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Transcriptome-Wide Association Study
Identifies Susceptibility Loci and Genes
for Age at Natural Menopause
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Abstract
Objective: To identify novel susceptibility genes for age at natural menopause (ANM). Methods: Using transcription data
generated in tissues from normal hypothalami (n ¼ 73) and ovaries (n ¼ 68) and high-density genotyping data provided by the
Genotype-Tissue Expression (GTEx) database, we built 16 164 genetic models to predict gene expression across the tran-
scriptome in these tissues. We used these models and summary statistics data from genome-wide association studies (GWAS) of
ANM generated in 69 360 women of European ancestry to identify genes with their predicted expression related to ANM.
Results: We found the predicted expression of 34 genes to be significantly associated with ANM at a Bonferroni-corrected
threshold of P < 3.09 �10�6. These include 4 genes located more than 1 Mb away from any previously GWAS-identified ANM-
associated variants, 24 genes that reside in known GWAS-identified loci but have not been previously implicated, and 6 genes
previously implicated as ANM-associated genes. Conclusion: Results from this transcriptome-wide association study, which
integrated Expression quantitative trait loci (eQTL) data with summary statistics of GWAS of ANM, improves our understanding
of the genetics and biology of female reproductive aging.
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Introduction

Age at natural menopause (ANM), occurring at an average age

of 50 to 52 years among women of European ancestry, marks

the end of a woman’s normal reproductive life. Premature

menopause and late age at menopause have both been linked

to increased or reduced risk of various diseases such as cardi-

ovascular diseases and breast cancer.1-6 Recent genome-wide

association studies (GWAS) among women of European

ancestry have identified 54 independent single-nucleotide

polymorphisms (SNPs) at 44 loci being associated with

ANM.1,7-9 However, the ANM-associated variants explain

<6% of variance in ANM,1 suggesting there are many addi-

tional genetic association signals for ANM yet to be identified.

A substantial proportion of the ANM-associated variants are

located in non–protein-coding or intergenic regions.1 It has

been hypothesized that most of the GWAS-identified associa-

tions may be driven by the regulatory functions of specific

identified variants or their tagged variants on the expression

levels of genes that are involved in the physiology of complex

traits or in the etiology of diseases.10-12 For ANM, GWAS-

identified associations at multiple loci were suggested to be

due to the effect of the variants in these loci on regulating the

expression of approximately 25 genes.1,9 For example, the

index SNP rs365132, a synonymous variant in the UIMC1

gene, regulates expression of both the coding gene itself and

the downstream genes ZNF346 (71 kb) and FGFR4 (135 kb).1

Yet, for the majority of the GWAS-identified ANM loci, the

genes responsible for the associations remain undiscovered.

Recently, a transcriptome-wide association study (TWAS)

approach has been developed to systematically investigate the

association of genetically predictable gene expression with
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complex traits. This approach has been shown to have the

potential to identify the genes responsible for GWAS-

identified associations for complex traits and diseases.13-17

Instead of testing millions of SNPs in GWAS, TWAS evaluates

the association of predicted expression for thousands of genes,

greatly reducing the burden of multiple comparisons in statis-

tical inference. A recent TWAS has successfully identified

more than 200 candidate genes for age at menarche.18 In the

present study, we report results from the first large TWAS of

ANM, involving 69 360 women of European ancestry.

Materials and Methods

Building of Gene Expression Prediction Models

We used transcriptome and high-density genotyping data from

the Genotype-Tissue Expression (GTEx) database to establish

prediction models for genes expressed in normal hypothalamus

and ovary tissues. These tissues were chosen because they are

particularly relevant to puberty timing and ovary aging.1 Details

of the GTEx have been described elsewhere.19 Genomic DNA

samples obtained from study participants included in the GTEx

were genotyped using Illumina OMNI 5 M or 2.5 M SNP (Illu-

mina, Inc., San Diego, CA, USA) Array, and RNA samples from

different tissue sites were sequenced to generate transcriptome

profiling data. We used genotyping and transcriptome data from

women of European descent to build hypothalamus tissue (n ¼
73) and ovary tissue (n¼ 68) gene expression prediction models

. Genotype data were processed according to the GTEx protocol

(http://www.gtexportal.org/home/documentationPage). The

SNPs with a call rate <98%, with differential missingness

between the 2 array experiments (5 M/2.5 M Arrays), with

Hardy-Weinberg equilibrium P value <10�6 among participants

of European ancestry, or showing batch effects, were excluded.

One Klinefelter individual, 3 related individuals, and a chromo-

some 17 trisomy individual were also excluded. The genotype

data were imputed to the Haplotype Reference Consortium ref-

erence panel20 using Minimac3 for imputation and SHAPEIT for

prephasing.21,22 The SNPs with high imputation quality (RSQR

�0.8), Minor allele frequency (MAF) �0.05, included in the

HapMap Phase 2 version, were used to build expression predic-

tion models. For gene expression data, we used Reads Per Kilo-

base per Million (RPKM) units from RNA-SeQC.23 Genes with

a median expression level of <0.1 RPKM across samples were

removed, and the RPKM values of each gene were log2 trans-

formed. We performed quantile normalization to bring the

expression profile of each sample to the same scale and per-

formed inverse quantile normalization for each gene to map each

set of expression values to a standard normal. We adjusted for

the top 3 principal components (PCs) derived from genotype

data and the top 15 probabilistic estimation of expression resi-

dual (PEER) factors to correct for batch effects and experimental

confounders in model building.24 Sex was adjusted during the

gene expression process.

We built an expression prediction model for each gene with

the elastic net method using the glmnet R package, with a¼ .5,

as recommended by Gamazon et al.13 The genetically regulated

expression for each gene was estimated by including variants

within the 2 Mb flanking region of each gene. Expression pre-

diction models were built for protein-coding genes, long non-

coding RNA genes (lncRNAs), microRNAs (miRNAs),

processed transcripts, immunoglobulin genes, and T cell recep-

tor genes, according to categories described in the Gencode

V19 annotation file (http://www.gencodegenes.org/releases/

19.html). Pseudogenes were not included in the present study

because of potential concerns of inaccurate calling.25 The 10-

fold cross-validation strategy was used to validate the models

internally. The prediction R2 values (ie, the square of the cor-

relation between predicted and observed expression) were gen-

erated to estimate the prediction performance of each of the

gene prediction models established.

Summary Statistics of ANM GWAS

The summary statistics results of the GWAS of ANM were

downloaded from the Reproductive Genetics Consortium

(ReproGen) website (http://www.reprogen.org/data_down

load.html) in December 2016. This GWAS comprised a max-

imum total sample size of 69 360 women of European des-

cent, and the detailed information was described elsewhere.1

Briefly, the GWAS comprised 33 individual studies using

self-reported ANM. In each study, ANM associations were

assessed using all autosomal SNPs imputed to reference

panels of HapMap Phase 2 or 1000 Genomes Projects and

under an additive model adjusted for top PCs and study-

specific covariates. After standard quality control protocols,

the study-specific results were then combined using an

inverse variance-weighted meta-analysis. Only SNPs of no

ambiguous strand (not A/T or C/G) and with MAF >0.01 were

used for the present study.

Association Analyses of Predicted Gene Expression
With ANM

We selected genes with a model prediction R2 of�.01 in either

ovary or hypothalamus tissues for association with ANM.

Overall, a total of 16 164 models met the criteria and were

evaluated for their expression-trait associations.

To identify ANM-associated genes, the MetaXcan method26

was used for the association analyses. Briefly, the formula:

Zg �
X

l2Modelg
wlg

ŝl

ŝg

b̂l

seðb̂lÞ
;

was used to estimate the Z-score of the association between

predicted expression and ANM. Here, wlg is the weight of

SNP l for predicting the expression of gene g, b̂l and se(b̂l)

are the GWAS association regression coefficient and its stan-

dard error for SNP l, ŝl and ŝg and are the estimated variance

of SNP l and the predicted expression of gene g, respectively.

Therefore, the weights for predicting gene expression,

GWAS summary statistics results, and correlations between

Shi et al 497

http://www.gtexportal.org/home/documentationPage
http://www.gencodegenes.org/releases/19.html
http://www.gencodegenes.org/releases/19.html
http://www.reprogen.org/data_download.html
http://www.reprogen.org/data_download.html


model-predicting SNPs are the input variables for the MetaXcan

analyses. For this study, we estimated correlations between

SNPs included in the prediction models using 1000 Genomes

Project phase 3 data focusing on European population. We used

a Bonferroni-corrected P threshold of 3.09� 10�6 (0.05/16 164)

to determine a statistically significant association for the primary

analyses.

Functional Enrichment Analysis Using INGENUITY
Pathway Analysis

We performed functional enrichment analysis for our ANM

TWAS-identified protein-coding genes. Canonical pathways,

top associated diseases and biological functions, and top net-

works associated with genes of interest were estimated using

the commercial Ingenuity Pathway Analysis (IPA) software.27

These genes were analyzed for direct and indirect interactions

in the IPA Knowledge Base. The gene enrichment significance

for a pathway or a molecular function was assessed by a right-

tailed Fisher exact test.9 The significance of network associa-

tion was expressed as a score, the negative log of the P value,

denoting the likelihood of the input genes in a network being

found together due to random chance.

Results

Gene Expression Prediction Models

The overall study design is shown in Supplementary Figure 1.

Using GTEx data, we built hypothalamus tissue-based models

for 10 807 genes, among which 7584 showed a prediction

performance (R2) of at least .01 (�10% correlation between

the predicted gene expression and measured gene expression;

Supplementary Table 1). Of the 11 921 ovary tissue models we

built, 8580 showed a prediction performance (R2) of at least .01

(Supplementary Table 2). Based on prior set criteria, we

applied the 7584 hypothalamus tissue-based models and 8580

ovary tissue-based models for analysis of the association

between predicted gene expression and ANM.

Association Analyses of Predicted Gene Expression
With ANM

Using the breast cancer GWAS data of 69 360 women of Eur-

opean ancestry and the 16 164 gene prediction models we built,

we evaluated the predicted gene expression levels for their

associations with ANM. We identified 34 genes to be signifi-

cantly associated with ANM at the Bonferroni-corrected

threshold of P � 3.09 � 10�6 (0.05/16 164; Tables 1-3). These

include 4 genes located at 4 genomic loci that have not yet been

reported to be associated with ANM (Table 1). Lower predicted

expression of EPHX1 (1q42.12), CTD-2044J15.2 (5p15.31),

and RP11-452H21.1 (11q14.1) are associated with increasing

ANM; conversely, higher predicted expression of CTB-

175P5.4 (19p12) is associated with increasing ANM (Table 1).

The remaining 30 significantly associated genes are all located

within 1 Mb from the GWAS-identified ANM-associated var-

iants (Tables 2 and 3). However, the majority of these genes

have not been reported as genes underlying these GWAS-

identified SNPs and ANM associations (n¼ 24; Table 2). Only

6 protein-coding genes (FGFR4, KRTCAP3, PRIM1,

PRRC2A, RLBP1, and ZNF346) have been previously reported

as ANM-related genes through eQTL analyses of GWAS-

identified ANM SNPs (Table 3).1,9 Three other previously

reported ANM-associated genes also showed nominal associa-

tions in the current analyses (under the hypothalamus models:

APTX: P ¼ 9.83 � 10�5; MSH6: P ¼ 1.87 � 10�3; RAD54L:

P ¼ 4.17 � 10�3; under the ovary models: APTX: P ¼ .046;

MSH6: P¼ .031). For these 9 genes, the association identified

in our study showed the same direction with that previously

implicated based on eQTL data and the GWAS-identified var-

iant association (data not shown). Although the literature has

suggested some other candidate ANM-associated genes, which

were not identified in this study, most of them were based on

eQTL analyses using expression data from tissues such as

blood, skin, adipose, and prefrontal cortex.1,9 In this study,

we focused on the tissues most relevant to ANM (ovary and

hypothalamus).

To understand the relationship between our identified asso-

ciations and known GWAS-identified variants for ANM

(Tables 2 and 3), we used a method proposed by Yang et al28

to perform conditional analyses adjusting for the index SNPs in

each of the known ANM-associated regions. We found that

after adjusting for multiple comparisons (0.05/30), the associa-

tions of 5 genes with ANM remained statistically significant at

P < 1.67 � 10�3 (Tables 2 and 3), suggesting that these genes

were associated with ANM at least partially independent of the

index SNPs. In fact, the association of TRAPPC2L with ANM

remained significant at P � 3.09 � 10�6 (Table 2), displaying

Table 1. Novel Expression Trait Associations for Genes Located in Genomic Loci not Previously Reported for Age at Natural Menopause.

Region Gene Model Type Z Score P Valuea R2b

1q42.12 EPHX1 Hypothalamus Protein �4.80 1.61 � 10�6 0.02
5p15.31 CTD-2044J15.2 Ovary LncRNA �5.05 4.53 � 10�7 0.01
11q14.1 RP11-452H21.1 Hypothalamus LncRNA �4.91 9.27 � 10�7 0.04
19p12 CTB-175P5.4 Hypothalamus LncRNA 4.69 2.69 � 10�6 0.33

Abbreviations: Protein, protein coding genes; lncRNA, long noncoding RNA genes.
a P value derived from association analyses, with P � 3.09 � 10�6 considered statistically significant based on Bonferroni correction of 16 164 tests (0.05/16 164).
b R2: Prediction performance derived using GTEx data.
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Table 3. Significant Expression Trait Associations for Genes Previously Implicated for Age at Natural Menopause.

Region Gene Model Type
Z

Score P Valuea R2b
Index

SNP(s)c

Distance to
the Index
SNP (kb)

P Value after
Adjusting for
Index SNPsd

Association
Direction
Reported
Previously Reference

2p23.3 KRTCAP3 Hypothalamus Protein �7.14 9.33 � 10�13 0.06 rs2303369 46 0.003 NA 8

5q35.2 ZNF346 Hypothalamus Protein �6.17 6.88 � 10�10 0.06 rs365132 71 0.94 – 8,9

FGFR4 Hypothalamus Protein 5.03 4.94 � 10�7 0.12 rs365132 135 0.48 – 8

6p21.33 PRRC2A Hypothalamus Protein 6.17 6.67 � 10�10 0.04 rs1046089e Within the
gene

0.07 NA 8

12q13.3 PRIM1 Ovary Protein 4.86 1.19 � 10�6 0.04 rs2277339e Within the
gene

0.68 NA 8,9

15q26.1 RLBP1 Hypothalamus Protein �4.93 8.44 � 10�7 0.02 rs2307449 99 0.39 NA 8

Abbreviations: protein, protein coding genes; SNP, single-nucleotide polymorphism; NA, Not Available.
aP value derived from association analyses, with P � 3.09�10�6 considered statistically significant based on Bonferroni correction of 16 164 tests (0.05/16 164).
bR2: Prediction performance derived using GTEx data.
cIndex SNPs identified in previous genome-wide association studies (GWAS) or fine-mapping studies. When multiple risk variants were identified in the same
region, the SNP closest to the gene is presented.
dUse of COJO method28; all index SNPs in the corresponding region were adjusted for the conditional analyses.
eIndex SNPs rs1046089 and rs2277339 are predicted damaging missense variants in the genes PRRC2A and PRIM1, respectively.

Table 2. Novel Expression Trait Associations for Genes in Genomic Loci Previously Reported for Age at Natural Menopause.

Region Gene Model Type Z Score P Valuea R2b
Index
SNP(s)c

Distance to the
Index SNP (kb)

P Value after Adjusting
for Index SNPsd

2p23.3 ATRAID Hypothalamus Protein �5.47 4.40 � 10�8 0.04 rs2303369 275 .001
2q31.1 AC068039.4 Ovary LncRNA �6.61 3.94 � 10�11 0.26 rs10183486 639 2.02 � 10�5

Hypothalamus LncRNA �4.90 9.62 � 10�7 0.19 rs10183486 639 9.20 � 10�6

5q35.2 HIGD2A Hypothalamus Protein 5.34 9.44 � 10�8 0.03 rs890835 139 2.30 � 10�4

GPRIN1 Hypothalamus Protein �7.58 3.52 � 10�14 0.14 rs890835 67 .01
5q35.3 RP11-1334A24.6 Hypothalamus LncRNA 7.42 1.17 � 10�13 0.01 rs365132 543 3.68 � 10�4

6p21.33 TCF19 Hypothalamus Protein 6.69 2.16 � 10�11 0.07 rs1046089 468 .7
BAG6 Hypothalamus Protein 6.14 8.25 � 10�10 0.01 rs1046089 4 .23
CSNK2B Hypothalamus Protein �4.93 8.39 � 10�7 0.12 rs1046089 30 .06

6p21.33 NOTCH4 Hypothalamus Protein 4.77 1.88 � 10�6 0.01 rs494620 324 .78
9p21.1 AL162590.1 Hypothalamus miRNA 5.26 1.42 � 10�7 0.28 rs4879656 29 .18
12q13.2 SUOX Hypothalamus Protein �4.76 1.97 � 10�6 0.08 rs2277339 746 .03

RP11-603J24.17 Hypothalamus LncRNA �5.06 4.09 � 10�7 0.04 rs2277339 638 .04
ZBTB39 Hypothalamus Protein �6.99 2.70 � 10�12 0.01 rs2277339 247 .07

12q24.31 OGFOD2 Hypothalamus Protein �5.49 4.02 � 10�8 0.17 rs1727326 135 .07
15q15.1 OIP5-AS1 Ovary Transcript �5.27 1.39 � 10�7 0.15 rs9796 305 .16

NUSAP1 Hypothalamus Protein �5.31 1.13 � 10�7 0.42 rs9796 353 2.37 � 10�5

16q24.3 TRAPPC2L Ovary Protein 5.25 1.54 � 10�7 0.05 rs4843747 899 3.09 � 10�9

17q21.2 RAB5C Hypothalamus Protein 5.74 9.22 � 10�9 0.04 rs1799949 938 .006
19q13.42 SSC5D Hypothalamus Protein 4.89 1.00 � 10�6 0.04 rs11668344 166 .34
20p12.3 TMEM230 Hypothalamus Protein �5.22 1.82 � 10�7 0.23 rs236114 842 .01
22q13.1 FAM227A Hypothalamus Protein �6.93 4.07 � 10�12 0.12 rs763121 94 .04

CBY1 Ovary Protein 5.07 3.92 � 10�7 0.38 rs763121 173 .14
RP3-508I15.10 Ovary LncRNA 6.21 5.20 � 10�10 0.17 rs763121 183 .03
RP3-508I15.9 Ovary LncRNA 6.62 3.53 � 10�11 0.24 rs763121 184 .16

Abbreviations: protein, protein coding genes; lncRNA, long noncoding RNA genes; transcript, processed transcript; miRNA, microRNA genes; SNP, single-
nucleotide polymorphism.
aP value derived from association analyses; associations with P � 3.09�10�6 considered statistically significant based on Bonferroni correction of 16 164 tests
(0.05/16 164).
bR2: Prediction performance derived using GTEx data.
cIndex SNPs identified in previous genome-wide association studies (GWAS) or fine-mapping studies. When multiple risk variants were identified in the same
region, the SNP closest to the gene is presented.
dUse of COJO method28; all index SNPs in the corresponding region were adjusted for the conditional analyses.
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strong evidence of association independently from the index

SNPs at 16q24.3.

Pathway Analyses

The IPA suggested that 10 of the 24 identified ANM protein-

coding genes were within 1 major network related to embryo-

nic and organismal development (Supplementary Table 3).

These genes are significantly enriched in several canonical

pathways such as clathrin-mediated endocytosis signaling,

interleukin 2 (IL-2) signaling, and epidermal growth factor

(EGF) signaling (Supplementary Table 3).

Discussion

In this TWAS, we systematically evaluated genetically pre-

dicted gene expression in hypothalamus and ovary tissues for

their association with ANM and identified 34 genes showing a

significant association with ANM at the Bonferroni-corrected

threshold. Among them, 28 genes, including 4 genes located at

4 novel genomic loci (EPHX1 at1q42.12, CTD-2044J15.2 at

5p15.31, RP11-452H21.1 at 11q14.1, and CTB-175P5.4 at

19p12) and 24 genes within the previous GWAS-identified

ANM loci, have not been reported to be associated with ANM.

Several of the protein-coding genes identified in our study

have previously been implicated in female reproductive aging.

The DNA polymerase PRIM1 synthesizes small RNA primers

for the Okazaki fragments made during discontinuous DNA

replication,29 and its coding gene is one of the DNA damaging

genes known to be associated with ovary aging.1 Epoxide

hydrolase 1, encoded by the EPHX1 gene, plays a role in estro-

gen production in the human ovary.30 Methylation of the

EPHX1 promoter is associated with polycystic ovary syn-

drome.31 We found a significant association between decreased

EPHX1 expression in the hypothalamus and an older ANM,

further supporting possible links between EPHX1 and ovary

development and reproductive aging. In this study, we also

identified 8 lncRNAs to be associated with ANM. Although

lncRNAs have been shown to play important roles in the reg-

ulation of gene expression, cell biology, and cancer develop-

ment, including carcinogenesis of breast cancer,32,33 the

molecular and biological functions of lncRNAs in ovary aging

have not been previously reported and our interesting findings

warrant further investigation.

To our knowledge, this is the first large study using a TWAS

design to identify candidate susceptibility genes of ANM. We

used data from the largest available GWAS of ANM in our

analyses, providing high statistical power for the association

analysis. Unlike a typical GWAS study, we have been able to

provide information on direction of the association for the

identified genes by evaluating the associations of predicted

gene expression, which could facilitate future functional inves-

tigations. On the other hand, several potential limitations need

to be considered to appropriately interpret our findings. First,

although we have used the conservative Bonferroni-corrected

threshold to minimize type 1 error, we acknowledge that

false-positive associations may still exist in our TWAS. Our

approach could not completely exclude the possibility that the

identified genes are associated with ANM merely through a

linkage disequilibrium between SNPs predicting the expression

of corresponding genes and a causal SNP of ANM acting

through an alternative mechanism (so-called LD contamina-

tion). Co-regulation (ie, a variant regulating the expression of

multiple genes) may also have resulted in false positives in the

study. We identified several genes colocalized at the same

locus (eg, 12q13.2 locus) showing a same direction of effect

but were not able to pinpoint which of them is the truly causal

gene. Future functional studies evaluating functional signifi-

cance of our identified genes in menopausal timing are

needed. Second, the sample sizes for building gene expression

prediction models of normal hypothalamus and ovary tissues

were relatively small, which could affect the precision of

parameter estimates of the built models. Prediction models

built with a larger sample size in future efforts would help

identify additional candidate genes associated with ANM.

Furthermore, although our findings are based on the largest

available GWAS to date, future efforts to use data from addi-

tional resources, for example, the UK Biobank,34 would be

necessary to uncover additional ANM genes and replicate our

identified associated genes.

Primary ovarian insufficiency (POI) or premature ovarian

failure (POF), defined by menopause before the age of 40, can

have significant physical and psychological impacts on

affected women. Previous studies have reported multiple genes

associated with POI/POF.1,35,36 However, none of these genes

were found to be related to ANM in our study, probably due to

low statistical power, as POI/POF only occurs in approximately

1% of all women.37 Lack of information on POI/POF prevented

us from investigating this phenotype.

In summary, we performed the first TWAS of ANM, result-

ing in the identification of multiple genes associated with

ANM. These genes are enriched in the embryo and organism

development network and are likely to be involved in ovarian

aging. Results from our study improve the understanding of the

genetics and biology of female reproductive aging.

Authors’ Note

Jiajun Shi, PhD, and Lang Wu, PhD, contributed equally to this study.

X.O.S. and W.Z. conceived the study. L.W. and J.S. contributed to

the study design and performed the statistical analyses. J.S. and L.W.

drafted the manuscript with significant contributions from X.O.S. and

W. Z. Y. L. contributed to the model building. X.G. contributed to the

pathway analyses. All authors provided suggestions during the data

analyses, participated in data interpretation, and critically reviewed

and approved the final manuscript.

The Genotype-Tissue Expression (GTEx) Project data were

obtained from the GTEx Portal (https://www.gtexportal.org/home/

datasets). Institution of Research: Vanderbilt University School of

Medicine.

Acknowledgment

The authors wish to thank the Reproductive Genetics Consortium for

making the GWAS summary statistics data publicly available (http://

500 Reproductive Sciences 26(4)

https://www.gtexportal.org/home/datasets
https://www.gtexportal.org/home/datasets
http://www.reprogen.org/data_download.html


www.reprogen.org/data_download.html). The GTEx dataset version

phs000424.v6.p1 was used in the study under the dbGaP-approved

protocol #22412-8. The authors acknowledge and thank the

Genotype-Tissue Expression (GTEx) consortium for making data

publicly available via dbGaP (www.ncbi.nlm.nih.gov/gap). We also

thank Ms. Nan Kennedy, Division of Epidemiology, Vanderbilt Uni-

versity Medical Center, for her assistance in preparing the article.

Declaration of Conflicting Interests

The author(s) declared no potential conflict of interest with respect to

the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for

the research, authorship, and/or publication of this article: The study

was supported, in part, by grants from the National Institutes of Health

(R01CA090899, R01CA064277, R01CA118229, R01CA148667) and

Ingram professorship funds and Allen Foundation funds. Lang Wu

was supported by the Vanderbilt Molecular and Genetic Epidemiol-

ogy of Cancer (MAGEC) training program funded by the US National

Cancer Institute grant R25 CA160056 (PI: X.-O. Shu).

ORCID iD

Xiao-Ou Shu, MD, PhD https://orcid.org/0000-0002-0711-8314

Supplemental Material

Supplementary material for this article is available online.

References

1. Day FR, Ruth KS, Thompson DJ, et al. Large-scale genomic

analyses link reproductive aging to hypothalamic signaling,

breast cancer susceptibility and BRCA1-mediated DNA repair.

Nat Genet. 2015;47(11):1294-1303.

2. Hinds L, Price J. Menopause, hormone replacement and gynae-

cological cancers. Menopause Int. 2010;16(2):89-93.

3. Parker SE, Troisi R, Wise LA, et al. Menarche, menopause, years

of menstruation, and the incidence of osteoporosis: the influence

of prenatal exposure to diethylstilbestrol. J Clin Endocrinol

Metab. 2014;99(2):594-601.

4. Qiu C, Chen H, Wen J, et al. Associations between age at

menarche and menopause with cardiovascular disease, diabetes,

and osteoporosis in Chinese women. J Clin Endocrinol Metab.

2013;98(4):1612-1621.

5. Velie EM, Nechuta S, Osuch JR. Lifetime reproductive and

anthropometric risk factors for breast cancer in postmenopausal

women. Breast Dis. 2005;24:17-35.

6. Vogel VG. Epidemiology, genetics, and risk evaluation of post-

menopausal women at risk of breast cancer. Menopause. 2008;

15(4 suppl):782-789.

7. He C, Kraft P, Chen C, et al. Genome-wide association studies

identify loci associated with age at menarche and age at natural

menopause. Nat Genet. 2009;41(6):724-728.

8. Stolk L, Zhai G, van Meurs JBJ, et al. Loci at chromosomes 13, 19

and 20 influence age at natural menopause. Nat Genet. 2009;

41(6):645-647.

9. Stolk L, Perry JRB, Chasman DI, et al. Meta-analyses identify 13

loci associated with age at menopause and highlight DNA repair

and immune pathways. Nat Genet. 2012;44(3):260-268.

10. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ.

Trait-associated SNPs are more likely to be eQTLs: annotation to

enhance discovery from GWAS. PLoS Genet. 2010;6(4):

e1000888.

11. Nica AC, Montgomery SB, Dimas AS, et al. Candidate causal

regulatory effects by integration of expression QTLs with com-

plex trait genetic associations. PLoS Genet. 2010;6(4):

e1000895.

12. Albert FW, Kruglyak L. The role of regulatory variation in com-

plex traits and disease. Nat Rev Genet. 2015;16(4):197-212.

13. Gamazon ER, Wheeler HE, Shah KP, et al. A gene-based asso-

ciation method for mapping traits using reference transcriptome

data. Nat Genet. 2015;47(9):1091-1098.

14. Gusev A, Ko A, Shi H, et al. Integrative approaches for large-

scale transcriptome-wide association studies. Nat Genet. 2016;

48(3):245-252.

15. Zhu Z, Zhang F, Hu H, et al. Integration of summary data from

GWAS and eQTL studies predicts complex trait gene targets. Nat

Genet. 2016;48(5):481-487.

16. Pavlides JMW, Zhu Z, Gratten J, McRae AF, Wray NR, Yang J.

Predicting gene targets from integrative analyses of summary data

from GWAS and eQTL studies for 28 human complex traits.

Genome Med. 2016;8(1):84.

17. Mancuso N, Shi H, Goddard P, Kichaev G, Gusev A, Pasaniuc B.

Integrating gene expression with summary association statistics to

identify genes associated with 30 complex traits. Am J Hum

Genet. 2017;100(3):473-487.

18. Day FR, Thompson DJ, Helgason H, et al. Genomic analyses

identify hundreds of variants associated with age at menarche and

support a role for puberty timing in cancer risk. Nat Genet. 2017;

49(6):834-841.

19. GTEx Consortium. Human genomics. The Genotype-Tissue

Expression (GTEx) pilot analysis: multitissue gene regulation in

humans. Science. 2015;348(6235):648-660.

20. McCarthy S, Das S, Kretzschmar W, et al. A reference panel of

64,976 haplotypes for genotype imputation. Nat Genet. 2016;

48(10):1279-1283.

21. Howie BN, Donnelly P, Marchini J. A flexible and accurate gen-

otype imputation method for the next generation of genome-wide

association studies. PLoS Genet. 2009;5(6):e1000529.

22. Delaneau O, Marchini J, Zagury J-F. A linear complexity phasing

method for thousands of genomes. Nat Methods. 2011;9(2):

179-181.

23. DeLuca DS, Levin JZ, Sivachenko A, et al. RNA-SeQC: RNA-

seq metrics for quality control and process optimization. Bioin-

forma Oxf Engl. 2012;28(11):1530-1532.

24. Stegle O, Parts L, Piipari M, Winn J, Durbin R. Using probabil-

istic estimation of expression residuals (PEER) to obtain

increased power and interpretability of gene expression analyses.

Nat Protoc. 2012;7(3):500-507.

25. Guo X, Lin M, Rockowitz S, Lachman HM, Zheng D. Character-

ization of human pseudogene-derived non-coding RNAs for func-

tional potential. PloS One. 2014;9(4):e93972.

Shi et al 501

http://www.reprogen.org/data_download.html
www.ncbi.nlm.nih.gov/gap
https://orcid.org/0000-0002-0711-8314
https://orcid.org/0000-0002-0711-8314
https://orcid.org/0000-0002-0711-8314


26. Barbeira A, Shah KP, Torres JM, et al. MetaXcan: summary

statistics based gene-level association method infers accurate

predixcan results. bioRxiv. 2016; https://doi.org/10.1101/

045260

27. Krämer A, Green J, Pollard J, Tugendreich S. Causal analysis

approaches in Ingenuity Pathway Analysis. Bioinforma Oxf Engl.

2014;30:523-530.

28. Yang J, Ferreira T, Morris AP, Genetic Investigation of ANthro-

pometric Traits (GIANT) Consortium; DIAbetes Genetics Repli-

cation And Meta-analysis (DIAGRAM) Consortium, et al.

Conditional and joint multiple-SNP analysis of GWAS summary

statistics identifies additional variants influencing complex traits.

Nat Genet. 2012;44(4):369-375, S1-S3.

29. Shiratori A, Okumura K, Nogami M, et al. Assignment of the 49-

kDa (PRIM1) and 58-kDa (PRIM2A and PRIM2B) subunit genes

of the human DNA primase to chromosome bands 1q44 and 6p11.

1-p12. Genomics. 1995;28(2):350-353.

30. Hattori N, Fujiwara H, Maeda M, Fujii S, Ueda M. Epoxide

hydrolase affects estrogen production in the human ovary. Endo-

crinology. 2000;141(9):3353-3365.

31. Sang Q, Li X, Wang H, et al. Quantitative methylation level

of the EPHX1 promoter in peripheral blood DNA is associ-

ated with polycystic ovary syndrome. PloS One. 2014;9(2):

e88013.

32. Cerk S, Schwarzenbacher D, Adiprasito JB, et al. Current status of

long non-coding RNAs in human breast cancer. Int J Mol Sci.

2016;17(9). pii: E1485.

33. Evans JR, Feng FY, Chinnaiyan AM. The bright side of dark matter:

lncRNAs in cancer. J Clin Invest. 2016;126(8):2775-2782.

34. Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open

access resource for identifying the causes of a wide range of

complex diseases of middle and old age. PLoS Med. 2015;

12(3):e1001779.

35. Chapman C, Cree L, Shelling AN. The genetics of premature

ovarian failure: current perspectives. Int J Womens Health.

2015;7:799-810.

36. Rossetti R, Ferrari I, Bonomi M, Persani L. Genetics of primary

ovarian insufficiency. Clin Genet. 2017;91(2):183-198.

37. Shelling AN. Premature ovarian failure. Reprod Camb Engl.

2010;140(5):633-641.

502 Reproductive Sciences 26(4)

https://doi.org/10.1101/045260
https://doi.org/10.1101/045260


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 175
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


