Skip to main content
. 2019 Mar 3;2019:2717454. doi: 10.1155/2019/2717454

Table 3.

Comparison of performance for MC classification on different sets of features.

Method Accuracy Precision Specificity AUC Sensitivity
CNN 0.8768 ± 0.0431 0.8891 ± 0.0349 0.8667 ± 0.0457 0.9336 ± 0.0238 0.8701 ± 0.0144

Morphological 0.8525 ± 0.0203 0.8624 ± 0.0267 0.8311 ± 0.0471 0.9256 ± 0.0211 0.8492 ± 0.0246
CNN + morphological 0.8828 ± 0.0437 0.8911 ± 0.0447 0.8667 ± 0.0602 0.9385 ± 0.0238 0.8761 ± 0.0104
CNN filtered by morphologic 0.8859±0.0363 0.8932±0.0384 0.8689±0.0528 0.9392 ± 0.0240 0.8843±0.0344

Textural 0.7677 ± 0.0634 0.7964 ± 0.0659 0.7511 ± 0.0924 0.8721 ± 0.0530 0.7703 ± 0.0544
CNN + textural 0.8727 ± 0.0500 0.8853 ± 0.0410 0.8622 ± 0.0522 0.9338 ± 0.0248 0.8801 ± 0.0434
CNN filtered by textural 0.8747 ± 0.0387 0.8842 ± 0.0423 0.8578 ± 0.0603 0.9434±0.0220 0.8831 ± 0.0276

Morphological + textural 0.8667 ± 0.0223 0.8768 ± 0.0309 0.8489 ± 0.0511 0.9381 ± 0.0219 0.8601 ± 0.0251
CNN + morphological + textural 0.8818 ± 0.0434 0.8895 ± 0.0457 0.8644 ± 0.0624 0.9379 ± 0.0237 0.8791 ± 0.0124
CNN filtered by morphological + textural 0.8747 ± 0.0376 0.8873 ± 0.0238 0.8644 ± 0.0339 0.9398 ± 0.0242 0.8751 ± 0.0328