sites. For datasets simulated with coevolving pairs,
CoevRJ accurately identified most of the coevolving pairs of
sites with a sensitivity of 98%. Overall, the models inferred with
CoevRJ were consistent with the amount of coevolution simu-
lated: Both the number of coevolving sites and their position
were accurately identified as well as the sites that were not
coevolving.

We then measured the ability of CoevRJ to recover the simu-
lated amount of rate heterogeneity (i.e., the α parameter of the
GTR+Γ model) and the total number of substitutions, measured
as the total branch length of the reconstructed phylogenetic
tree. To estimate the effects of ignoring coevolution between
sites, we reanalyzed the datasets under a standard GTR+Γ
model where all sites are considered to evolve independently [as
implemented in MrBayes (23)]. The performances of CoevRJ
and GTR+Γ, assessed by the relative errors with respect to
the simulated parameters, were equivalent in the absence of
coevolution, reflecting the fact that CoevRJ correctly reduced
to a model where all sites are independent (Fig. 2 A and B).
However, as the proportions of coevolving sites in the align-
ment increased, the accuracy of the estimated rate heterogeneity
and branch lengths decreased substantially under the GTR+Γ
model, while it remained essentially unchanged under CoevRJ
(Fig. 2 A and B).

Finally, the accuracy of the inferred phylogenetic tree with
increasing levels of coevolution was consistently improved when
using CoevRJ rather than the standard GTR+Γ model. In pres-

ence of coevolution, the tree topologies inferred with CoevRJ
were more accurate than those inferred under the GTR+Γ
model (SI Appendix, Fig. S1). The divergence between the trees
estimated by the GTR+Γ model and CoevRJ increased signifi-
cantly with the proportion of coevolution (SI Appendix, Fig. S1)
as a small but significant increase in misidentified bipartitions
(internal nodes) affected the phylogenetic trees inferred under
the independent sites model (Fig. 2C).

CoevRJ Identifies Alternative Hypotheses for the “Tree of Life.” To
gain insight on the effect of accounting for coevolution on an
empirical dataset, we analyzed an alignment of the 16S rRNA
that includes sequences for 146 taxa spanning the three domains
of life, Bacteria, Archea, and Eukaryotes (18). The 16S rRNA is
subject to many structural constraints and is therefore used as a
benchmark for the method’s ability to predict coevolution. Using
this dataset, pairs of sites predicted as coevolving can be assessed
by comparing them to the known 3D structure of the small
ribosomal subunit for several species [E. coli (24), Drosophila
melanogaster (25) and Homo sapiens (26)]. Coincidentally, since
16S is shared by all prokaryotes and eukaryotes and is a slow-
evolving gene, it is also often used to infer phylogenetic relation-
ships, especially focusing on the earliest nodes in the tree of life
(16, 17).

CoevRJ predicted 256 pairs of nucleotides (19.5% of the align-
ment positions) as coevolving with a posterior probability greater
than 0.95. Of these, 94% of the pairs of sites were located very
closely on the 3D structure, for example less than 6.5 Å for
E. coli (Fig. 3 and Materials and Methods). The majority of these
pairs (71%) were inferred as having a profile consistent with
Watson–Crick base pairs (AT, GC). Among the 16 pairs having
probability greater than 0.95 and not supported by the structure
of E. coli, 14 were inferred with profiles diverging from a pure
Watson–Crick profile, suggesting that they could be involved
in functional constraints (SI Appendix, Table S2). Additionally,
12 of them are known to bind with other small ribosomal sub-
units not represented in our dataset (summarized in SI Appendix,
Table S2 from ref. 28). Sites involved in such bonds could be coe-
volving with residues on other sequences and may thus present
evolutionary patterns departing strongly from the one of inde-
pendent evolution, which may lead CoevRJ to infer them as
coevolving within the 16S rRNA. Finally, 108 pairs were pre-
dicted as significantly coevolving but with probability lower than
0.95 (27% with sites closely located on the structure of E. coli).
Empirically validating these predictions is difficult as they could
result from coevolution affecting only a portion of the phy-
logeny and would require the 3D structures for many species.
However, the interpretation of the coevolving pairs based
on the 3D structure of E. coli was confirmed when using the
D. melanogaster and H. sapiens structures for validation (SI
Appendix, Fig. S2).

A B C

Fig. 2. Validation of CoevRJ and comparison with a model assuming independence among sites (GTR+Γ) on synthetic datasets. Relative errors on (A)
the rate heterogeneity and (B) the total branch length when inferred by CoevRJ and the GTR+Γ model in proportion to the amount of coevolution
simulated. Box-plot whiskers extend to 1.5× the interquartile range; outliers are not shown. (C) Number of bipartitions, or internal nodes, exclusively
misidentified by CoevRJ or GTR+Γ (bipartitions misidentified with both models are not reported). Misidentified bipartitions can be either bipartitions not
present in the simulated phylogeny but inferred with P> 0.95 or bipartitions present in the simulated phylogeny but inferred with P< 0.5. Errors bars
represent the SD.
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Fig. 3. (A) Mapping of CoevRJ predictions of coevolving pairs on the structure of Escherichia coli 16S rRNA. All predicted coevolving pairs with P> 0.5 are
reported on the 2D structure of E. coli (22). Pairs highlighted in red are at most 6.5 Å distant on the 3D structure (Materials and Methods). Pairs in blue
are more distantly located than this threshold; for that reason, the second position of the pair is indicated within the pair highlight. (B) Distance between
positions of pairs ranked by their posterior probability of being coevolving. Only pairs with P> 0.05, corresponding to strongly significant pairs compared
with the prior expectation (Materials and Methods), are reported in this figure.
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The phylogenetic tree inferred by CoevRJ from the 16S RNA
dataset significantly differed from the one obtained under the
assumption of independence among sites. Our analyses identi-
fied 51 internal nodes not shared between the two topologies
(normalized Robinson–Foulds distance (29) of 0.18; Fig. 4 and SI
Appendix, Figs. S3–S9). In addition to topological differences, the
two models inferred substantially different branch lengths. For
instance, the branch separating the Archaea from the Eukary-
otes had an estimated branch length that was 25% longer with
CoevRJ than with the GTR+Γ model, while branches deep
in the bacterial clades were generally inferred as shorter with
CoevRJ (SI Appendix, Figs. S10–S12). These discrepancies have
a strong impact on the estimates of divergence times based on
these phylogenies. Indeed, we found strongly differing ultramet-
ric trees when using the phylogeny estimated under the CoevRJ
or the GTR+Γ model (Fig. 4), and conflicting estimates of
the divergence times were observed for varying settings of the
underlying molecular clock (SI Appendix, Fig. S13).

A Wider Perspective on the Failure to Account for Dependence
Among Sites. We tested the CoevRJ approach on a diverse range
of 10 protein-coding genes of eukaryotes from the Selectome
database (30) having significantly different alignment size and
gene annotation (SI Appendix, Table S3). These alignments
were specifically selected out of 8,000 protein-coding genes for
their significant signals of coevolution as predicted by the Coev
method (11). For each dataset, we inferred the parameters with
both CoevRJ and GTR+Γ and computed the discrepancies mea-
sured between the methods for the inferred rate heterogeneity,
branch lengths, and tree topology.

While the proportion and intensity of coevolution detected
within these datasets varied (Fig. 5A and SI Appendix, Fig. S14),
not accounting for dependence among sites led to decrease in the
estimate of the rate heterogeneity between sites (Fig. 5B). Addi-
tionally, the estimates of branch lengths differed substantially
between CoevRJ and GTR+Γ. The total branch length inferred
on these datasets was inconsistent between both methods with-

out showing a bias (Fig. 5C). Notably, the difference in total
branch length did not come from a global factor equally affect-
ing all branches but from many changes of varying amplitude on
different branches (Fig. 5D).

The tree topologies inferred under CoevRJ and GTR+Γ
differed for all genes (Fig. 5E). The amount of differences
among topologies obtained under the different methods ranged
from 0.06 to more than 0.3 (normalized Robinson–Foulds dis-
tance). The differences measured on the substitution rates,
branch lengths, and tree topologies suggested that accounting
for dependence among sites significantly impacted the parameter
estimates without presenting a consistent bias. The diversity of
these discrepancies suggests that failing to account for the depen-
dencies between sites led to unpredictable effects on the inferred
evolutionary histories.

Discussion
We presented a method to analyze an alignment, while mov-
ing beyond the unrealistic assumption that all sites evolve as
independent units. CoevRJ jointly infers the posterior probabil-
ity of the phylogenetic tree, the pairs of coevolving sites, and
the underlying parameters of the evolutionary models. CoevRJ
therefore enables us to capture the reciprocal effects of the
shared evolutionary history of molecular sequences and the pairs
of sites that coevolve. The joint analysis of these two processes
has remained an unsolved challenge in previous approaches
(6, 31). Our results show that CoevRJ can accurately estimate
both the phylogenetic tree and the parameters of the underlying
(co)evolutionary process.

Modeling the evolutionary process enables CoevRJ to extract
more information from the data than just the position of the pairs
of coevolving sites. The posterior probability of each coevolv-
ing pair is informative of the strength of the nucleotide pairing
along with the inferred distribution of profiles that determine
the nature of the pairings. Estimating these parameters within
a Bayesian framework results in intuitive posterior probabilities
and enables us to use Bayes factors to properly define thresholds

Fig. 4. Impact of accounting for dependent sites on the dating of the tree of life. Ultrametric trees resulting from an analysis with the penalized likeli-
hood method (27) configured to accommodate for large rate variation (λ= 0) of the majority rule consensus trees inferred by CoevRJ (left) and a purely
independent sites model (GTR+Γ, right). The root age is arbitrarily placed at 1.
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Fig. 5. Differences between analyses conducted with CoevRJ and a model assuming independence among sites (GTR+Γ). Datasets are ranked by the
percentage of coevolving pairs predicted with P> 0.5. The percentage is defined with respect to the maximum number of coevolving pairs observable at
once (defined as the alignment length divided by 2). (A) Percentage of predicted coevolving pairs with P> 0.5 (bar length) and P> 0.95 (white stripe). (B–D)
Divergences between parameters inferred with the purely independent sites model (GTR+Γ) and CoevRJ. The relative differences using CoevRJ as reference
are reported for (B) the rate heterogeneity, (C) the overall branch length, and (D) the branch lengths shared in both consensus trees. Box-plot whiskers
extend to 1.5× the interquartile range; outliers are not shown. (E) Percentage of inconsistently placed internal nodes between both consensus trees as
defined by the normalized Robinson–Foulds distance (29).

for the significance of predicted coevolving pairs (Materials and
Methods). Given these advantages, the power of CoevRJ to pre-
dict coevolution compared favorably to existing methods on the
16S rRNA dataset (SI Appendix, Fig. S15).

Our findings join previous studies showing that the accuracy
of standard phylogenetic inference is negatively impacted when
dependence among sites is present in the data (14, 15). Phy-
logenetic trees inferred from synthetic datasets with CoevRJ
show that our method can correct these inaccuracies. Similarly,
phylogenetic trees inferred on the eukaryote datasets strongly
differed from the ones inferred with a model assuming that
sites evolve independently. The extent of the divergences were
not predictable with respect to the nature and magnitude of
the coevolutionary predictions. Such inaccuracies in the phy-
logeny could impact analyses using these phylogenetic trees.
For instance, phylogenies inferred on the 16S rRNA datasets
suggested that conflicting conclusions would be reached when
aiming to date the tree of life (Fig. 4).

The machinery developed for CoevRJ can be extended to
other mixtures of models for RNA, DNA, or amino acid
sequences. For instance, a targeted study of the secondary struc-
ture of RNA could be conducted by replacing the Coev model
by models accounting for substitution between Watson–Crick
pairs and wobbling pairs (e.g., refs. 8 and 32). However, fur-
ther improvements to the performance of this machinery are
required to relax the most limiting assumptions on the cur-
rent mixture of models to better integrate the richness and
complexity of molecular evolution. For instance, the assump-
tion of rate homogeneity of the coevolving pairs could be
relaxed by adding a Gamma model of rate heterogeneity, as
for the independent sites, or by considering a mixture of coevo-
lutionary processes with different substitution rates (d , s, r).
Additionally, extending the model to consider coevolution at
more than two sites at a time (e.g., triplet, quadruplet, or
n-tuple) could better capture the potential underlying molec-
ular structures. Finally, the study of coevolution in protein-
coding genes would deeply benefit from the integration of
codons or amino acid models, which is currently computationally
prohibitive.

Extending CoevRJ to amino acid models would enable further
investigation of the effect of dependent sites on dating of the
tree of life, which is frequently achieved by analyzing the RNA
and the proteins in the small ribosomal subunit (16, 17). Solv-
ing this computational challenge would also facilitate the study
of protein–protein interactions (4) jointly with the underlying
evolutionary process. While several methodological challenges
remain, our approach paves the way to a new generation of more
realistic models of molecular evolution. Improving our under-

standing of the shared history of genes and species requires
that we integrate more complexity in evolutionary models (33),
and our method demonstrates that such additional complexity
is counterbalanced by a significant improvement of the inferred
phylogenetic relationships and (co)evolutionary processes.

Materials and Methods
Evolutionary Models. We designed a set of models in which nucleotides can
either evolve independently of the others or according to a coevolutionary
process whereby pairs of sites evolve in a mutually dependent fashion. The
proportions of both types of sites in an alignment, as well as the specific
assignment of each site to either model, is assumed to be unknown and
estimated from the data.

Our Bayesian model allows us to jointly infer the following parameters
(which are described in detail in the paragraphs below):

i) the phylogenetic tree (topology and branch lengths) describing the
relationships between genes;

ii) the number of pairs of coevolving sites in the alignment;
iii) the assignment of each individual site to either a coevolving pair or to

the set of independently evolving sites;
iv) the parameters of the substitution model describing independent site

evolution; and
v) the parameters of the substitution model for coevolving pairs of sites.

Independent substitution model. Independent sites are modeled as evolv-
ing under the GTR+Γ model (21). This model accounts for rate heterogeneity
using a discrete Gamma distribution model with four different rate multi-
pliers known as the GTR+Γ. We identify the instantaneous rates quantifying
the rate of change from one nucleotide to another (a, b, c, d, e, f), as well
as the parameter α defining the shape of the Gamma distribution with
θGTR. We scale the instantaneous rate matrix QGTR by the sum of its off-
diagonal elements to disentangle the effect of the branch lengths t and the
rate parameters (a, b, c, d, e, f).

The likelihood of each independent site contained in the set Sindep

is computed separately using the Felsenstein pruning algorithm (13) on
the phylogenetic tree τ . The joint likelihood, under the assumption of
independence among sites, is then computed as

f(XSindep
|τ , t, θGTR) =

∏
i∈Sindep

f(Xi|τ , t, θGTR)

with τ identifying the tree topology.
Dependent substitution model. Dependent sites are assumed to follow a
pairwise coevolution model adapted from ref. 11. Under this model, a pair
of sites defined by two positions (i, j) in the alignment are assumed to
evolve within a profile of coevolution identified as φ. Following ref. 11,
we define as “coevolving profile” the set of coevolving nucleotides for two
sites (e.g., AT and CG). For any pair of nucleotides, there exist up to 192
possible profiles representing all of the possible combinations of pairs of
nucleotides (34).

Since the Coev model does not allow double substitutions, evolutionary
changes within the coevolving profile require at least two substitutions,
for instance AT → GT → CG. We model this process with two parameters
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describing (i) the rate at which a coevolving pair is replaced by a noncoe-
volving one (e.g., GT), thus exiting the coevolving profile, and (ii) the rate
at which the pair of sites return to the coevolving profile (e.g., CG). We indi-
cate the two rates with s and d, respectively. In a coevolving pair, we expect
the rate d to be much larger than the rate s, that is, it should be rare to
leave a coevolving profile (low s) and it should be highly probable to regain
a coevolving pair (high d). Therefore, the ratio d/s expresses the attraction
of pairs of positions to stay within the coevolving profile. Additionally, sub-
stitutions maintaining the pair of positions out of the profile occur at rate r
for each position.

The matrix of instantaneous substitution rates QCoev is then composed of
the rates qij quantifying the rate of going from a pair of nucleotides i to the
pair j and defined by

qij =


0, if i and j differ at more than one nucleotide,
r, if i /∈φ and j /∈φ,
s, if i∈φ and j /∈φ,
d, if i /∈φ and j∈φ.

Branch lengths were not inferred by the original Coev method. There-
fore, substitution rates were assumed to be consistent under the site-
independent and site-dependent hypotheses. In other words, a substitution
on two independent sites was equivalent to two substitutions on a pair of
sites such that the total number of substitutions was preserved. This was
achieved by doubling the length of branches under the Coev model.

Here we relax that assumption by inferring from the data the factor
describing the difference in units of branch length between independent
and coevolving substitutions. Branch lengths are therefore decoupled for
sites under dependent and independent evolution by a rate modifier ν. This
modification leads the probability transition matrix for coevolving pairs to
be computed as

PCoev = exp(ν× ti ×QCoev )

for the ith branch. As for the QGTR, we normalize the matrix QCoev to disen-
tangle the effects of the branch length t and the rate scaling ν. Furthermore,
we assume that all coevolving pairs share the same parameters r, d, s of the
matrix QCoev , whereas an individual coevolving profile φ is estimated for
each pair.

In summary, a set of dependent sites Sdep is formed of k pairs. Each pair
is characterized by its positions and profile ρk = {il, jl,φl : ∀l∈ [1 . . . k]}) and
its evolution is characterized by the modified Coev substitution model with
parameters θCoev = (r, s, d, ν). The likelihood of each coevolving pair is com-
puted using the Felsenstein pruning algorithm (13) on the phylogenetic tree
τ . The joint likelihood of dependent sites is then given as

f(XSdep
|τ , t, θCoev , ρk) =

∏
(i,j,φ)∈ρk

f(Xi , Xj|τ , t, θCoev ,φ).

This model therefore assumes independence between coevolving pairs and
thus does not directly account for dependence between three or more sites.
The set of models. Given sequences of N sites, we consider the set of models
defined by the number of coevolving pairs k such that k∈ [0, . . . , bN/2c].
These N sites are split in a subset of independent sites Sindep and a subset of
coevolving pairs (dependent sites),

Sdep =
⋃

(i,j,φ)∈ρk
(i∪ j).

Although site assignment to either category can change during the Bayesian
sampling algorithm, each site is exclusively dependent or independent in a
given sample (Sindep ∩ Sdep = ∅) and, if dependent, a site can only be present
in one pair at a time. Finally, the joint likelihood of both types of sites is
given as

f(X|τ , t, θGTR, θCoev , ρk) = f(XSindep
|τ , t, θGTR)

× f(XSdep
|τ , t, θCoev , ρk).

Bayesian Framework. We implemented the models in a Bayesian frame-
work named CoevRJ that estimates all of the free parameters θ=

(τ , t, θGTR, θCoev , ρk)as well as the number of pairs k. We used the RJMCMC
algorithm (20) to estimate the joint posterior distribution of the parameters
and models space:

π(θ, k|X)∼ p(k)p(θ|k)× f(X|θ, k),

which contains the probability for how many and which sites evolve inde-
pendently or in coevolving pairs. The analysis starts from a model where all

sites are independent (k = 0) and proposes alternative configurations where
pairs of sites are coevolving.
Proposals. To explore this complex parameter and model space, we
designed several proposals. Two types of parameters were differentiated:
those that do or do not depend on k.
Proposals for the phylogenetic tree and GTR+Γ model parameters. These
proposals aim to update the branch lengths t, the tree topology τ , and the
parameters θGTR. The space of phylogenetic tree topologies τ is sampled by
using the stochastic nearest-neighbor interchange as well as the extended
subtree pruning and regrafting proposals, while the continuous parameters
of this category are sampled using adaptive multivariate normal proposals
as described in ref. 35.
Proposals for the Coev model parameters (k > 0). The parameters θCoev

are sampled whenever k> 0. The branch-length scaling factor ν is updated
using two different proposals. The first one is a simple multiplier proposal.
The second proposal accounts for a potential negative correlation between
ν and t enabling both sets of parameters to change without impacting the
overall number of substitutions in the phylogenetic tree.

Negative correlation between these parameters may happen when the
model transitions from a purely independent sites model (k = 0) to a
model with many coevolving pairs (k� 0) evolving faster than the indepen-
dent sites (ν� 2). Under these circumstances, many independent proposals
would be required to reduce the branch lengths t while increasing ν, and
therefore would strongly impact the mixing and the convergence of the
sampling process.

Therefore, we account for this negative correlation by proposing a move
with a multivariate normal distribution N (0, Σ) having covariance matrix
Σ∈R|t|+1×R|t|+1, where the ith row corresponds to the branch length ti

and the last row corresponds to the parameter ν. This covariance matrix is
built such that

Σi,j =


σ2

t , if i = j and i< |t|+ 1
σ2
ν , if i = j and i = |t|+ 1
−δσtσν , if i 6=j and i = |t|+ 1 or j = |t|+ 1
δσ2

t , otherwise

with δ= 0.95 and variances arbitrarily fixed (e.g., σt = 10−2/
√
|t| and

σν = 5 · 10−3). The choice of these parameters results from empirical obser-
vations on the mean (Monte Carlo) sampling variance of branch length t and
the multiplier ν. The value of the δ parameter enforces that we expect sig-
nificant correlations between the branch lengths and a negative correlation
with the rate multiplier.

Furthermore, given that the QCoev matrix is normalized, the parameters
r, s, d are defined on the [0, 1] interval and have their sum constrained to
one. To obtain an efficient sampling of such parameters, we use the repa-
rameterization described in ref. 36. We replace the parameters r, d, s by the
parameters ψ1,ψ2,ψ3. The values of r and d are then given as

r =
exp (ψ1)∑
j exp

(
ψj
) and d =

exp (ψ2)∑
j exp

(
ψj
).

We then fix the parameter ψ3 = 0. One of the advantages of this reparam-
eterization is that the new parameters ψi are lying in R and can thus be
sampled with standard proposal kernels. We therefore sample parameters
ψ1 and ψ2 using normal distributions with variances empirically calibrated
to provide proper mixing on simulated datasets.
Proposals affecting k and the positions of pairs. We have three different
types of proposals that operate on the parameters k and φk; specifically, the
proposals (i) add and remove pairs, (ii) change sites included in a pair, and
(iii) change the coevolving profile in a pair.
Proposals moving through the model space. The first two proposals are
transdimensional moves because they change the number of parameters
in the model and their acceptance probabilities are given by the RJMCMC
algorithm (20). Our set of models defines a sequence of models Mk with
k∈ [0, . . . , bN/2c]being the number of pairs and with each model having nk

parameters identified by θ. The sequence Mk increases the model complexity
such that nk < nk+1.

The probability of making a jump from a model M = Mk with parameters
θ to a more complex model M′ = Mk+1 with parameters θ′ is given as

min
{

1, A(θ, θ′)
}

, [1]

where A is defined as

A(θ, θ′) =
π(θ′)

π(θ)︸ ︷︷ ︸
Posterior ratio

×
p(M′)

p(M)
×

p(u′)

p(u)︸ ︷︷ ︸
Hastings ratio

×
∣∣∣∣∂(θ′, u′)

∂(θ, u)

∣∣∣∣︸ ︷︷ ︸
Jacobian

. [2]
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The first ratio represents the ratio of posterior probabilities. The second
is the ratio of the proposal probabilities and the third is the ratio between
the probability of drawing the random values required for the moves.
The last term is the Jacobian of the mapping function that defines
the relation between the parameters and the auxiliary variables in both
models.

When proposing a move to a model having a different number of param-
eters, vectors of random numbers u∼ p(u) and u′∼ p(u′) are drawn such as
to complete the parameters spaces of Mk and Mk+1 such that nk + mk =

nk+1 + mk+1 with u∈Rmk and u′ ∈Rmk+1 . Assuming independent random
numbers ui ∈ u, the probability of drawing u is defined as

p(u) =
∏mk

i=1
p(ui).

To move from model Mk to Mk+1, we first draw a pair of independent sites.
For the sake of simplicity, we consider hereafter that sites and profiles are
drawn from uniform distributions. The notation used, however, accommo-
dates more sensible approaches (see SI Appendix for details of the CoevRJ
implementation).

In this proposal, a pair of positions is drawn by first selecting a position
i∼ p(i|Sindep) and then a second position j∼ p((i, j)|Sindep, i). The probability
p(M) of making this move is given as

p(M) = p(i|Sindep)p((i, j)|Sindep, i)

+ p( j|Sindep)p((i, j)|Sindep, j).

A new profile must then be assigned to this new pair by drawing it directly
from the distribution φ∼ p(φ|i, j).

The opposite move going from Mk+1 to Mk removes a pair arbitrarily
chosen among the k + 1 existing pairs with probability p(M′) = 1/(k + 1).
Since this move only removes parameters, no random numbers u′ are
drawn. Therefore, Eq. 2 defining the acceptance probability of both moves
simplifies to

A(θ, θ′) =
π(θ′)

π(θ)
×

p(M′)

p(M)
×

1

p(u)
×
∣∣∣∣ ∂(θ′)

∂(θ, u)

∣∣∣∣ . [3]

Additionally, given that the random parameters u are drawn independently
from the current parameter value θ, the last term of Eq. 3, the determinant
of the Jacobian, is equal to 1.

For the general case where k> 1, the probability of making the move
(Mk→Mk+1) is then given by Eq. 3. The probability of a backward move
(Mk+1→Mk) is given as A(θ, θ′)−1. In the special case identified by the
proposals M0↔M1, that moves from a model having only independent
sites (k = 0) to a model having one coevolving pair (k = 1), parameters
θCoev as well as ν must be proposed. Coev parameters ψ1 and ψ2 are
drawn from independent normal distributions with parameters (µ1,σ2

1 ) and
(µ2,σ2

2 ), respectively, while the branch-length scaling factor ν is drawn from
a Gamma distribution with parameters (αν , βν ). In CoevRJ, these distribu-
tions have been tuned to result in more efficient proposals. For this special
move, the probability p(u) is therefore altered and is given by

p(u) = p(φ|i, j)p(ν|αν , βν )p(ψ1|µ1,σ2
1 )p(ψ2|µ2,σ2

2 ).

Proposals sampling the pair space (k > 0). Two proposals aim to pro-
vide a proper mixing of the pairs of positions under coevolution without
affecting the number of pairs k and are subject to the standard Metropolis–
Hastings acceptance ratio (37). The first proposal breaks an existing pair and
exchanges one of its positions with a site considered as independent. A pair
(i, j) is selected arbitrarily among the existing k pairs. The position kept y
is equal to i with probability p(y = i) = S(i)/(S(i) + S(j)), otherwise the posi-
tion y = j with probability p(y = j) = 1− p(y = i). The position y′ = (i∪ j) \ y
is then removed from the pair.

The independent site z is drawn from the probability distribution
p((y, z)|Sindep, y) and a new profile φ is drawn according to the profile
probability distribution p(φ|y, z). The Hastings ratio for this move is thus
given by

(1/k)× p(y|y, z)× p((y, y′)|Sindep, y)× p(φ|i, j)

(1/k)× p(y|i, j)× p((y, z)|Sindep, y)× p(φ|y, z)
.

The second proposal chooses two pairs P1, P2 arbitrarily among the existing
k and mixes their positions randomly. Once the new pairs P′1, P′2 are created,
new profiles φ′1 and φ′2 have to be drawn. This proposal is symmetrical with

the exception of the proposals on the profiles. The Hastings ratio is then
given by

p(φ1|P1)× p(φ2|P2)

p(φ′1|P
′
1)× p(φ′2|P

′
2)
.

Proposals exploring the profile space θ (when k > 0). The last proposal sam-
ples the possible profiles for any given coevolving pairs by drawing a new
profile φ for a pair (i, j) according to the probability p(φ|(i, j)). Its Hastings
ratio is equal to 1 given that such moves are symmetric.
Priors on standard parameters. We assume a uniform prior on the tree
topology τ and an exponential prior on each branch length with rate
λ= 10. The Gamma rate distribution modeling the rate heterogeneity
of independent sites is defined by its shape parameter α for which we
assume an exponential distribution with rate λ= 0.005. Finally, to main-
tain consistency with the GTR model implemented in MrBayes (23), the
exchangeability rates of this model are assigned a flat Dirichlet prior
distribution.
Priors on Coev model parameters. The branch-length scaling parameter ν
for the coevolving pairs has a Gamma prior distribution with shape and
scale parameters equal to 2. This distribution has its mode located at 2,
which expresses our prior belief that two dependent sites should evolve
at the same pace as two independent sites. Parameters ψ1,ψ2 that are
used to reparameterize the parameters (r, s, d) have a normal prior distri-
butionN (µψi

,σ2
ψi

). These normal distributions are defined such as to favor
a substitution rate d greater than the others (SI Appendix, Table S4). This
parameterization reflects our belief that pairs of sites under coevolution
should differ from an independent evolutionary process (i.e., r = d = s) and
be constrained to stay within the profile (i.e., high d/s ratio), which is also
supported by empirical findings and simulations (11).

For the 16S rRNA dataset, we used results from the Coev model (11)
to estimate informed prior distributions on parameters (r, s, d), which we
derived following the methodology described in refs. 36 and 38. We com-
puted the mean and SD of parameters (r, s, d) from pairs of positions with
significant support for the Coev model (∆AIC> 6). Using these values, we
estimated the moments of the prior distributions for the ψ1,ψ2 parame-
ters. The resulting parameterization (SI Appendix, Table S4) is close to the
one defined for the default prior that results in a stationary frequency for
nucleotide pairs in the profile to be close to 80%.

Finally, we defined a uniform prior distribution on the profile φ based on
the set of profiles observed in the alignment for a given pair of positions.
This empirical prior reduces the space of parameters to explore and plays
a key role in making analysis tractable with CoevRJ. However, this simpli-
fication implies that pairs of sites cannot (co)evolve under an unobserved
profile (e.g., invariant sites are evolving under an independent process by
default).

While more informative priors on the distribution of profiles could be
used for specific type of molecular data (e.g., favoring Watson–Crick pro-
files for RNA sequences), we chose to use this conservative and vague prior
since it accommodates the wide range of scenarios we considered including
coevolution within DNA sequences. Under this prior, the marginal proba-
bility of the profiles inferred on the 16S rRNA dataset showed that the
method had the power to infer the profile even without more informa-
tive priors. Indeed, 71% of the estimated coevolving pairs followed a pure
Watson–Crick profile (AT, CG) and 17% of the pairs evolved under a pro-
file containing canonical pairs coupled with other ones (AT, XX or CG, XX
or AT, CG, XX). These results suggest that our priors do not prevent us from
inferring common coevolving profiles.
Priors on the number of pairs. We used a hierarchical prior on the number
of pairs k by assigning a Poisson distribution with rate λ on the number of
pairs and by an exponential distribution with parameter αλ as a hyperprior
on λ. This scheme enables the parameter λ to be estimated using Gibbs sam-
pling. We fixed the value of αλ to 10. This hyperprior results in an expected
value for λ of 0.1 (i.e., a Poisson distribution with mode at k = 0), which
expresses our prior belief that coevolution should be a rare evolutionary
event. Furthermore, the choice of parameter αλ was validated by analyses
conducted on the simulated datasets (SI Appendix, Fig. S16). The parameter
values used for the hyperprior maintained k close to the true number of
simulated coevolving pairs.
Priors on the configuration of pairs. The last prior defines the probability of
observing a given set of coevolving pairs of positions. We assumed a uniform
prior reflecting that pairs of sites are considered a priori to be equally likely
to be under coevolution. Under this assumption, the prior is given by the
number of possible configurations of k pairs for a sequence of N positions.
Considering that we do not differentiate the order of positions in a pair, the
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total number of configurations for a given k is defined as

∏k−1

i=0

(N− 2i)(N− (2i + 1))

2
=

N!

2k(N− 2k)!
.

Furthermore, we do not differentiate the ordering of the k pairs. There are
k! permutations for a set of k pairs and thus the total number of ordered
configurations is given by

M(k, N) =
N!

2k(N− 2k)!

1

k!
.

The probability of observing a given configuration is then given as
p(·|k, N) = (M(k, N))−1.

Significance of Pairs Inferred as Coevolving. To confidently consider pairs to
be coevolving, we designed a method defining a threshold Tsig on the prob-
ability at which a pair is considered as strongly significant. This threshold
ensures that we only report pairs predicted with a marginal posterior proba-
bility significantly higher from the one we expect from the random sampling
of pairs under a uniform prior on their positions integrated over the prior
probability of seeing any given number of pairs.

We define this threshold after an MCMC run with CoevRJ by using the
inferred posterior probability πij of a given pair (i, j) to compute the Bayes
factor

BF =
πij

1−πij
/

pij

1− pij
, [4]

where pij is the prior probability of pair (i, j) to be coevolving.
This prior probability pij explains the uniform probability of observing

pair (i, j) assuming that every pair is equally likely to be sampled. This prob-
ability is conditioned on the number of pairs k, such that pij = p(k)p(i, j|k).
Here we adopt a conservative approach and use the inferred posterior prob-
ability of k as the probability p(k). The prior probability of sampling a pair
given k is defined as

p(i, j|k) = p(i, j|q = 1)

+

k∑
v=2

p(i, j|q = v) ·
v−1∏
w=1

[p(i, j|q = w)]


p(i, j|k) =

2k

N(N− 1)
,

where N defines the number of nucleotides in the sequence. The probability
of drawing pair (i, j) at step l− 1 is given as

p(i, j|q = (v− 1)) =
2

(N− 2v)(N− 2v− 1)
,

while the probability of not drawing i or j is defined as

p(i, j|q = (w− 1)) =

(
1−

2

N− 2w

)(
1−

2

N− 2w− 1

)
.

The significance threshold Tsig for a pair is then derived from Eq. 4 by
using the threshold for strong significance 2ln(BF)> 10 suggested by Kass
and Raftery (39). When applied on the posterior distribution inferred with
CoevRJ on the 16S rRNA dataset, this approach resulted in a threshold
of ≈ 0.05. Pairs inferred with a posterior probability smaller than this value
were therefore treated as insignificant.

Experimental Setting. Experiments on all of the datasets consisted of a com-
parison of results obtained with CoevRJ to the ones obtained with the
GTR+Γ model assuming site independence as implemented in MrBayes (23).
Prior distributions in MrBayes were set as the ones for CoevRJ with k = 0.

Both implementations were run under similar settings with four processors
dedicated for MC3 (40).

Runs were considered as having converged when the distribution of tree
topologies stabilized [i.e., when the average SD of the splits frequencies
(41) was measured to reach 0.05 using three independent runs for each
dataset]. In addition, the parameter traces were examined to ensure proper
convergence. The burn-in phase of each run was discarded and the remain-
ing samples were used to estimate the posterior distribution. Comparisons
between tree distributions were conducted by (i) computing the majority-
rule consensus tree from the tree distributions obtained under each model
and (ii) computing the normalized Robinson–Foulds distance (29) between
the consensus trees.
Simulation of datasets. We simulated five categories of nucleotides
sequences with varying amount of coevolving sites (0, 5, 10, 20, and 50%).
We simulated 50 replicates for each of these categories. For each replicate,
we simulated a random phylogenetic tree with 50 tips using the R pack-
age APE (42) with branch length drawn from an exponential distribution
(λ= 15). This tree was used to generate an alignment composed of 1,000
nucleotides.

Sites evolving independently were simulated with the Evolver simulator
(43) using a GTR+Γ model with arbitrary rates. The shape parameter α of
the Gamma distribution was drawn from a distribution Gamma(4, 2).

Pairs of coevolving sites were simulated using the Coev simulator (34).
Each pair was attributed a random profile composed of two nucleotide
pairs (e.g., AA, CC). The parameters for the Coev simulator were set to
r1 = r2 = 0.5, d = 100 and s = 1. such as to generate strongly coevolving
pairs of sites (d/s = 100). For both the site-independent and site-dependent
models, we assumed equal base frequencies for each state (i.e., 25%
for each state in the GTR model and 6.25% for each state in the Coev
model).
Proximity of nucleotides on the 3D structure of the 16S rRNA dataset. To
validate CoevRJ predictions of coevolution on the 16S rRNA dataset, we
compared these results with pairs of nucleotides located closely on the 3D
structure of the molecule (and thus potentially bonding). These pairs were
identified as nucleotides having their two closest atoms at a distance of less
than 6.5 Å. This threshold is consistent with the one used in ref. 18 (8 Å) and
is representative of the average resolution of the Protein Data Bank (PDB)
structure considered (24–26). The results obtained with this threshold are
robust when considering other possible values in the range of 4 Å to 8 Å
(SI Appendix, Fig. S3).
Molecular dating of the 16S rRNA dataset. We analyzed the consensus trees
obtained with both CoevRJ and the pure GTR+Γ model using the penalized
likelihood framework (27) as implemented in the R package APE (42). We
used multiple relaxed molecular clock models (i.e., correlated and relaxed)
to ensure that our observations were not due to the use of a specific model.
Furthermore, each model was used under four different λ values, changing
the strength with which the rate is constrained along branches. This param-
eter took the value {0, 0.1, 1, 10}ranging from rates along the branch being
totally independent to strongly related.

Data Availability. The simulated and empirical molecular sequences
used for the analyses can be found on the CoevRJ git repository
(https://bitbucket.org/XavMeyer/coevrj). The PDB structures used to validate
the findings can be accessed on the RSCB PDB (https://www.rcsb.org) with
the identifiers 4GD2 (E. coli, ref. 24), 5VYC (H. sapiens, ref. 25), and 4V6W
(D. melanogaster, ref. 26).
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