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Abstract

We propose an attention-based method that aggregates local image features to a subject-level 

representation for predicting disease severity. In contrast to classical deep learning that requires a 

fixed dimensional input, our method operates on a set of image patches; hence it can accommodate 

variable length input image without image resizing. The model learns a clinically interpretable 

subject-level representation that is reflective of the disease severity. Our model consists of three 

mutually dependent modules which regulate each other: (1) a discriminative network that learns a 

fixed-length representation from local features and maps them to disease severity; (2) an attention 
mechanism that provides interpretability by focusing on the areas of the anatomy that contribute 

the most to the prediction task; and (3) a generative network that encourages the diversity of the 

local latent features. The generative term ensures that the attention weights are non-degenerate 

while maintaining the relevance of the local regions to the disease severity. We train our model 

end-to-end in the context of a large-scale lung CT study of Chronic Obstructive Pulmonary 

Disease (COPD). Our model gives state-of-the art performance in predicting clinical measures of 

severity for COPD.The distribution of the attention provides the regional relevance of lung tissue 

to the clinical measurements.

1. Introduction

We propose a deep learning model that learns subject-level representation from a set of local 

features. Our model represents the image volume as a bag (or set) of local features (or 

patches) and can accommodate input images of variable sizes. We target diseases where the 

pathology is diffused and is not always located in the same anatomical region. The model 

learns by optimizing the objective function that balances two goals: (1) to build a fixed 

length subject-level feature that is predictive of the disease severity, (2) to extract 

interpretable local features that identify regions of anatomy that contribute the most to the 

disease. Our motivation comes from the study of COPD, but the proposed model is 

applicable to a wide range of heterogeneous disorders.
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Many diseases such as emphysema are highly heterogeneous [16] and show diffuse pattern 

in computed tomographic (CT) images of the lung. Having an objective way to characterize 

local patterns of the disease is important in diagnosis, risk prediction, and sub-typing 

[18,7,13,5]. Although various intensity and texture based feature descriptors are proposed to 

characterize the visual appearance of the disease [2,19,20], most image features are generic 

and are not necessarily optimized for the disease. Recent advances in deep learning enable 

researchers going directly from raw image to clinical outcome without specifying 

radiological features [6,4]. However, the classical deep learning methods, that operate on 

entire volume or slices[6], are challenging to interpret and they require resizing the input 

images to a fixed dimension. That is particularly the case for lung images due to the 

significant variation in the lung volume amongst individuals. Reshaping voxels in a CT 

image without adjusting for the density, changes the interpretation of the intensity values.

In this paper, we address these issues. We view each subject as a set of image patches from 

the lung region. Different lung sizes result in bags with different number of elements. 

Previously, [2,17] viewed the subjects as sets and used handcrafted image features. In 

contrast, the discriminative part of our model uses deep learning approach and directly 

extracts features from the volumetric patches. Next, we use an attention mechanism [1] to 

adaptively weight local features and build the subject level representation, which is 

predictive of the disease severity. Our model is inspired by the Deep Set [21]. However, our 

method adopts generative regularization to prevent the redundancy of the hidden features. 

Furthermore, the attention mechanism provides interpretability by quantifying the relevance 

of a region to the disease. We evaluate the performance of our method on a simulated dataset 

as well as a large-scale COPD lung CT dataset where our method gives state-of-the-art 

performance in predicting the clinical measurements.

2. Method

We represent each subject as a set (bag) of volumetric image patches extracted from the lung 

region 𝒳i = xi j j = 1

Ni
, where Ni is the number of patches for subject i. Our method maps xij 

to a low-dimensional latent space. It then aggregates the latent features to form a fix-length 

representation, by adaptively weighting the patches based on their contribution in prediction 

of disease severity (yi). The general idea of our approach is shown in Fig.1.

The method consists of three networks that are trained jointly: (1) a discriminative network, 

that aggregates the local information from patches in the set 𝒳i to predict the disease 

severity yi, (2) an attention mechanism, that helps discriminative network to selectively 

focus on patch-features by assigning weights to the patches in 𝒳i, and (3) a generative 

network, that regularizes the discriminative network to avoid redundant representation of 

patches in the latent space.

The model is trained end to end, by minimizing the below objective function:
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min
ω, θe, θd, θa

∑
i

ℒd yi, yi 𝒳i ; θe, ω + λ1ℒg 𝒳i, 𝒳i; θe, θd + λ2ℛ 𝒳i; θe, θa , (1)

where ℒd ⋅ ,   ⋅  and ℒg ⋅ ,   ⋅  are the discriminative and generative loss functions 

respectively and the third term is a regularization ℛ ⋅  over the attention. The θe, θd, θa and 

ω are the parameters of each loss function; some of the parameters are shared. The γ1, γ2 

control the balance between the terms. The sum is over number of subjects. In the following 

section, we discuss each term in more detail.

2.1 Discriminative Network

The discriminative network transforms the input set of image patches and estimates the 

disease severity yi 𝒳i  as

yi 𝒳i = f ρ ϕe 𝒳i, θe , ω . (2)

The transformation is composed of three functions: (1) ϕe(·; θe) is an encoder function 

parameterized by θe. It extracts features from patches in the set 𝒳i and outputs a set of 

features. (2) The ρ(·) function operates on the elements of the set and converts the variable 

length set ϕe 𝒳i; θe  into a fixed length vector. It is a permutation invariant function such as, 

maximum function ρ(·) = max(ϕe(xi,1), … , ϕe(xini)) or mean function 

ρ( ⋅ ) = 1
Ni

∑ j = 1
Ni ϕe xi j . This formulation ensures that, yi 𝒳i  is invariant to the order of 

patches in 𝒳i. In our experiments, we tried different ρ’s and the mean function works well 

for our task. The mean function assumes all the instances within the set are contributing 

equally to the set level feature vector. We extended it further to perform weighted mean, 

where weights are learned using the attention network in Section 2.2. (3) f (·; ω) is a 

prediction function, parameterized by ω. It takes the set-level feature vector extracted by ρ(·) 

as input, and estimates the disease severity. In this paper, we predict two continuous clinical 

variables. Finally, ℒd yi, yi 𝒳i ; θe, ω  is a ℓ2 loss function between predicted and true value.

2.2. Attention Mechanism

The goal of our proposed model is twofold: first to provide a prediction of the disease 

severity and secondly, to provide a qualitative assessment of our prediction, to enhance the 

interpretability of the results. For the given problem, it is reasonable to assume that different 

regions in the lung contribute differently to the disease severity. We model this contribution 

by adaptively weighting the patches. The weight indicates the importance of a patch in 

predicting the overall disease severity of the lung. This idea is similar to the concept of 

attention mechanism in the Computer Vision [1] and Natural Language Processing [10] 

communities.
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We estimate the attention weights for the subject i (αi = {αi1, ⋯ , αi,Ni}) by the attention 

network as

αi = A ϕe 𝒳i; θe ; θa . (3)

Unlike the ρ(·) function in Section 2.1, A(·; θa) maps a set to another set. Permuting the 

order of elements in the set 𝒳i, should equivariantly permute the output set αi. To ensure 

A(·) is a permutation equivariant function, we construct it as a neural network with 

equivariant layer (EL) [21]. Assuming Hi ∈ ℝ
Ni, d

 where kth row is ϕ xik; θe ∈ ℝd, one 

possible way of modeling the equivariant layer is

Hi k
= W Hi k

− max Hi, 1 + b, (4)

where [Hi]k denotes kth row of Hi and max(Hi, 1) is the max over rows. W ∈ ℝL × d, b ∈ ℝL

are the parameters of the EL. It is straightforward to show that the function in Eq. 4 is 

permutation-equivariant. To ensure A(·; θa) is permutation equivariant we construct it by 

composing few EL’s. Also, we assume that the weights (αi) are non-negative numbers that 

sums to 1. We pass the output of the EL to a softmax to obtain a distribution of weights over 

the patches in the subject. Finally, to ensure the weights are sparsely distributed, we added a 

regularization term ℛ 𝒳i; θe, θa = ∑ j = 1
Ni log αi j + ϵ  to the loss function in Eq. 1

2.3 Generative Network

The encoder function ϕe projects the raw image patch xij to a d-dimensional latent 

representation i . e . , ϕe xi j; θe ∈ ℝd . Without extra regularization, the loss function focuses 

only on the prediction task, forcing the encoder function to extract information that is only 

relevant to y. If y is low dimensional, the encoder function learns a highly redundant latent 

space representation for each patch. Since αij is a function of ϕe (xij ,θe), redundant features 

result in almost uniform weights i.e., αi j = 1
𝒳i

. This phenomenon makes interpretability 

very difficult. We demonstrated this effect in our experiments.

To discourage this loss of information, we added a convolutional auto-decoder (CAE) [12] to 

reconstruct input patch as xi j = ϕd ϕe xi j; θe ; θd . Finally, we add a generative loss 

ℒg 𝒳i, 𝒳i; θe, θd = 1
𝒳i

∑xi j ∈ 𝒳i
xi j − xi j 2 to the cost function in Eq. 1

2.4 Architecture Details

The f(·; ω) is a linear function predicting the disease severity yi. The architecture of 

generative network is elaborated in Fig.1. The convolutional layer employs batch-

normalization for regularization, followed by an exponential linear unit (ELU) [3] for non-
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linearity. The attention network A(·; θa) has 2 equivalence layers with sigmoid activation 

function, followed by a softmax layer. The model is trained using Adam optimizer [8] with a 

fixed learning rate of 0.001.

3 Experiments

We evaluate the prediction and interpretation of our method on synthetic and real datasets. 

To evaluate the interpretability of our method quantitatively, we synthesize a dataset where 

the set-level target (y) are simulated from a subset of instances. Hence by viewing the 

attention weights as a detector of the relevant instances, we are able to evaluate the 

interpretability of our approach.

3.1 Synthetic Data

In this experiment, we build 10,000 training and 8,000 testing sets. The instances in the set 

are randomly drawn images from MNIST [9] dataset. The size of the sets varies between 20 

to 100 instances. Each image is a 28 × 28 pixel monochrome image of a handwritten digit 

between 0 – 9. The set-label (y) is the sum of prime numbers (2, 3, 5, 7) in that set. Our 

method predicts the set-label with a high accuracy (R2 = 0.99 on held-out data). We view the 

attention weights as detectors of prime numbers. Note that no instance level supervision is 

used. We make an ROC (Receiver Operating Characteristic) curve per set, and compute one 

average ROC curve across the held-out dataset. Fig.2(a) shows the average and error bar for 

all the sets. The figure compares our method (blue) with equal weights (red) 

i . e . , αi j = 1/ 𝒳i  and uniform random weights (green). Our method can detect correct 

instances in the set, with only weak supervision over the set (i.e., set-level label y). Here we 

used λ1 = 100 and λ2 = 0.01.

3.2 COPD

We evaluate our model on 6,400 subjects with different degrees of severity of the COPD 

from the COPDGene dataset [14]. As clinical measures of the disease severity, we use the 

Forced Expiratory Volume in one second (FEV1), the ratio of FEV1 and Forced Vital 

Capacity (FVC), and discrete score (between 0–4) called the Global Initiative for Chronic 

Obstructive Lung Disease (GOLD). We first segment the lung area on the inspiratory images 

using CIP library [15]. Each subject is represented as a bag of equal size 3D patches, with 

some overlap. Large patch size and percentage overlap leads to GPU memory issues. We 

experimented with different values and finally used patch-size of 32 × 32 × 32 with 40% 

overlap in our experiments.

We perform three experiments: (1) Prediction: we compare the performance of our method 

against the sate-of-art for predicting the clinical measurements, (2) Generative regularizer 
(λ1): we study the effect of the generative regularizer (i.e., λ1) in terms of prediction 

accuracy and information preserved in latent space, (3) Visualization: we visualize the 

interpretation of the model on the subject and population level. Unlike λ1, the choice of λ2 

don’t have any significant effect on the prediction accuracy. The value of λ2 influences the 

sparsity and diversity of the attention weights. In the experiments, we fixed λ2 to 0.0001.
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Prediction: We compare to several baselines: (a) Baseline: two threshold-based features 

measuring the percentage of voxels with intensity values less than a threshold in the images; 

950 Hounsfield Unit (HU) for the inspiratory and −856 HU for expiratory. Those 

measurements reflect what is clinically used to quantify emphysema and the degree of gas 

trapping. (b) Non-parametric: Schabdach et. al [17] view each subject as a set of hand-

crafted histogram and texture features from supervoxels. They represent each subject in an 

embedding space using a non-parametric distance between sets. (c) CNN: Gonzalez et. al [6] 

use deep features learned from a composite image of four canonical views of a CT scan to 

quantify FEV1 and stage COPD. (d) BOW: This method views each subject as a set of 

hand-crafted features from super-voxels but applies k–means to extract the subject-level 

representation. We perform 10-fold cross-validation and report R2 for the continuous 

measurements (i.e., FEV1 and FEV/FVC) and accuracy for the GOLD score. Since the 

GOLD score is a discrete but ordered value, we report the percentage of cases whose 

classification lays within one class of the true value (one-off). The Table 3.2 summarizes the 

results of the experiments. Our method outperforms the state-of-the-art on predicting FEV1 

and GOLD score. Adding the generative regularization (λ1 = 10) reduces the accuracy but 

results in much better interpretability. In the following, we study the effect of λ1.

Generative regularizer (λ1): The Fig. 2(b) reports the spectral behaviors of the latent 

features (i.e., ϕe 𝒳i ) for different values of λ1. For small λ1 the loss function doesn’t 

optimize for the generative loss. Hence, the latent space representation becomes highly 

redundant, and all the attention weights αij becomes similar and converges to 1
𝒳i

. The Fig. 

2(c) shows the trade-off between effective rank of the latent feature (red, y-axis on left) and 

R2 for predicting FEV1 (blue, y-axis on right). Although, the R2 drops a little, the rank, 

which represents the diversity of the latent features, improves drastically. The gap between 

accuracies of λ1 =0 and λ1 > 0 is the price we pay for the interpretability. Fully generative 

model (λ1 → ∞) does not produce good prediction.

Visualization: We use tSNE [11] to visualize subject-level features in two dimension. In 

Fig. 3(a), each dot represents a subject colored by the GOLD score. Even in two dimension, 

subjects with GOLD score of (0,1) and (3,4) are quite separable and 2’s are in between. The 

bimodal distribution of GOLD stages 3 and 4, is sensitive to t-SNE parameterization and 

requires further investigation. 3(b) visualizes the attention weights on one subject. The dark 

area on the left lung, which is severely damaged, received hight attention.

4. Conclusion

We developed a novel attention-based model that achieves high prediction while maintaining 

interpretability. The method outperforms state-of-art and detects correct instances on the 

simulated data. Our current model does not account for spatial locations of the patches. As a 

future direction, we plan to extend the model to accommodate relationship between patches.
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Fig. 1. 
(a) A subject is represented as a set of 3d image patches, (b) Discriminative Network: 

aggregates local features to form a fixed length representation for the subject and predicts 

the disease severity yi , (c) Attention Network: focuses attention on critical patches to 

provide interpretability. (d) Convolutional Auto Encoder (Generative Network): prevents 

redundancy of latent features.
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Fig. 2. 
(a) ROC curve of detecting true relevant instances on synthetic dataset using attention 

weights, (b) Spectral properties of patch-level features for different values of λ1. (c) The 

trade-off between rank of latent space (red, y-axis on left) and predictive power (blue, y-axis 

on right) for different values of λ1. Left represents fully discriminative and right represents 

fully generative models.
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Fig. 3. 
(a) Embedding the subjects in 2D using tSNE. The dots represents one subject colored by 

the GOLD score. (b) An axial view of the attention map on a subject. Red color indicate 

higher relevance to the disease severity.
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Table 1.

Clinical measurement regression and GOLD stage classification accuracy by different methods on the 

COPDGene dataset.

Method FEV1 FEV1/FVC GOLD exact GOLD one-off

Our method (λ1 = 0) 0.68 0.71 61.17 % 87.64 %

Our method (λ1 = 10) 0.64 0.70 55.60 % 84.57%

CNN [6] 0.53 — 51.1 % 74.9 %

Non-Parametric [17] 0.58 0.70 50.47 % —

K-Means [17] 0.54 0.67 48.23 % —

Baseline 0.52 0.69 49.06 % —
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