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The nonlysosomal glucosylceramidase �2 (GBA2) catalyzes
the hydrolysis of glucosylceramide to glucose and ceramide.
Mutations in the human GBA2 gene have been associated with
hereditary spastic paraplegia (HSP), autosomal-recessive cere-
bellar ataxia (ARCA), and the Marinesco-Sjögren–like syn-
drome. However, the underlying molecular mechanisms are
ill-defined. Here, using biochemistry, immunohistochemistry,
structural modeling, and mouse genetics, we demonstrate that
all but one of the spastic gait locus #46 (SPG46)-connected
mutations cause a loss of GBA2 activity. We demonstrate that
GBA2 proteins form oligomeric complexes and that protein–
protein interactions are perturbed by some of these mutations.
To study the pathogenesis of GBA2-related HSP and ARCA in
vivo, we investigated GBA2-KO mice as a mammalian model
system. However, these mice exhibited a high phenotypic vari-
ance and did not fully resemble the human phenotype, suggest-
ing that mouse and human GBA2 differ in function. Whereas
some GBA2-KO mice displayed a strong locomotor defect,
others displayed only mild alterations of the gait pattern and no
signs of cerebellar defects. On a cellular level, inhibition of
GBA2 activity in isolated cerebellar neurons dramatically

affected F-actin dynamics and reduced neurite outgrowth,
which has been associated with the development of neurological
disorders. Our results shed light on the molecular mechanism
underlying the pathogenesis of GBA2-related HSP and ARCA
and reveal species-specific differences in GBA2 function in vivo.

The nonlysosomal �-glucosidase GBA2 resides as a mem-
brane-associated protein at the cytoplasmic site of the endo-
plasmic reticulum and the Golgi, where it degrades the glyco-
sphingolipid glucosylceramide (GlcCer)5 to glucose and
ceramide (1–3). GBA2 protein expression is highest in testis
and brain tissue (2–4). In the testis, GBA2 seems to be mainly
expressed in Sertoli cells, where it controls spermatogenesis
and sperm-head shaping at the apical ectoplasmic specializa-
tion (4). Knocking out Gba2 in mice results in a severe sperm
morphological defect called globozoospermia (3, 4). This phe-
notype is caused by an accumulation of GlcCer, which changes
the lipid composition of the membrane toward a more ordered
state. In turn, cytoskeletal dynamics, in particular the F-actin
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organization at the ectoplasmic specialization, are dysregu-
lated, and sperm-head shaping in the testis is disturbed (4). The
male fertility defect was also observed when GBA2 activity was
pharmacologically blocked in vivo in mice using the small
molecular compound NB-DNJ (Miglustat) (5–7).

Although the enzyme has been identified more than 10 years
ago, its physiological function in the brain is still enigmatic.
GBA2 expression increases during neuronal differentiation (8).
In the adult brain, GBA2 is predominantly expressed in neu-
rons (2), with the highest expression level and activity in the
cerebellum (9). In recent years, mutations in the GBA2 gene
(Spastic Gait locus #46 (SPG46), OMIM #614409) have been
identified in patients with hereditary spastic paraplegia (HSP),
autosomal-recessive cerebellar ataxia (ARCA), or the Marinesco-
Sjögren–like syndrome (10–14). Patients are characterized by
impaired gait and limb coordination in combination with cerebel-
lar atrophy (15, 16).

The mutations found in the GBA2 gene are either missense
mutations, exchanging one amino acid for another, or nonsense
mutations, leading to a premature transcriptional stop and
thereby protein truncation (17). Most of the missense muta-
tions are located in the C-terminal catalytic domain, and those
leading to protein truncation lack the catalytic domain (17).
The majority of SPG46 patients carry homozygous mutations
and only a few are compound heterozygous mutant carriers
(Table 1) (17). Some of the mutations have been analyzed in
vitro and failed to produce a �-glucosidase activity (18). So far,
only one mutation, R630W in the catalytic domain, has been
functionally characterized in vivo (13). Leukocytes and lympho-
blasts isolated from patients carrying the mutation in a
homozygous state were devoid of GBA2 activity. Knocking
down GBA2 expression in the zebrafish in vivo induced a curly
tail and motility defects in some but not all fish (13). This phe-
notype was rescued by expressing hGBA2, but not by the
hGBA2-R630W mutant (13). These results suggest that the
mutations found in human patients result in a loss of GBA2
activity, thereby causing neurological defects and locomotor
dysfunction. However, studies using GBA2-KO mice have not
reported neurological or locomotion defects. Furthermore, it is
not known how the different mutations affect GBA2 activity.

Here, we characterize the different mutations that were iden-
tified in SPG46 patients and demonstrate that all but one result
in a complete loss of GBA2 activity. We provide the structural
basis for the loss of function using structure– homology mod-
eling and protein biochemistry. Furthermore, we demonstrate
that the pharmacological block of GBA2 activity in cerebellar
neurons diminishes neurite outgrowth. However, neurons iso-
lated from GBA2-KO mice did not resemble this phenotype,
although GBA2 activity was fully abolished. Behavioral studies
analyzing locomotor function demonstrated a phenotypic variety
in GBA2-KO animals. A few animals displayed a strong locomotor
defect, but the majority of GBA2-KO mice showed only mild
defects in the gait pattern, in contrast to what has been observed
in human patients. Our results demonstrate the molecular
mechanism underlying GBA2 function in neurons and reveal
species-specific differences for GBA2 function in vivo.

Results

Orthologous mutations in the mouse GBA2 gene cause a loss
of activity

Human and mouse GBA2 proteins share overall 87%
sequence identity and 94% in the C-terminal catalytic domain.
The 105-kDa GBA2 protein is composed of an N-terminal glu-
cosyl-hydrolase family 116 domain of �300 amino acid (aa)
residues and a C-terminal catalytic domain, comprising aa
521– 888 in humans (Fig. S2). Strikingly, the majority of amino
acids mutated in human patients is identical in mouse and
human GBA2, indicating that they are important for protein
function. The different mutations are either missense or non-
sense mutations (Figs. S1 and S2). Only the nonsense mutation
Arg-870* in hGBA2 is not conserved and affects Gln-861* in
mGBA2 (Figs. S1 and S2). The majority of missense mutations
is localized in the C-terminal catalytic domain of GBA2, which
is lacking in all nonsense mutants (Fig. S2). To characterize the
effect of the mutations on GBA2 function, we introduced the
different mutations into mGBA2 (Table 1) and characterized
their expression and activity in CHO cells. All mutant mGBA2
proteins were expressed, as confirmed by Western blotting and
immunocytochemistry (Fig. 1 and Fig. S3). The expression lev-
els varied between mutants, and the deletion mutants migrated
at a slightly higher molecular weight compared with the pre-
dicted molecular weight (Fig. 1 and Table 1), but none of the
mutants showed a major difference in the subcellular localiza-
tion compared with WT mGBA2 (Fig. S3). To analyze the activ-
ity of WT mGBA2 and the different mutants in CHO cells, we
used a fluorescence-based activity assay (2). Apart from the
variant mGBA2-R725H, all mutants were devoid of GBA2
activity (Fig. 1B) and only the mGBA2-R725H variant, which
has been identified in a family with another disease-containing
mutations, displayed a residual activity (Fig. 1B).

The first crystal structures of a member of the family of gly-
coside hydrolases have been recently determined (19, 20). This
protein, designated GH116 �-glucosidase from Thermoanaero-
bacterium xylanolyticum (Tx), shares overall 32% sequence
identity with hGBA2 and �40% in the catalytic domain, with
excellent correspondence between the active-site residues. All
residues that bind the sugar moiety in TxGH116 are conserved
in hGBA2 (19). The homology to TxGH116 allows modeling of
human GBA2, based on PDB accession code 5BVU (20) using
the workspace modeling approach of the Swiss-Model suite
(21). The model of hGBA2 encompasses residues 77– 888, with
�-D-glucose as a ligand superimposed from the crystal struc-
ture 5BX5 (19). The protein adopts the two-domain architec-
ture with an N-terminal �-sheet structure (aa 151– 468) and the
C-terminal all-helical catalytic domain (aa 473– 888) (Fig. 1C).
Two long �-helices combine the two domains (aa 441– 490)
with additional connecting loops of lower modeling confi-
dence. These loops were suggested to participate in membrane
interaction. The structure of TxGH116 supports a peripheral
membrane localization of GBA2, where it may bind to lipid
headgroups or a transmembrane protein (19). The missense
mutations D594H, R630W, G683R, R734H, and R873H all align
to the catalytic domain of GBA2, whereas mutations F419V and
M510V are located in the loop regions, connecting the two
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domains. Two residues are particularly involved in the coordi-
nation of the ligand. Based on the homologous structure of
TxGH116, Arg-873 makes a direct hydrogen bond to the 6-OH
group of the glucosyl group (Fig. 1D, inset). Its mutation to
histidine will abolish this hydrogen-bond formation due to the
shorter side chain. Asp-594 forms a hydrogen bond to His-593,
which coordinates the sugar moiety (Fig. 1D, inset). The D594H
disease mutation might disrupt this paired side-chain coordi-
nation (19).

To get further insight into the structure–function relation-
ship of mGBA2, we generated additional mutants that either
lack the very C terminus adjacent to the catalytic domain or
parts of the N terminus (Fig. S2). All of these mutants were
expressed, but none of them displayed GBA2 activity (Fig. 1).
This was particularly surprising for mGBA2-Q882*, which only
lacks 36 amino acids at the C terminus, which are not necessary
for the function of the nonmammalian glycoside hydrolase
G116 family member TxGH116. In summary, GBA2 only seems
to be active as a full-length protein, requiring a precise 3D
structure, whereas generation of a “minimal” GBA2 enzyme,
comprising only the catalytic domain, seems impossible.

GBA2 proteins form oligomers

Disease-associated mutations that are not localized in the
catalytic domain might interfere with the structural integrity of
the GBA2 protein, with protein–protein interactions, or pro-
tein association with membranes. Some members of other
�-glucosidase families have been proposed to form dimers,
which assemble as tetramers (22, 23). Thus, GBA2 might also
form oligomeric complexes. To test this hypothesis, we first
analyzed whether GBA2 interacts with itself by performing co-
immunoprecipitation. Mouse GBA2-FLAG was heterologously
expressed in CHO cells and purified using anti-FLAG magnetic
beads. Co-transfection with mGBA2-HA demonstrated that,
indeed, mGBA2-FLAG and mGBA2-HA interact (Fig. 2A),
whereas unspecific binding to the anti-FLAG magnetic beads
or interaction of an independent HA-tagged protein with
mGBA2-FLAG was not observed (Fig. S4, A and B). To reveal
the oligomeric state of the complex, we performed cross-link-
ing experiments in CHO cells. Without cross-linking, mGBA2-
FLAG migrated as a monomer in SDS-PAGE (�110 kDa),

whereas after cross-linking, mGBA2-FLAG migrated as an oli-
gomer (�245 kDa) (Fig. 2B). Next, we investigated whether
mutations affect mGBA2 oligomerization. The missense
mGBA2 mutants formed oligomeric complexes (Fig. 2B),
whereas oligomer formation was dramatically reduced for
some of the nonsense mutations (Fig. 2C). However, co-expres-
sion of WT and nonsense mutants did not result in hetero-olig-
omers, and the presence of the mutant did not affect oligomer
formation of WT mGBA2 (Fig. 2, C and D). To investigate
whether co-expression of mutant GBA2 with WT GBA2
affected the activity of the WT protein, we performed activity
assays using WT and mutant mGBA2 proteins, co-expressed in
CHO cells using a 2A peptide approach (Fig. 2, E and F). GBA2
activity in transfected cells was measured and normalized to the
protein expression determined by Western blotting (Fig. 2, E
and F). Compared with the WT-2A–WT control (set to 100%),
the WT GBA2 activity in cells expressing WT-2A–mt accounts
for 50% because only half the amount of WT GBA2 is
expressed. If there is a dominant-negative effect, GBA2 activity
in WT-2A–mt– expressing cells would account for signifi-
cantly less than 50% activity compared with WT-2A–WT.
However, a dominant-negative effect was not seen for any of the
missense or nonsense mutants, because the activity in the
WT-2A–mt conditions resembled an activity of about 50% (Fig.
2F). Only the R725H variant displayed �80% activity in the
WT-2A–mt condition (Fig. 2F), underlining that this mutant
retains some GBA2 activity.

Loss of GBA2 leads to a defect in actin dynamics

Our previous studies revealed that loss of GBA2 activity after
pharmacological inhibition (NB-DNJ) or after loss of GBA2
(GBA2-KO) results in the accumulation of GlcCer, leading to a
more ordered lipid organization in the plasma membrane. In
turn, cytoskeletal dynamics, in particular actin dynamics, are
disturbed, and the formation of lamellipodia is augmented (Fig.
3A) (4). To test whether re-expression of mGBA2 is sufficient to
rescue the defects in the actin cytoskeleton, we overexpressed
WT mGBA2-HA in fibroblasts from GBA2-KO mice (Fig. 3B).
Indeed, mGBA2 expression reduced the lamellipodia count,
demonstrating that expression of mGBA2 is sufficient to rescue
the cytoskeletal defect (Fig. 3, B and C). Based on these results,

Table 1
Mutations in hGBA2 gene associated with locomotor dysfunction

Mutation Alleles
Human
GBA2

Mouse
GBA2

Mass
(mouse
GBA2) Associated disease Refs.

kDa
Missense

2618G3A Homozygous R873H R864H 103 Autosomal-recessive cerebellar ataxia 11
2201G3A Homozygous (variant) R734H R725H 103 Autosomal-recessive cerebellar ataxia 14
2048G3C Homozygous G683R G674R 103 Hereditary spastic paraplegia 10
1888C3T Homozygous R630W R621W 103 Hereditary spastic paraplegia 13
1780G3C Homozygous D594H D585H 103 Autosomal-recessive cerebellar ataxia 14
1528_1529del Homozygous M510V M501V 103 kDa Marinesco-Sjögren-Like Syndrome 12
1255T3G Heterozygous, co-segregated with 2608C3T F419V F410V 103 Hereditary spastic paraplegia 18

Nonsense
2608C3T Heterozygous, co-segregated with 1255T3G Arg-870* Gln-861* 97 Hereditary spastic paraplegia 18
1471_1474dupGGCA Heterozygous, co-segregated with 518G3A T492R*9 T483R*9 55 Hereditary spastic paraplegia 13
1017C3T Homozygous Arg-340* Arg-331* 37 Autosomal-recessive cerebellar ataxia 11
700C3T Homozygous Arg-234* Arg-225* 26 Hereditary spastic paraplegia 13
518G3A Heterozygous, co-segregated with 1471_1474dupGGCA Trp-173* Trp-164* 18 Hereditary spastic paraplegia 13
363C3A Homozygous Tyr-121* Tyr-112* 12 Autosomal-recessive cerebellar ataxia 11

GBA2 mutations and locomotor dysfunction

J. Biol. Chem. (2019) 294(11) 3853–3871 3855

http://www.jbc.org/cgi/content/full/RA118.006311/DC1
http://www.jbc.org/cgi/content/full/RA118.006311/DC1


GBA2 mutations and locomotor dysfunction

3856 J. Biol. Chem. (2019) 294(11) 3853–3871



the mGBA2-R725H variant that retains GBA2 activity should
also be able to rescue the cytoskeletal defects, whereas a mutant
without GBA2 activity should fail to do so. To test this hypoth-
esis, we expressed R725H and R621W in GBA2-KO fibroblasts
(Fig. 3, B and C). In fact, mGBA2-R725H was also able to rescue
the cytoskeletal defects (Fig. 3, B and C), whereas mGBA2-
R621W– expressing fibroblasts were similar to GBA2-KO
fibroblasts (Fig. 3C).

The Rho-GTPases Rac1 and Cdc42 are essential for lamelli-
podia and filopodia formation, respectively. The activity of
Rac1, determined in a biochemical assay, was significantly
increased in GBA2-KO compared with WT fibroblasts (Fig. 3,
D and E), demonstrating that an increase in Rac1 activity
underlies the increased number of lamellipodia in GBA2-KO
fibroblasts. Thus, we treated GBA2-KO fibroblasts with a Rac1-
specific inhibitor and analyzed lamellipodia formation. Treat-
ment with the Rac1 inhibitor NCS23766 reduced lamellipodia
numbers (Fig. 3F). To analyze whether the change in lipid
order of the plasma membrane underlies the difference in Rac1
activity, we determined protein localization in detergent-resist-
ant membranes (DRM) versus solubilized membranes. In
GBA2-KO fibroblasts, Rac1 seemed to localize more in the
DRM fraction compare with WT cells (Fig. 3G), indicating that
the change in lipid order in GBA2-KO cells affects the localiza-
tion and thereby the activity of Rho GTPases, in particular
Rac1.

Loss of GBA2 activity diminishes neurite outgrowth

The defect in actin dynamics in the absence of GBA2 was
observed in every cell type analyzed in our studies. Thus, we
wondered whether loss of GBA2 also affects cytoskeletal
dynamics in neurons. We have previously shown that GBA2 is
highly expressed in the brain, in particular in neurons (2). This
is in line with findings using fluorescent activity-based probes,
labeling active GBA2 in the spinal cord and different brain
regions, predominantly in the cerebellar cortex (9). We further
verified these results using global GBA2-KO mice and neuron-
specific GBA2-KO mice (GBA2-KOSyn). GBA2 expression was
absent in brain, spinal cord, and cerebellum from GBA2-KO
mice (Fig. 4A). In GBA2-KOSyn mice, GBA2 expression in brain
and spinal cord was severely reduced (Fig. 4B), underlining the
finding that GBA2 is predominantly expressed in neurons. The
Eucomm GBA2-KO mouse model (GBA2-KOEu) expresses
�-gal under the control of the GBA2 promotor, which allows
visualizing GBA2 expression using X-gal staining. Labeling of
spinal cord and brain sections as well as isolated cerebellar neu-
rons nicely demonstrated GBA2 expression in neuronal cul-
tures, in the gray matter of the spinal cord, and the cerebellum

(Fig. 4, C–E). In line with the expression data, GBA2 activity
was fully abolished in brain, spinal cord, cerebellum, and iso-
lated cerebellar neurons from GBA2-KO mice (Fig. 4F).

Loss of GBA2 changes the glycosphingolipid homeostasis (3,
4, 24). To verify the changes in lipid homeostasis in the brain, in
particular in the cerebellum, we analyzed the amount of neutral
lipids in the cerebellum of P10 (postnatal day 10) and adult WT
and GBA2-KO mice by MS, and we distinguished between sph-
ingoid bases (long-chain bases, C18), ceramides (different chain
length, saturated and unsaturated), and hexosylceramides
(HexCer, different chain length, saturated and unsaturated). In
the cerebellum of P10 mice, the total HexCer levels were not
significantly different between genotypes; however, when com-
paring the chain lengths, HexCer-d18:1–18:0 levels were signif-
icantly increased in GBA2-KO compared with WT mice (Fig.
S5, A and B). Similar results were obtained for the cerebellum of
adult mice; total lipid levels remained unchanged in WT com-
pared with GBA2-KO mice, but the levels of HexCer-d18:1–
18:0 levels were significantly increased in GBA2-KO mice (Fig.
S5, C and D). It has been shown before that the identity of the
hexose sugar is glucose and not galactose (3) and that in
GBA2-KO mice only GlcCer, but not GalCer, accumulates (26).
None of the other neutral lipid species showed major differ-
ences between genotypes (Fig. S5, A and C). We also compared
the levels of acidic lipids in the cerebellum of WT and
GBA2-KO mice using TLC (Fig. S5, E and F). Levels of GM1a,
GT1b, GD1b, and GM3 were all slightly increased in GBA2-KO
compared with WT mice (Fig. S5E).

To reveal whether loss of GBA2 activity affects the cytoskel-
etal dynamics also in neurons, we isolated cerebellar neurons
from P7 to P8 WT mice and treated them with the GBA2-
specific blocker AMP-DNM for 48 h (27) (GBA2 activity con-
trol: 0.3 � 0.1 rfu/min; 30 pM N-(5-adamantane-1-yl-methoxy-
pentyl)-deoxynojirimycin (AMP-DNM): 0.03 � 0.02 rfu/min;
n � 3). Afterward, cells were fixed, and the F-actin and tubulin
cytoskeleton were labeled. Strikingly, both NB-DNJ and AMP-
DNM altered the cytoskeletal dynamics: more F-actin struc-
tures were formed, and the neurites appeared to be shorter (Fig.
4G). Quantification of the neurite length revealed that neurite
length was significantly reduced in treated compared with non-
treated samples (Fig. 4H). We performed the same experiments
using cerebellar neurons from WT and GBA2-KO mice. How-
ever, although GBA2 activity was fully abolished (see Fig. 4F),
neurite length was not different between genotypes (Fig. 4H).

To reveal whether the loss of GBA2 activity affects neuronal
function, we performed electrophysiological recordings on iso-
lated cerebellar neurons 48 h after dissection. We compared the

Figure 1. Expression, activity, and structural modeling of GBA2. A, heterologous expression of WT and mutant mGBA2 in CHO cells. Western blot analysis
of hypotonic cell lysates was from nontransfected cells (NT), cells heterologously expressing WT mGBA2-HA (WT), or cells expressing different mGBA2 mutants.
mGBA2 proteins were HA-tagged and labeled with an anti-HA antibody. Tubulin (Tub) was used as a loading control. 10 –20 �g of protein were loaded per lane.
Lane A, 6-hairpin glucosidase domain; lane B, glucosylceramidase domain. B, �-glucosidase activity in CHO cells. Cells were lysed in hypotonic buffer, and GBA2
activity was measured using the artificial, water-soluble substrate 4-methylumbelliferyl-�-D-glucopyranoside. Columns represent mean values of three inde-
pendent experiments � S.D. (Arg-225*, Trp-164*, and Tyr-112* only n � 1). Column A, 6-hairpin glucosidase domain; column B, glucosylceramidase domain. C,
structural modeling of hGBA2 based on the crystal structure of the bacterial �-glucosidase T. xylanolyticum TxGH116. The N-terminal domain, formed by a
two-sheet �-sheet sandwich (displayed in light blue), and the C-terminal all-helical catalytic domain (dark blue) are shown. D, display of the missense disease-
associated mutations described for GBA2 in the structural model of the human isoform. Five mutations assemble in the catalytic domain, whereas F419V and
M510V align to the linker region preceding the C-terminal domain. The mutations are shown in stick representations. The inset (top right) in D displays the
hydrogen-bond interaction of Arg-873 with the glucose as well as the Asp-594 –His-593 mediated interaction to the ligand.
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passive membrane properties, i.e. the resting membrane poten-
tial Vrest, the apparent input resistance Rin, and the membrane
time constant �m between WT and GBA2-KO cells in the pres-
ence or absence of AMP-DNM (Table 2). All three parameters
showed substantial variability, and no significant differences
between the groups were detected. Rin was remarkably high for
all conditions, suggesting that under these conditions the neu-
rons are equipped with few open ion channels. The presence of
AMP-DNM slightly decreased Rin, which resulted in a signifi-
cant difference between the WT and WT � 30 pM AMP-DNM
group. As a consequence of the high Rin, Vrest was highly vari-
able between cells of all groups. GBA2-KO cells had slightly but
statistically insignificant slower �m.

Cerebellar morphology and neuronal function is not altered in
GBA2-KO mice

Patients suffering from HSP or ARCA display, among other
defects in the central nervous system, cerebellar atrophy. Thus,
we analyzed whether GBA2-KO mice also show brain morpho-
logical defects. The brain weight of age- and sex-matched WT
and GBA2-KO mice was not different, and gross brain mor-
phology remained unchanged (WT: 440 � 16 mg (n � 10) ver-
sus KO: 435 � 18 mg (n � 17), see Fig. 5A). Histological analyses
of brain cryosections from P18 or adult WT and GBA2-KO
mice did not show any abnormalities in gross lobular morphol-
ogy. Moreover, no Purkinje cell degeneration, resulting in loss
or reduced cell numbers in the Purkinje cell layer, was observed
(Fig. 5, B and C).

To test whether loss of GBA2 affects the function of Purkinje
cells within their neuronal network, we performed electro-
physiological recordings on acute cerebellar slices. We com-
pared passive and active properties (i.e. properties of action
potentials) of Purkinje cells between WT and GBA2-KO mice
(Fig. 5, D–F). Similar to the passive properties of isolated cere-
bellar neurons, the passive properties of Purkinje cells had a
high cell-to-cell variability, and no differences between WT and
GBA2-KO mice were detected. Purkinje cells of GBA2-KO
mice tended to have a slightly lower Rin (Tables 2 and 3). The
active properties of Purkinje cells did not significantly differ
between WT and GBA2-KO mice (Table 3). After recording,
slices were fixed in 4% PFA for 30 min, and the morphologies
of the recorded and Alexa Fluor 488-filled Purkinje cells

were compared. However, no major differences in Purkinje
cell morphology between WT and GBA2-KO cells were
observed (Fig. 5G).

Loss of GBA2 alters the gait pattern

To reveal whether GBA2-KO mice show a defect in muscle
strength or locomotion, similar to human SPG46 patients, we
performed different behavioral assays. The weight test allows
measuring the muscle strength of the front paws, whereas the
CatWalk gait analysis allows determining static and dynamic
locomotion parameters. Of note, GBA2-KO mice showed a
higher tendency to develop seizures: four global GBA2-KO
mice above the age of 30 weeks suffered from seizures, which
were never observed in age-matched WT mice. The weight test
revealed that the muscle strength of the front paws was reduced
in GBA2-KO compared with WT mice (Fig. 5H). Using the
CatWalk analysis, we first observed that two GBA2-KO mice
were barely moving and exhibited a wide-based gait in their
hind paws, excluding them from further analysis. In contrast,
none of the WT mice showed this strong locomotion defect.
Apart from these two mice, the differences between WT and
GBA2-KO mice in the CatWalk were rather mild. To stabilize
their gait, mice suffering from motor coordination defects often
exhibit a shortened duration of the front paws’ swing phase,
which refers to the time when a paw is lifted and not in contact
with the glass plate. However, this parameter was not different
between WT and GBA2-KO mice (Fig. 5, I and J). To determine
the interpaw coordination, phase dispersion was measured.
This parameter describes the temporal relationship between
the different paw placements by taking into account the phase
lag of the paws. Values for interpaw coordination of the diago-
nal, ipsilateral, and girdle paw pairs showed a higher variation in
GBA2-KO compared with WT mice, but there was no signifi-
cant difference for either paw combination (Fig. 5K). Next, we
analyzed the step sequence. In general, quadrupedal animals
use six patterns of step sequence, the most commonly observed
pattern in mice being the alternate AB pattern (Fig. 5L) (28).
Indeed, both WT and GBA2-KO mice predominantly used the
AB pattern (Fig. 5M). However, the frequency of AB pattern
appearance was reduced in GBA2-KO compared with WT
mice (Fig. 5M). Instead, GBA2-KO mice more frequently used
the AA, CB, and CA pattern (Fig. 5M), demonstrating that the

Figure 2. Oligomerization and activity of mGBA2. A, co-immunoprecipitation of mGBA2-HA with mGBA2-FLAG using anti-FLAG magnetic beads (FLAG-
Trap) after pre-clearing on underivatized agarose beads. 250 �g of total protein was loaded in a total volume of 500 �l on equilibrated agarose (50 �l of bead
slurry of a 50% suspension in storage buffer was used) and incubated at 4 °C. After pre-clearing, supernatant was incubated on anti-FLAG magnetic beads (50
�l of bead slurry of a 50% suspension in storage buffer was used) overnight at 4 °C. Input, 16.67 �l of protein lysate before (Input 1) or after (Input 2) pre-clearing.
Beads, 25 �l of agarose matrix resuspended in 30 �l 1� SDS sample buffer. NonBound, 37.5 �l of supernatant after incubation of the lysate on the beads. Initial
and Final Wash, 37.5 �l of supernatant after washing the beads with 300 �l of washing buffer. Eluate, 37.5 �l of supernatant was loaded after elution in 100 �l
of 1 M glycine, pH 3.0, and neutralization in 16.67 �l of 1 M Tris/HCl, pH 8.0. GBA2-FLAG and mGBA2-HA were detected using FLAG- or HA-specific antibodies,
respectively. �-Tubulin (Tub) was used as a loading control. B, chemical cross-linking of WT and mutant mGBA2. Western blot analysis of WT mGBA2-FLAG and
missense mGBA2 mutants (all HA-tagged) expressed in CHO cells before (	) and after cross-linking with 0.77 mM DSS (�) under hypotonic buffer conditions.
mGBA2-FLAG and mGBA2-HA were detected using FLAG- or HA-specific antibodies. 40 �g of total protein was subjected to chemical cross-links and loaded per
lane. Calnexin (Clnx) served as a loading control. C, top, see B for nonsense mutants. Bottom, chemical cross-linking of WT mGBA2-FLAG in the presence of WT
mGBA2-HA or nonsense mGBA2-HA. Cross-linking conditions and Western blot analysis was performed similar to B. D, quantitative analysis of C. Top, oligomer/
monomer ratio of mutant mGBA2-HA compared with WT mGBA2-FLAG (set to 100%). Bottom, oligomer/monomer ratio of mGBA2-FLAG in the presence of WT
mGBA2-HA (set to 100%) or nonsense mGBA2-HA. E, expression of the mGBA2 2A-peptide constructs designed for the stoichiometric expression of FLAG- and
HA-tagged mGBA2. Western blot analysis of GBA2 expression in transfected CHO cells expressing either mGBA2-FLAG and mGBA2-HA (WT 2A WT), mGBA2-
FLAG and mutant mGBA2-HA (WT 2A mt), or mutant mGBA2-FLAG and mutant mGBA2-HA (mt 2A mt). mGBA2-FLAG and mGBA2-HA were detected using
FLAG- or HA-specific antibodies. 20 �g of protein was loaded per lane. Calnexin or �-tubulin served as a loading control. F, �-glucosidase activity in CHO cells
expressing mGBA2-2A constructs as depicted in E. Cells were lysed in hypotonic buffer, and GBA2 activity was measured using the artificial, water-soluble
substrate 4-methylumbelliferyl-�-D-glucopyranoside. D and F, columns represent mean values of three independent experiments � S.D. n indicates numbers,
and p values calculated using one-way ANOVA are indicated.
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step sequence in GBA2-KO mice is more variable and unstable
compared with WT mice.

Discussion

Mutations in the GBA2 gene have been identified in human
patients, who suffer from a combination of spastic paraplegia
and cerebellar ataxia. Our results reveal that all but one muta-
tion of these SPG46-connected mutations cause a loss of GBA2
activity. Because most of the affected patients are homozygous
carriers, patients most likely are devoid of GBA2 activity. This is
particularly true for a recently identified homozygous mutation
in the hGBA2 gene, which resides in the splice acceptor site of
exon 3 and results in a complete loss of mRNA expression (29).
Thus, GBA2-KO mice should serve as a mammalian model sys-
tem to study the molecular mechanism that links the loss of
GBA2 activity with the development of locomotor dysfunction.
However, our results demonstrate that GBA2-KO mice do not
fully resemble the human phenotype. The phenotype in
GBA2-KO mice is variable, with some mice showing a strong
defect in locomotion, whereas others only display a mild defect
in the gait pattern. This phenotype variation could be due to a
reduced penetrance, resulting from difference in age, sex, or
strain background. The latter has been shown to have severe
consequences on the GBA2-associated phenotypes, i.e. male
infertility. The administration of low doses of NB-DNJ to
inbred strains of the C57 lineage produced high percentages of
abnormal sperm that lack an acrosome, whereas mouse strains
like BALB/c show intermediate percentages, and most strains
from the Swiss and Castle lineages do not show a major defect
in sperm morphology (30). In this respect, it is striking that
miglustat (NB-DNJ), which is used in the clinics for the treat-
ment of Gaucher disease because it blocks the glucosylceramide
synthase, but also GBA2 at a higher potency, does not cause
male infertility in humans (31). As described above, in mice,
miglustat treatment results in male infertility only in some
genetic backgrounds (5, 6, 31). In human patients, one affected
male patient (homozygous for Tyr-121*) produced offspring
(11), whereas two other affected male patients (homozygous for
R630W and compound heterozygous for T492R*9/W173*9)
were infertile and showed bilateral testicular hypertrophy with
sperm-head defects (13). Thus, the genotype does not allow us
to predict the phenotypic outcome with respect to male fertil-
ity, and there seems to be species-specific differences for GBA2
function in vivo.

The same might be true for defects in locomotor function.
None of the patients receiving miglustat treatment reported
locomotor dysfunction (32–34). Furthermore, human patients
carrying mutations in the GBA2 gene also show a variety in
phenotype, including differences in peripheral neuropathy and
in the onset of the disease. However, all homozygous carriers of
the mutations display an ataxic phenotype. In the mouse model,
the variation in phenotype could be due to a difference in the
genetic background. But this cannot be the case for the differ-
ence in locomotor dysfunction in GBA2-KO mice because the
animals were all kept at the same genetic background. In other
HSP mouse models, defects in locomotion occur later in life in
mice compared with humans (35, 36). However, GBA2-KO
mice were analyzed between 30 and 34 weeks of age at a time
point, where other HSP models already displayed a defect in
locomotion.

Another explanation for the phenotypic variance of GBA2-KO
mice could be that individual mice accumulate different
amounts of GlcCer. Such a correlation between the level of
accumulated glycosphingolipid and the severity of the pheno-
type is seen in human patients suffering from Fabry disease.
Mutations in the GLA gene, encoding for the �-galactosidase A,
leading to complete or partial loss of the enzyme’s activity,
result in a moderate or severe accumulation of Gb3 and in a
moderate or severe form of the disease, respectively. Serum
levels of deacylated Gb3 in blood plasma was the highest in
patients suffering from the classic, severe form of the disease,
whereas the lowest plasma deacylated Gb3 levels were present
in patients suffering from the late-onset, milder form of the
disease (37). Thus, not only a genotype–phenotype correlation,
but also a genotype–lipidome–phenotype correlation might be
useful for further in vivo studies. This approach would also be
important to disentangle the role of GlcCer and the accumula-
tion of higher order glycosphingolipids in the brain (see Fig. S5,
E and F). A difference in lipid accumulation between different
GBA2-KO could also explain the occurrence of seizures in
some, but not all GBA2-KO.

In HSP mouse models, defects in axonal branching were
identified as a common denominator, which might underlie
disease progression (35, 36). Sphingolipid synthesis has shown
to be crucial for neuronal outgrowth. In cells treated with an
inhibitor for ceramide synthase (fumonisin B1), axon growth
was impaired at stage 3 during neuronal development after 2–3

Figure 3. Alterations in Rho GTPase activity and localization underlie the cellular defects in GBA2-KO fibroblasts. A, actin defects in fibroblasts lacking
GBA2 activity. Fluorescent labeling of F-actin in wildtype (WT), GBA2-KO (KO), and WT fibroblasts treated with 2 �M NB-DNJ (WT/2 �M NB-DNJ). Cells were
seeded on CYTOO chips with cross-bow micro-patterns that are coated with fluorescently-labeled fibronectin (purple). F-actin was stained with Alexa Fluor 488
phalloidin (green) and the DNA with DAPI (blue). Scale bar is indicated. B, heterologous expression of WT mGBA2 and mGBA2 mutants in GBA2 KO-fibroblasts.
See A for GBA2-KO fibroblasts (KO) expressing WT mGBA2-HA (KO/mGBA2-HA), and mGBA2-R725H-HA (KO/R725H-HA). mGBA2 proteins were HA-tagged and
expression was detected with an anti-HA antibody (red). C, quantification of actin cytoskeletal structures. Average numbers of lamellipodia were determined
in GBA2-KO fibroblasts (KO) and in GBA2-KO fibroblasts heterologously expressing WT mGBA2-HA (KO/mGBA2-HA), mGBA2-R725H-HA (KO/R725H-HA), and
mGBA2-R621W-HA (KO/R621W-HA). D, activity of Rho GTPases in GBA2-KO fibroblasts. Active GTP-bound Rac1 and Cdc42 from wildtype (WT) and GBA2-KO
fibroblast (KO) lysates were affinity-purified using PAK-GST and analyzed by Western blotting; 10 �g of the cell lysate was used as input. The blot was probed
with a Rac1- and a Cdc42-specific antibodies. E, quantification of activated Rac1 and Cdc42 in GBA2-KO fibroblasts. Rac1-GTP and Cdc42-GTP expression was
normalized to the input and expressed as fold change over WT levels. F, Rac1 inhibition in GBA2-KO fibroblasts. Left, fluorescent labeling of F-actin in GBA2-KO
(KO) fibroblasts treated with 100 �M NCS23766 (KO/100 �M NCS23766). Cells were seeded on CYTOO chips with cross-bow micro-patterns that are coated with
fluorescently-labeled fibronectin (purple). F-actin was stained using Alexa Fluor 488 phalloidin (green), and the DNA was stained with DAPI (blue). Scale bar is
indicated. Right, average numbers of cytoskeletal structures were determined. G, expression of Rho GTPases at DRM. Left, DRM were isolated from wildtype
(WT) and GBA2-KO (KO) fibroblast lysates in a gradient. Top, middle, and bottom fractions were analyzed by Western blotting and probed with Rac1- and
Cdc42-specific antibodies. Caveolin1 and calnexin were used as markers for DRM-associated and non-DRM associated proteins, respectively. The distribution
of DRM is represented in gray. Right, Rac1 and Cdc42 expression in the middle fraction was normalized to the input and represented as fold change over WT
levels. All data are presented as mean � S.D.; n indicates numbers, and p values were calculated using one-way ANOVA are indicated.
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days in culture (38). This was also shown for dendritic growth in
Purkinje cells upon ceramide synthase inhibition (39). Impaired
de novo synthesis of ceramide resulted in decreased ganglioside
levels (38, 39). It is not the lack of ceramide itself but rather of its
glycosylated metabolite GlcCer, as the glycosphingolipid pre-
cursor, that underlies this axon outgrowth defect. In the pres-
ence of fumonisin B1, it was a ceramide derivative, which is
glycosylated to GlcCer, that ameliorated the axon outgrowth

defect, whereas a ceramide derivative, which cannot be glyco-
sylated to GlcCer, failed to do so (38 –40). Similarly, the oligo-
saccharide II3 NeuAc-Gg4 rather than the ceramide part of the
GM1 ganglioside promotes neurite formation in neuroblas-
toma cells (41). Also, inhibition of GBA2-mediated degradation
of GlcCer affected neurite outgrowth.: Pharmacological inhibi-
tion of GBA2 activity by NB-DNJ in cerebellar neurons resulted
in significantly shorter neurites (see Fig. 4). GBA2 expression

Figure 4. Loss of GBA2 activity reduces neurite outgrowth. A, GBA2 expression in brain (adult), spinal cord (adult), and cerebellum (P8) from wildtype (WT)
and GBA2-KO (KO; KOEu) mice. Hypotonic protein lysates were subjected to Western blot analysis, and the membrane was labeled with an anti-GBA2 antibody;
�-tubulin was used as a loading control. B, GBA2 expression in brain and spinal cord from adult WT and neuron-specific GBA2-KOsyn mice. Hypotonic protein
lysates were subjected to Western blot analysis, and the membrane was labeled with an anti-GBA2 antibody. GAPDH was used as a loading control. 60 �g of
hypotonic protein lysates were loaded per lane. C, �-gal expression in cerebellar neurons. Cerebellar neurons were isolated from P9 WT and GBA2-KOEu mice
and labeled with X-gal. D, �-gal expression (blue) in the brain of adult wildtype (WT) and GBA2-KOEu (KO) mice. Pictures on the right show a zoom-in of the
cerebellar region indicated with a box on the left. E, see D for spinal cord. Pictures on the right show a zoom-in of the region indicated with a box on the left. F,
GBA2 activity in hypotonic lysates from adult brain (35 � 9 weeks), cerebellum (P8), adult spinal cord (45 � 12 weeks), and isolated cerebellar neurons (P8 –9)
from WT and GBA2-KO/GBA2-KOEu mice. G, neurite outgrowth of cerebellar neurons (P6 –9). Representative images of WT cells treated with 30 pM AMP-DNM
or 5 �M NB-DNJ for 48 h, or GBA2-KO cells, fixed, and stained with an anti-tubulin antibody (red) and rhodamine-conjugated phalloidin (green) to measure
neurite outgrowth. H, quantification of the neurite length of cells presented in G. N numbers and p values in F and H were calculated using one-sample
Student’s t test.
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increases during neuronal differentiation (8), implicating that
the enzyme plays a pivotal role in the CNS already during
development.

Axon branching crucially relies on F-actin dynamics (42–44),
which are controlled by Rho GTPases (45). Loss of GBA2
results in the accumulation of GlcCer, which changes the lipid
composition of the membrane toward a more ordered state (4).
Our results demonstrate that the Rho GTPases Cdc42 and Rac1
are sensitive to these alterations in the lipid environment of the
plasma membrane, which changes their localization and activ-
ity. In all cell types we have analyzed so far, the loss of GBA2 and
the consequent accumulation of GlcCer led to a dramatic
change in the F-actin cytoskeleton. We also observed cytoskel-
etal defects in isolated cerebellar neurons when acutely block-
ing GBA2 activity, leading to a reduction in neurite outgrowth
and the formation of extra F-actin structures. This includes
GBA2 in the list of genes, which are mutated in HSP patients
and whose loss of function results in alteration of neurite for-
mation and axonal branching. However, this cellular phenotype
was only observed when GBA2 activity was pharmacologically
blocked and not when GBA2 was genetically ablated. Isolated
cerebellar neurons from GBA2-KO mice were morphologically
indistinguishable from WT neurons, although GBA2 activity
was fully absent. This might explain why GBA2-KO mice pre-
dominantly show a mild phenotype, which does not resemble
the human phenotype. The molecular mechanisms underlying
this phenotype discrepancy are enigmatic.

In the context of Gaucher disease, a lysosomal storage disor-
der that develops due to loss of GBA1 activity, we have demon-
strated that loss of GBA1 activity results in a concomitant
reduction in GBA2 activity (24). However, vice versa, loss of
GBA2 activity does not affect GBA1 activity (24). In fact, we also
did not observe a change in GBA1 activity in the brain or neu-
rons from GBA2-KO mice (Fig. S6). The GBA activity assay
bears one major shortcoming by using the water-soluble
4-MUG and not GlcCer as a substrate. However, we have exten-
sively characterized our assay to verify that it reliably distin-
guishes GBA1 and GBA2 activity (2). Thus, the difference in
phenotype cannot be explained by compensation through an
increase in GBA1 activity. Another way of determining GBA2
activity would be to use activity-based probes, which can be
used on live cells and brain sections (9, 47). Whether also other
risk factors contribute to disease progression in SPG46 patients
remains unknown.

Of note, GBA2 also exerts a transglucosylation activity and
can transfer a glucose moiety from GlcCer to cholesterol or,
vice versa, deglycosylate glucosylcholesterol (GlcChol), trans-
ferring the glucose moiety to ceramide (48, 49). GlcChol is

abundant in the brain, sciatic nerve, and lung (49). Loss of
GBA2 is accompanied by a decrease in GlcChol levels, as
observed in thymus, liver, and blood plasma (49), in murine
dermal fibroblasts, testis, and also in the brain (testis: WT, 1.5 �
0.3, versus KO, 1.1 � 0.2 pmol/mg protein; fibroblasts: WT,
14.3 � 3.1, versus KO, 2.1 � 0.3 pmol/mg protein; brain: WT,
2.0 � 0.2, versus KO: 0.3 � 0.1 nmol/g; mean � S.D., p 
 0.05
for all samples). Upon glycosylation, cholesterol relocalizes
from ordered to less ordered membrane domains (50). Thus,
not only is GlcCer and GlcChol metabolism strongly linked, but
also the function of these lipid metabolites might be inter-
twined on the level of lipid rafts. In a GBA2-deficient condition,
in which glycosylation of cholesterol is diminished, cholesterol
might still localize to more ordered membrane domains, pro-
moting the effect of accumulated GlcCer on membrane stack-
ing. However, the cellular function of GlcChol is still unclear.
Because GlcChol is more water-soluble than cholesterol, a
potential role of GlcChol as an ATP-independent transport
metabolite of cholesterol was suggested (49). Interestingly, a
glycosylated sterol (sitosterol) from cycads was shown to be
toxic to neurons in vivo in mice and in vitro (51). However,
whether GlcChol in mammals also exerts a neurotoxic function
and whether a decrease in GlcChol ameliorates neuronal dam-
age need to be elucidated.

In summary, GBA2 seems to fulfill cell-type and species-spe-
cific functions and the molecular mechanisms underlying these
differences need to be carefully studied in future experiments.
This will allow the shedding of light on the physiological role of
GlcCer-dependent signaling pathways and the understanding
of molecular mechanisms underlying GlcCer storage diseases
in humans.

Materials and methods

Cloning

The ORF of mouse GBA2 (NM_172692) was amplified from
cDNA using primers containing restriction sites and a Kozak
sequence in front of the start codon. The sequence encoding a
hemagglutinin (HA) or FLAG tag was added by PCR at the
3�-end. PCR products were subcloned into pcDNA3.1(�) or
pcDNA6/V5-HisA, and their sequence was verified. These
mGBA2 constructs were used as a template to generate double
chimera, including a FLAG-tagged mGBA2 and a coding
sequence for the 2A peptide (VKQTLNFDLLKLAGD-
VESNPGP) at the N terminus and an HA-tagged mGBA2 at
the C terminus. Addition of the 2A peptide flanked by a
PPGSG- and GSG-linker to the FLAG-tagged mGBA2 was
performed in a sequential manner. The final chimeric prod-

Table 2
Passive properties of cultured cerebellar cells recorded 48 h after preparation
A current step protocol was used to determine passive properties of cerebellar cells recorded in the whole-cell current-clamp configuration. Mean age of mice at day of
dissection was 10.6 � 0.5 days. WT n � 9; WT � 30 pM AMP-DNM; n � 10, KO n � 8, KO � 30 pM AMP-DNM, n � 5. The Student’s t test was used to test statistical
significance between indicated groups.

WT, mean
� S.D.

WT � inhibitor,
mean � S.D.

KO, mean
� S.D.

KO � inhibitor,
mean � S.D.

p, WT
vs. KO

p, WT vs.
WT � inhibitor

Vrest 	75 � 23 	61 � 16 	69 � 18 	65.3 � 5.8 0.58 0.17
�m (ms) 24.9 � 8.3 25.8 � 9.4 28.9 � 8.5 25.7 � 6.3 0.34 0.84
Rin (gigaohm) 7.6 � 2.6 4.9 � 1.3 7.2 � 2.2 5.9 � 0.6 0.73 0.017
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Figure 5. GBA2-KO mice exhibit gait abnormalities. A, brain of wildtype (WT) and GBA2-KO (KOEu (KO)) mice. B, Nissl staining of sagittal sections from P18 WT
and GBA2-KO mice. C, see B for adult mice. D and E, whole-cell current-clamp recordings of a WT (D) and GBA2-KO (E) Purkinje cell in an acute cerebellar slice
responding to different current steps. F, left, exemplary AP of a WT Purkinje cell, indicating how active AP parameters (amplitude, FWHM, and AHP) were
determined. Right, exemplary voltage response of a WT Purkinje cell to a 	2000 pA injection and monoexponential fit to determine �m. G, Purkinje neurons of
WT and GBA2-KO mice, filled with Alexa Fluor 488 (green) after patch-clamp experiments. Scale bar, 20 �m. H, weight test. Muscle strength (rsu) of the front
paws was calculated for adult (30 � 2 weeks) WT and GBA2-KO mice. Box plot includes the 25th and 75th percentile (top and bottom boundaries), median
(horizontal line), average (circle in box), minimum and maximum (whisker boundaries); individual data points are plotted aside. I–M, gait analysis using the
CatWalk system of adult (32 � 2 weeks) WT and GBA2-KO mice. I, swing duration of front paws. The swing phase for each paw was calculated and normalized
to the mean duration of the swing phase for the corresponding WT paw (set at 100%, indicated with a dotted line). Box plot: see H; (WT: n � 14, KO: n � 15). J,
see I for hind paws. K, interlimb coordination. Circular scatter plot representing the phase dispersion, taking into account the phase lag of the paws for the
diagonal, the ipsilateral, and the girdle pairs between WT and GBA2-KO mice, and ranges from 0 to 100%. L, step patterns to determine inter-limb coupled
movements are sorted in six different patterns. M, distribution of regular step patterns in WT (left) and GBA2-KO (right) mice (WT: n � 14, KO � 15) presented as �
graphs, showing the relative frequency of each pattern (AA, WT versus KO, p � 0.015; AB, WT versus KO, p � 0.003, calculated using one-way ANOVA (H and M).
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uct was amplified in a recombinant PCR, subcloned into
pcDNA3.1(�), and verified by sequencing. Primers used for
cloning are outlined in Table S1.

Cell lines and culture

Chinese hamster ovary (CHO) K1 cells were cultured in F-12
medium (ThermoFisher Scientific), containing 10% FCS (Bio-
chrome) and kept at 37 °C, 5% CO2.

Dermal fibroblasts were isolated from mouse tails using col-
lagenase digestion. Tail pieces were incubated in DMEM/Glu-
taMax (Gibco; 61965-026) containing 10% FCS (Biochrom;
S0115), 1 mM sodium pyruvate (Gibco Life Technologies, Inc.;
11360-039), 2 mM L-glutamine (Gibco Life Technologies, Inc.;
25030-024), 100 units/ml penicillin, 100 �g/ml streptomycin
(PenStrep; Gibco; 15140-122), 1 mg/ml collagenase (Sigma;
C9891) for 3 h at 37 °C and 5% CO2. After digestion, the super-
natant was centrifuged for 5 min, 600 � g at room temperature.
The cell pellet was resuspended in medium, and cells were
plated on cell culture plates and cultured at 37 °C, 5% CO2.
After 24 h, the medium was changed.

Primary cerebellar neurons were isolated from mouse brains.
The cerebella of day P6 –11 mice were dissected and directly
placed in sterile HBSS (Gibco, catalog no. 14025-053) � 7 mM

HEPES (Gibco, catalog no. 15630-56). Meninges were carefully
removed using fine forceps, and the cerebellum was minced
into small pieces. Tissue was dissociated in 1 ml of trypsin/
DNase solution (1% w/v trypsin (Cell Systems, catalog no.
LS003703), 1 mg/ml DNase (Roche Applied Science, catalog no.
11284932001), 0.9 mM MgSO4, 1 N NaOH, in CMF-PBS (137
mM NaCl, 4 mM KCl, 11 mM glucose, 4.2 �M Na2HPO4, 1.8 mM

KH2PO4, 0.004% (w/v) NaHCO3, pH 7.4)) and incubated at
room temperature for 10 min. Trypsin was inactivated by addi-
tion of 5 ml of DMEM (Gibco catalog no. 31966-021), 5% heat-
inactivated horse serum (Pan Biotech, catalog no. P30-0712).
Afterward, the tissue was washed three times in HBSS, 7 mM

HEPES, in the presence of DNase (0.005 mg/ml). Then, cells
were dissociated with glass Pasteur pipettes coated with 4%
BSA (Sigma, catalog no. A7906), centrifuged at 800 � g for 5
min at 4 °C, and washed twice with HBSS, 7 mM HEPES. Finally,
the cells were resuspended in 5 ml of complete neurobasal
medium (neurobasal medium (Gibco, catalog no. 12349-015)),
2% (v/v) B-27 supplement (Gibco, catalog no. 17504-044), 2 mM

L-glutamine (Gibco; catalog no. 25030-024), 1% PenStrep anti-
biotic (Gibco, catalog no. 15140122), and 2% horse serum
counted and plated on poly-L-lysine– coated coverslips (30,000
cells/1,32 cm2 (� approximately area of the 13-mm coverslip in
the 4-well dish)). The cells were kept at 37 °C, 5% CO2.

Transfection

CHO cells were transfected using polyethyleneimine (Sigma)
with 13.16 �g of plasmid DNA per 9-cm dish or 0.7 �g of plas-
mid DNA per 13-mm coverslip (4-well plate; Lipofectamine
2000 (Invitrogen): mGBA2-R225*-HA, mGBA2-W164*-HA,
and mGBA2-Y112*-HA). Mouse fibroblasts (1 � 106) were
resuspended in 100 �l of transfection buffer (Neon transfection
system, Life Technologies, Inc.), and 4 �g of plasmid DNA was
added. A microporator mini (Digital Bio Technology, MP-100)
was used to electroporate the cells. Here, 10 �l of the cell
suspension were subjected to two pulses (20 ms each) of 1000
V and afterward transferred to poly-L-lysine– coated glass-
bottom dishes (Mat Tek, catalog no. P35G-1.5-20-C) or
on CYTOO chips (CYTOO Cell Architects, catalog no.
10-900-13-06).

Mice

All animal experiments were conducted according to the
German law of animal protection and in agreement with the
approval of the local institutional animal care committees
(Landesamt für Natur, Umwelt und Verbraucherschutz
(LANUV), North Rhine-Westphalia, Az 84-02.04.2014.A194).
Mice were maintained under specific pathogen-free conditions
and were handled according to protocols approved by the
LANUV. The generation of global GBA2-deficient mice has
been described elsewhere (3). In addition, a global GBA2-defi-
cient mouse line with conditional potential containing a lacZ
cassette in the region spanning exons 1– 4 of the Gba2 gene
(Gba2tm1a(EUCOMM)Wtsi, European Conditional Mouse Mu-
tagenesis Program EUCOMM) was used for this study. �/lacZ
mice were used for matings; the offspring was genotyped by
PCR using GBA2- and lacZ-specific primers (GBA2: 359 bp
with #1 AATGCTAAAGTGGGGATGAAGC and #2 CTGCT-
CCAGTTCAAGGTCCC; lacZ: 108 bp with #1 ATCACGAC-
GCGCTGTATC and #2 ACATCGGGCAAATAATATCG).
GBA2-KO mice from both lines did not show any GBA2
expression or activity and displayed the male fertility defect
described elsewhere (3, 4).

Antibodies

The following antibodies were used in this study.
Primary antibodies—The following were used: HA (Krem-

mer R001 3F10: ICC, 1:1000; WB, 1:10,000); HA-7 (Sigma
H9658: ICC, 1:500); caveolin-1 (Cell Signaling, 3238, WB,
1:1000); calnexin (Sigma C4731: WB, 1:5000/1:20,000);
GAPDH-71.1 (Sigma G9295: WB, 1:30,000); Rac1 (Abcam
ab33186: WB, 1:1000); Cdc-42 (Abcam ab64533: WB, 1:1000);
FLAG M2 (Sigma F1804: WB, 1:1000/1:2000); �-actin (Abcam
6276: WB, 1:10,000); �-tubulin B-5-2-1 (Sigma T5168: WB,
1:5000); �-tubulin 2.1 (Sigma T4026: WB, 1:1000/1:10,000);
tubulin �-III (Biolegend catalog no. 801201: ICC, 1:100).

Table 3
Passive and active properties of Purkinje cells recorded in acute brain
slices of wildtype and GBA2-KO mice
A current step protocol was used to determine active and passive properties of
Purkinje cells recorded in the whole-cell current-clamp configuration. Mean age of
wildtype mice, 15.9 � 0.8 days; mean age of GBA2-KO mice, 15.7 � 0.5 days. WT,
n � 8; GBA2-KO, n � 10. The Student’s t test was used to test statistical significance
between WT and KO cells.

WT, mean
� S.D.

KO, mean
� S.D.

p, WT
vs. KO

Vrest 	54 � 10 	49 � 11 0.45
�m (ms) 116 � 70 98 � 30 0.61
Rin, peak (megohm) 170 � 119 110 � 24 0.28
Rin, steady (megohm) 79 � 62 43 � 30 0.24
Vthresh (mV) 	45 � 4 	47 � 4 0.22
A (mV) 68 � 9 68 � 7 0.91
AHP (mV) 	11 � 2 	11 � 5 0.66
FWHM (ms) 0.63 � 0.2 0.57 � 0.08 0.47
APfreq (Hz) 60 � 32 54 � 28 0.70
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Secondary antibodies—The following were used: WB:
IRDye680, IRDye800 (LI-COR: 1:10,000/1:20,000); HRP-conju-
gated donkey anti-Rb (Dianova 711-035-152: 1:5000); HRP-
conjugated goat anti-rat (Dianova 112-035-069: 1:5000); ICC:
goat anti-rat IgG H&L Cy3 (Abcam ab6953: 1:400); and goat
anti-mouse Alexa Fluor 488 (Molecular Probes, catalog no.
A11029).

The following dyes were used: Alexa Fluor 488 phalloidin
(Life Technologies, Inc., catalog no. A12379; ICC: 1:250); rho-
damine-conjugated phalloidin (Life Technologies, Inc., catalog
no. R415; ICC: 1:500); and DAPI (Life Technologies, Inc.,
D1306; ICC: 1:10,000).

Protein preparation

All steps were performed at 4 °C in the presence of a mam-
malian protease inhibitor mixture (mPIC, Sigma). Tissues were
homogenized in hypotonic buffer (10 mM HEPES, 0.5 mM

EDTA, pH 7.4, 0.1 g/ml wet weight) using an Ultra-turrax (IKA)
or tissue douncer and three pulses (20 s each) of sonification in
ice-cold water (Branson sonifier). Tissue suspensions were sub-
jected to low-speed centrifugation for 20 min at 1000 � g. The
supernatant (post-nuclear supernatant) was used for activity
assays (2-cm cell culture dish and cells were pelleted for 5 min at
500 � g and 4 °C. Afterward, the pellets were directly lysed in
hypotonic buffer, sonicated, and used for activity assays or
Western blot analysis. Protein concentration was determined
using the Bradford assay or the bicinchoninic acid (BCA) test
kit (Pierce) according to the manufacturer’s protocol.

Western blot analysis

Western blot analysis was performed as described elsewhere
(2). Protein expression was quantified using ImageJ (version
1.48, Wayne Rasband, National Institutes of Health). As the
protein standard, protein marker VI (10 –245 kDa, Appli-
Chem), HiMark protein standard (ThermoFisher Scientific), or
Biomol marker (catalog no. 10009) was used.

To analyze Rho GTPase activity, samples were suspended in
SDS sample buffer and separated using 4 –12% NuPAGE Novex
BisTris gradient gels (Life Technologies, Inc.) with a thickness
of 1.5 mm. Electrophoresis was performed in MOPS running
buffer (Invitrogen, NP0001) in an XCell SureLock mini gel
chamber (Life Technologies, Inc.) at 120 mA and 180 V.

Co-immunoprecipitation

All steps were performed at 4 °C in the presence of mPIC
(Sigma). Transfected cells from a 9-cm plate were lysed in 200
�l of detergent-containing lysis buffer (10 mM Tris/HCl, pH 7.5,
150 mM NaCl, 0.5 mM EDTA, 1% Triton X-100). Lysate was
centrifuged at 10,000 � g for 5 min, and supernatant was taken
for further steps. BCA test was performed, and 20 �l of the
lysate was taken as input/input 1 for Western blot analysis.
Pre-clearing on underivatized agarose matrix was performed
using cyanogen bromide–activated agarose (Sigma), which has
been prepared as a 50% (w/v) suspension with 50% (v/v) glyc-
erol in 10 mM sodium phosphate buffer, pH 7.4, 150 mM NaCl,
0.02% (w/v) sodium azide. 50 �l of matrix suspension was cen-
trifuged at 14,000 � g to remove the buffer and equilibrated in
5� column volume (CV) equilibration buffer and 5� CV lysis

buffer. 250 �g of protein in a total volume of 500 �l was added
to the matrix and incubated for 5– 6 h end-over-end. Agarose
matrix was then pelleted at 14,000 � g, and 20 �l were taken as
input (input 2) for Western blot analysis. The remaining
supernatant was loaded on anti-FLAG magnetic beads (Sig-
ma; 50 �l of bead slurry equilibrated in 5� CV equilibration
buffer, 5� CV lysis buffer). Lysate was incubated on the
beads overnight end-over-end at 4 °C. Afterward, suspen-
sion was magnetically separated, and supernatant was taken
as NonBound for Western blot analysis. Magnetic particles
were washed four times with 300 �l of washing buffer (10 mM

Tris/HCl, pH 7.5, 500 mM NaCl, 0.5 mM EDTA, 1% Triton
X-100). An aliquot of the supernatant of the initial/final
washing step was taken for Western blot analysis. Finally,
bead-bound protein was eluted in 2� CV of 0.1 M glycine, pH
3.0, during incubation at room temperature end-over-end.
Immediately after magnetic separation, supernatant was
transferred to 16.67 �l of 1 M Tris/HCl, pH 8.0, for neutral-
ization and subjected to Western blotting as the eluate.

Cross-linking experiments

All steps were performed at 4 °C in the presence of mPIC
(Sigma). Transfected cells were lysed in 10 mM HEPES/NaOH,
pH 7.4, and sonicated in ice-cold water in three pulses (20 s
each) (Branson sonicator). Protein concentration was deter-
mined in a BCA test. As a chemical cross-linker, 20 mM disuc-
cinimidyl suberate (DSS; ThermoFisher Scientific) was pre-
pared in DMSO. 40 �g of protein in 40-�l total volume was
incubated with 0.77 mM DSS for 2 h at 4 °C. Reaction was
stopped by adding 12 �l of 1 M Tris/HCl, pH 7.5 (final concen-
tration of 0.22 M). SDS-sample buffer was added, and 40 �g of
protein (� complete sample volume) was subjected to Western
blot analysis (without boiling before loading).

Structural modeling

Structural models of human GBA2 and missense mutations
in GBA2 were achieved using the workspace mode of the
SWISS-MODEL suite (21). Homology modeling was per-
formed on the crystal structure of TxGH116 �-glucosidase
(PDB accession code 5BVU). A continuous model was built
from residues 77 to 888. The ligand �-D-glucose was superim-
posed into the models of hGBA2 from the crystal structure
5BX5 (19).

�-Glucosidase activity assay

The assay was performed as described elsewhere (2, 24). For
AMP-DNM (27), 30 pM was used in the assay in a 25-�l sample
volume, which, after addition of 5 �l of 4-MUG, resulted in a
final concentration of 25 pM.

Treatments

Neurons were treated with 5 �M NB-DNJ (Sigma) or 30 pM

AMP-DNM (27). Fibroblasts were treated with 2 �M NB-DNJ
for 48 h to inhibit GBA2, 100 �M NCS23766 (Tocris, 2161) for
2 h to inhibit Rac1, and 10 �M ML141 (Calbiochem, 217708) for
1 h to inhibit Cdc-42.
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Immunohistochemistry and ICC

Mouse fibroblasts were plated on CYTOO chips (CYTOO
Cell Architects, catalog no. 10-900-13-06) placed in a 35-mm
cell culture plate. Cells were fixed with 4% paraformaldehyde
and labeled with Alexa Fluor 488 phalloidin and DAPI. Images
were taken using an Olympus FV1000 confocal microscope.

Neurons were fixed in 4% PFA for 15 min at room tempera-
ture. Residual PFA was quenched for 10 min with 50 mM

NH4Cl. Afterward, cells were permeabilized for 3 min with 0.1%
Triton X-100, followed by 30 min blocking in 2% FCS, 2% BSA,
0.2% fish gelatin. Primary and secondary antibodies were incu-
bated for 1 h or 30 min, respectively, in 10% blocking solution.
Finally, cells were mounted using Fluoromount (Sigma, catalog
no. F4680). Between all steps, cells were washed three times
with PBS.

Mice were anesthetized by intraperitoneal injection of 100
mg/kg body weight ketamine (Medistar) and 10 mg/kg body
weight xylazine (Ceva). Thoracotomy was performed, and mice
were perfused with 4% PFA (approved by LANUV Az
84-02.04.2017.A246). Brain and spinal cord were dissected and
fixed overnight in 4% PFA at 4 °C. Tissue used for X-gal staining
was dissected from nonperfused mice and fixed for 7 days in
0.2% glutaraldehyde in PBS. After washing in PBS (10 min at
room temperature), tissue was cryo-preserved in a sucrose gra-
dient (10% sucrose in PBS for 1 h at room temperature; 30%
sucrose in PBS overnight at 4 °C). Brain tissue was frozen with-
out embedding, and spinal cord was embedded in Tissue Tek
(Sakura), frozen on dry ice, and stored at 	80 °C for long term.
16-�m sagittal and coronal brain sections (caudal region) and
16-�m transverse sections of the cervical spinal cord were
sliced using the cryostat (Mikrom HM560, ThermoFisher Sci-
entific) and frozen at 	20 °C until further use.

X-gal staining

Cells were fixed for 5 min in 0.2% glutaraldehyde. Fixed cells/
tissue sections were washed three times for 5 min with LacZ
wash solution (0.1% (w/v) sodium deoxycholate, 0.2% (v/v) Ige-
pal CA-630 in LacZ basis solution: 77 mM Na2HPO4, 23 mM

NaH2PO4, 1.25 mM MgCl2, 2 mM EGTA). Cells/tissue sections
were then incubated with 0.01% (w/v) or 0.05% (w/v) X-gal
(dissolved in DMF) in pre-warmed LacZ staining solution (5
mM K3[Fe(CN)6], 5 mM K4[Fe(CN)6] in LacZ basis solution)
overnight in a humidified chamber at 37 °C in an incubator
without controlled CO2 supply. Cells/tissue sections were
washed twice with H2O and mounted on glass slides using
Aqua-Poly/Mount (Polysciences, Inc.). Stained cells/sections
were imaged using the Nikon Eclipse Ti microscope (stitching
mode for tissue sections).

Nissl staining

Slide-mounted tissue was demyelinated in a graded alcohol
series (70% EtOH, 95% EtOH, 100% EtOH; 5 min each) and
subsequently rehydrated (95% EtOH, 70% EtOH, 50% EtOH; 5
min each). Short rinsing in H2O was followed by cresyl violet
acetate staining (filtered 1% cresyl violet acetate (Sigma), 1%
acetic acid) for 4 min. Slides were washed in H2O three times
(30 s each) to remove excess stain and shortly washed in 70%

EtOH and 95% EtOH. For differentiation of the staining, tissue
sections were shortly incubated in 95% EtOH, 1% acetic acid,
then dehydrated in 95% EtOH and 100% EtOH. Finally, sections
were cleared in xylol (Isomere, Roth) and mounted with Entel-
lan� (Merck). Stained sections were imaged using the Nikon
Eclipse Ti microscope (stitching mode).

Analysis of cytoskeletal structures

For fibroblasts, filopodia (slender actin-protrusions) and
lamellipodia (wave-like actin extensions) structures were
counted. For neurons, neurite length of the neuronal tubulin
�-III–positive protrusions was measured.

Rho GTPase activity assay

Fibroblasts (3� confluent 9-cm plates) were lysed in 750
�l of lysis buffer (50 mM Tris, pH 7.5, 10 mM MgCl2, 0.5 M

NaCl, 2% Igepal) in the presence of a mammalian protease
inhibitor mixture mPIC (Sigma) within 5 min to prevent Rho
GTPase degradation and frozen until the assay was per-
formed. For the assay, 400 �g of the lysate was used to mea-
sure Rac1-GTP, and 300 �g of the lysate was used to measure
Cdc42-GTP. Volume of lysate was adjusted to 0.5 �g/�l with
cold lysis buffer. 10 �g of GST-tagged PAK-PBD protein
(Cytoskeleton, PAK01-A) was added to the lysate and incu-
bated for 30 min at 4 °C on a rotator. 25 �l of GSH-Sepharose
beads (GE Healthcare catalog no. 17-0756-05) were incu-
bated with the lysate for 30 min at 4 °C on a rotator. Samples
were centrifuged at 8000 � g for 1 min at 4 °C. The pellet was
washed in wash buffer (25 mM Tris, pH 7.5, 30 mM MgCl2, 40
mM NaCl, mPIC), resuspended in 25 �l of 2� SDS-PAGE
loading buffer, and analyzed by Western blotting. 10 �g of
the original lysate was used as input. Lysates loaded with
GTP or GDP (Cytoskeleton, BK035) were used as positive
and negative controls, respectively. Here, prior to PAK-GST
incubation, lysates were treated with 15 mM EDTA to facili-
tate nucleotide exchange, followed by addition of 200 �M

GTP or GDP and then 60 mM MgCl2 to quench the exchange.

Isolation of DRM fractions

Separation of detergent-resistant membrane fractions was
adapted from an earlier publication (52). 3 � 106 fibroblasts
were pelleted and frozen until analyzed. 5� TNE buffer was
prepared freshly before each experiment (750 mM NaCl, 10 mM

EDTA, 250 mM Tris-HCl, pH 7.4). Each cell pellet was resus-
pended in 700 �l of TNE buffer (1�), containing mPIC, and
lysed mechanically using a syringe with a 24-gauge needle (25
strokes) on ice. 315 �l of the lysate was transferred to a new
tube; 35 �l of 10� Triton X-100 (prepared in 1� TNE buffer;
final concentration 1�) were added, mixed gently, and left on
ice for 30 min. To this lysate, 700 �l of 60% iodoxanol (40% final
concentration; OptiPrep, Sigma, D1556) was added, mixed, and
transferred into an ultracentrifuge tube (Beckman, 349623).
Here, a gradient was established by overlaying the lysate con-
taining 40% iodoxanol first with 2.1 ml of 30% iodoxanol (pre-
pared by diluting 60% iodoxanol in 2� TNE buffer in a ratio of
1:1) and second with 350 �l of 1� TNE buffer. All solutions
contained mPIC. The sample was centrifuged at 260,000 � g for
2 h at 4 °C in an SW-55 Ti rotor (Beckman Coulter, 342196).
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After ultracentrifugation, the samples were separated into
three equal fractions of 1167 �l each (top, middle, and bottom)
and analyzed by Western blotting.

Quantification of lipids using MS

Quantification of lipids using MS was performed as
described before (24). Alternatively, sphingolipid analysis
was carried out using a QTRAP 6500� LC-MS/MS system
(Sciex, Darmstadt) with a Turbo V ion source. Sphingolipids
were delivered to the MS via an M3 MicroLC (Sciex, Darm-
stadt) at a flow rate of 10 �l/min. The gradient method was
modified from Ref. 53. The sample was infused into the
source using a constant flow of 100% solvent A (methanol)
from 0 to 10 min. All remaining components were washed
out with 100% solvent B (methanol/acetic acid, 9:1, v/v) from
10.1 to 12 min. Re-equilibration was achieved with 100%
solvent A from 12.1 to 15 min. Samples were dissolved in 100
�l of isopropyl alcohol, chloroform, methanol, 300 mM

ammonium acetate in water, 25:30:41.5:3.5, v/v/v/v) (53).
Sphingolipids were detected in the positive ion mode with
the following instrument settings: curtain gas, 20 p.s.i.; col-
lision gas, medium; IonSpray voltage, 5500 V; ion source
temperature, 150 °C; nebulizer and turbogas, 25 p.s.i. The
parameters for MRM transitions were as follows: decluster-
ing potential, 70 V; entrance potential, 10 V; cell exit poten-
tial, 12 V; collision energies, 15 V (long-chain bases), 35 V
(Cer), and 40 V (HexCer). Data evaluation was carried out
using the MultiQuant 3.0.2 software. For quantification of
sphingolipids, the peak areas of the chromatograms result-
ing from MRMs were compared with those of the internal
standards.

Extraction of lipids and TLC

Tissue lysates corresponding to 2–3 mg of protein content
were transferred into 2-ml Eppendorf tubes, lyophilized, and
suspended in 1 ml of methanol using a metal bead and a Tissue
Lyser. After addition of 1 ml of chloroform, samples were incu-
bated at 37 °C for 15 min in an ultrasonic bath and centrifuged
at 12,000 � g for 5 min. The supernatant was collected, and the
pellet was re-extracted with 2 ml of chloroform/methanol/wa-
ter (10:10:1) and with 2 ml of chloroform/methanol/water (30:
60:8). The second and third supernatants were pooled with the
first supernatant. From this raw extract, acidic lipids were sep-
arated from neutral lipids using DEAE-25 columns with a
100-�l bed volume and desalted on reversed phase C18 col-
umns as described before (25). Gangliosides of the acidic frac-
tion were further enriched by mild alkaline treatment, i.e. 0.1 M

KOH in methanol for 2 h at 37 °C, neutralized with acetic acid,
and desalted on reversed phase columns. The ganglioside frac-
tion was dried under a gentle nitrogen stream at 37 °C and dis-
solved in chloroform/methanol/water (10:10:1) at a concentra-
tion of 1 mg of protein/100 �l.

Electrophysiology

Acute brain slices—For electrophysiological brain-slice re-
cordings, P15–17 WT or GBA2-KO mice were anesthetized
with isofluorane (Baxter) and decapitated. The cerebellum was
carefully removed and placed in ice-cold artificial cerebrospinal

fluid (ACSF), containing in mM: NaCl 125, NaHCO3 25, D-glu-
cose 25, KCl 2.5, NaH2PO4 1.25, CaCl2 2, and MgCl2 1. 250-�m
thick sagittal slices were cut on a Leica VT1200S vibratome
(Leica). The slices were then incubated at 37 °C for 45 min and
kept at room temperature until transfer to the recording cham-
ber. The slices were kept in ACSF continuously bubbled with
5% CO2 and 95% O2 to maintain pH 7.4. Brain slices were visu-
alized under an upright BX51WI light microscope (Olympus),
equipped with a �40 water immersion objective (LUMPlan
FI/IR, Olympus). Whole-cell current-clamp recordings were
performed with a Multiclamp 700B amplifier (Molecular
Devices) connected via a Digidata 1440A acquisition board
(Molecular Devices) to a PC running pClamp (Molecular
Devices). Data were low-pass–filtered at 5 kHz and sampled at
10 kHz. All recordings were conducted at room temperature.
Patch pipettes were pulled from borosilicate capillaries (Hil-
genberg) using a DMZ puller (Zeitz Instruments GmbH) and
filled with intracellular solution, containing in mM: potassium
gluconate 110, KCl 10, Na2-phosphocreatine 7, Mg-ATP 4, Na-
GTP 0.3, HEPES 10, D-mannitol 45, Alexa Fluor 488 0.1, titrated
with KOH to pH 7.32 (300 mOsm). Patch pipettes had an initial
resistance of 5–10 megohms.

Recordings were analyzed with Igor Pro (Wavemetrics).
Resting membrane potential (Vrest) was measured immediately
after breaking into the cell. If necessary, a negative holding cur-
rent was injected to keep the cells at 	70 mV during recordings.
From the holding current, current steps of increasing ampli-
tude (25 pA, starting from 	200 pA) were applied. The first
three steps (	200, 	175, and 	150 pA) were used to calculate
the input resistance (Rin) at the peak and at the steady state
of the membrane potential. Rheobase indicates the smallest
current step sufficient to trigger action potentials (APs). The
membrane time constant � (�m) was calculated from a monoex-
ponential fit of the membrane potential following the recovery
from a 2-ms current step to 	2000 pA (Fig. 5G). AP properties
were calculated from APs triggered by current injections
around the rheobase. The action potential threshold Vthresh was
defined as the voltage where the temporal derivative of the volt-
age exceeds 30 mV/ms. The AP amplitude was calculated as the
difference between Vthres and the peak voltage. The after-hy-
perpolarization potential (AHP) was calculated as the differ-
ence between Vthresh and the minimal membrane potential fol-
lowing the AP (Fig. 5F). The full-width at half-maximum
(FWHM) was measured as the width of the AP at the half-
amplitude voltage. The maximal AP firing rate was determined
for the maximal current injection at which the neurons fired
continuously.

Primary cerebellar cultures—Whole-cell current-clamp re-
cordings of primary cerebellar neurons were conducted 48 h
after dissection. We chose cells that were fairly isolated and not
part of cell clusters. Those cells did not fire APs. During record-
ings, cells were kept in a continuously perfused recording
chamber, mounted on an inverted IX71 microscope (Olym-
pus). Recording solutions and patch pipettes were the same as
the ones for acute brain slice recordings. Data were acquired
using an Axopatch 200B amplifier (Molecular Devices) con-
nected via a Digidata 1440A acquisition board to a PC running
pClamp. Recordings were low-pass–filtered at 5 kHz and sam-
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pled at 10 kHz. Vrest was measured immediately after whole-cell
configuration was established. Currents from 	3 to 	10 pA
were injected to determine �m and Rin.

Behavioral experiments

Weight test—The weight test was performed in the animal
facility of Caesar on 3 consecutive days. Mice had to grasp a
steel chain of 1) 21 g, 2) 34.8 g, 3) 48.6 g, 4) 62.4 g, 5) 75.5 g,
6) 89 g, and 7) 103.3 g with their forepaws while being held by
the tail and lifted. If the mouse held the weight for 3 s, the
next heavier weight was used. If a mouse failed to hold it for
3 s and dropped the weight, it was tested on the same weight
after resting for at least 10 s. The trial was terminated when
the mouse failed three times, and the time the mouse was
able to hold this maximum weight was noted. Based on these
data, the relative muscle strength unit (rsu) was calculated as
follows: x (rsu) � n � 3 (seconds) � t (seconds), where x is
the muscle strength (in rsu); n is the weight the mouse could
hold for 3 s; and t is the time (seconds) it held the next
heavier failed weight.

CatWalk—The CatWalk system (CatWalkTM XT 9.0 and
10.6, Noldus Information Technologies) was used to deter-
mine gait parameters of mice. Before the experiment, the
camera-walkway distance was set to 40 cm and the corridor
width to 5.5 cm, and the system was calibrated using a cali-
bration sheet of known dimensions (20 � 10 cm). The cam-
era gain was set to 20.00 db (CatWalk XT 10.6) or 30.00 db
(CatWalk XT 9.0), and the green intensity threshold was set
to 0.1 to define the maximum and minimum green intensity
to detect the paws; additionally, in the CatWalk XT 10.6
software, the red ceiling light was set to 17.7 V and the green
walking light to 16.0 V (CatWalkTM 10.6). The experiment
was performed in the dark on 3 consecutive days in the
morning after the animals habituated to the walkway 1 day
before, and two compliant runs (maximum speed variation:
60%) per day with four consecutive steps of each paw were
classified for gait analysis. The following gait parameters
were plotted based on the classified paws: swing duration
and phase dispersion were according to Ref. 46, and step
pattern. Swing duration of the GBA2-KO (KO) mice was
plotted relative to the corresponding wildtype (WT) tested
with the same software (CatWalk 9.0 or 10.6) or for the inter-
paw coordination parameter phase dispersion and step pat-
tern as averaged values for WT and KO or individual values
for each animal over all experiments, respectively. After
completion of all behavior experiments, mice were eutha-
nized by anesthetizing with isofluorane (Baxter) followed by
cervical dislocation. Dissected tissues were frozen at 	80 °C
for long-term storage. Genotypes of all tested mice were val-
idated in a �-glucosidase activity assay performed with
hypotonic brain lysates.

Statistical analysis

Results are presented as mean � S.D. Statistical analysis was
performed using Origin Pro 9.0 (one-way ANOVA or one-sam-
ple Student’s t test). p values are only indicated when consid-
ered significant (�0.05).
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