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Pathways linking activation of the insulin receptor to down-
stream targets of insulin have traditionally been studied using a
candidate gene approach. To elucidate additional pathways reg-
ulating insulin activity, we performed a forward chemical–
genetics screen based on translocation of a glucose transporter 4
(Glut4) reporter expressed in murine 3T3-L1 adipocytes. To
identify compounds with known targets, we screened drug-re-
purposing and natural product libraries. We identified, con-
firmed, and validated 64 activators and 65 inhibitors that
acutely increase or rapidly decrease cell-surface Glut4 in adi-
pocytes stimulated with submaximal insulin concentrations.
These agents were grouped by target, chemical class, and mech-
anism of action. All groups contained multiple hits from a single
drug class, and several comprised multiple structurally unre-
lated hits for a single target. Targets include the �-adrenergic
and adenosine receptors. Agonists of these receptors increased
and inverse agonists/antagonists decreased cell-surface Glut4
independently of insulin. Additional activators include insulin
sensitizers (thiazolidinediones), insulin mimetics, dis-inhibi-
tors (the mTORC1 inhibitor rapamycin), cardiotonic steroids
(the Na�/K�-ATPase inhibitor ouabain), and corticosteroids
(dexamethasone). Inhibitors include heterocyclic amines (tricy-
clic antidepressants) and 21 natural product supplements and
herbal extracts. Mechanisms of action include effects on Glut4
trafficking, signal transduction, inhibition of protein synthesis,
and dissipation of proton gradients. Two pathways that acutely
regulate Glut4 translocation were discovered: de novo protein
synthesis and endocytic acidification. The mechanism of action
of additional classes of activators (tanshinones, dalbergiones,
and coumarins) and inhibitors (flavonoids and resveratrol)
remains to be determined. These tools are among the most sen-
sitive, responsive, and reproducible insulin-activity assays
described to date.

Insulin increases the rate of glucose uptake into adipocytes
20 –50-fold. Glucose transport into adipocytes plays a key and
essential role in the clearance of lipid from the blood after a
meal. Disruption of this pathway leads to systemic metabolic
derangement. Restoration of insulin-sensitive lipid metabolism
is an important target in the treatment of obesity and diabetes
(1).

The primary purposes of adipose tissue are synthesis/storage
of triacylglycerol (TAG)4 in periods of energy excess (after a
meal) and hydrolysis of TAG to generate fatty acids (FAs) for
use by other organs during energy deprivation (fasting and
intense exercise) (2, 3). Although it is traditionally thought that
excess carbohydrates are converted into lipids for storage by de
novo lipogenesis, most FAs in adipose tissue come from dietary
fat (4). After a meal, the chylomicron-associated TAG in the
blood is hydrolyzed by endothelial lipoprotein lipase, and the
released FAs cross cell membranes and are then re-esterified
into TAGs. In adipocytes, this re-esterification requires glu-
cose. Adipocytes do not express glycerol kinase; the glycerol
phosphate required for TAG synthesis comes from glycolysis
(5). Thus, the glucose disposed of in fat after a meal becomes the
glycerol backbone of the re-esterified TAGs (6). Disruption of
insulin-induced glucose transport in fat (e.g. in obesity) elevates
serum-free FAs and TAGs, eliciting insulin resistance in muscle
and liver (lipotoxicity) (7, 8). Drugs that restore insulin-sensi-
tive glucose uptake into adipocytes improve overall insulin sen-
sitivity (9, 10).

Glucose uptake into adipocytes is rate-limited by the number
of Glut4 facilitative glucose transport proteins inserted into the
plasma membrane (PM) (11–13). Insulin increases glucose
transport by recruiting Glut4 from intracellular compartments
to the PM (14 –17). In basal adipocytes, only 1–2% of the total
cellular Glut4 is on the cell surface. After insulin stimulation,
30 –50% is inserted into the PM. Thus, the large increase in
cell-surface Glut4 is the product of both the very efficient
sequestration of Glut4 inside of the cell under fasting condi-
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tions (when adipocytes need very little glucose) and the rapid
redistribution of Glut4 to the PM after insulin stimulation.

A signal transduction cascade linking activation of the insu-
lin receptor to regulated secretory vesicles containing Glut4 has
been described (18 –20). It includes five proteins as follows: PI
3-kinase; Akt; Rab-GAP AS160; and two GTP-binding proteins
that regulate vesicle trafficking, Rab10 and Rab 14 (21–29). PI
3-kinase is activated by the insulin receptor through its sub-
strate IRS-1. The resultant PI 3-phosphate in cell membranes
recruits kinases that activate Akt. Akt phosphorylates and
inhibits AS160, which is co-localized with Glut4 in intracellular
compartments. Inhibition of the GAP activity of AS160
increases GTP loading and activation of its substrates Rab10
and Rab14, which are also resident on Glut4 vesicles. This
increases Glut4 exocytosis.

Previous work by our lab and others relied on a candidate
gene approach; reverse genetics (shRNA knockdown) and
reverse chemical genetics (small molecule inhibitors) were used
to perturb the proteins known to affect cell-surface Glut4, and
the effects of these perturbations on trafficking were measured
(17, 29 –34). To elucidate novel protein machineries and path-
ways regulating Glut4 trafficking, a forward chemical genetics
screen was done. Classical forward genetics involves random
DNA mutation and selection of cells/organisms with a specific
phenotype (e.g. changes in cell-surface Glut4 levels). In chem-
ical genetics, compounds that produce a specific phenotype
are discovered and then the targets of “hits” identified. When
libraries of approved, well-characterized drugs are used, the
targets of hits are known. The power of forward genetics is
the ability to develop a comprehensive, systems-level map of
all proteins/pathways affecting a selected phenotype. This
unbiased approach allows identification of unexpected
relationships.

This paper describes assays to identify and validate small
molecules that enhance or inhibit insulin action in adipocytes
using changes in cell-surface Glut4 as a marker for insulin activ-
ity. These high-throughput assays are among the most sensi-
tive, responsive, and reproducible insulin-activity assays that
have been reported. It also describes assays to distinguish the
mechanisms of action of these compounds. Using these assays,
small molecule screens of four drug-repurposing and natural
products libraries (3858 compounds) were performed. Con-
firming the power of the chemical genetics approach, both
novel activators and inhibitors of insulin action were discov-
ered. These hits revealed previously unidentified regulatory
pathways for insulin signaling as well as for Glut4 trafficking.
FDA-approved drugs and commonly consumed supple-
ments/“nutraceuticals” that inhibit Glut4 translocation were
also identified (e.g. quinines/antimalarials, cyclic antidepres-
sants, resveratrol, and flavonoids). These may worsen insulin
resistance in patients with diabetes. Consistent with this,
several of the inhibitors identified are known to cause acute
insulin resistance (hyperinsulinemia and normoglycemia) in
humans through unknown mechanisms. The potential role
of inhibition of Glut4 translocation in these adverse drug
affects is discussed.

Results

Assay

An assay to screen for the effects of small molecules on acute
insulin action was developed that is highly sensitive, responsive,
specific, and reproducible. It is among the most sensitive and
reproducible assays for insulin activity described to date. It is a
high-throughput, content-rich assay that allows rapid collec-
tion of data from thousands of individual cells/samples, and
hundreds of samples/experiment. The screening assay has two
key features: the insulin sensitivity/responsiveness of the cells
(cultured adipocytes) and the sensitivity, speed, and accuracy of
the detection system (flow cytometry). Importantly, these
screens identify compounds that have acute effects in adi-
pocytes pretreated with insulin (increase or decrease cell-sur-
face Glut4). Although compounds may reverse or increase
insulin signaling, this protocol eliminates confounders that
prevent activation of the insulin receptor or severely impair
membrane trafficking.

Using this system, a 2–3-fold increase over basal surface
Glut4 levels can be reproducibly detected with 0.05 nM insulin,
with a maximal increase of 20 –30-fold at 100 nM insulin
(EC50 � 1.4 nM), and a sample-to-sample standard deviation of
�15% (Fig. 1A). Insulin rapidly increases cell-surface Glut4
(t1⁄2 � 4 min), and this remains elevated for several hours (Fig.
1B) (17, 30, 32). The PI 3-kinase inhibitor LY294002 (LYi)
inhibits Glut4 exocytosis, causing a rapid decrease in cell-
surface Glut4 (up to 90%, t1⁄2 � 5 min, EC50 � 10 �M). For
screening, cells were preincubated with insulin for 45 min,
followed by a 1-h treatment with compounds. Cells were
then placed on ice; surface Glut4 was labeled with Alex-
afluor647-conjugated antibody against the HA epitope
(AF647–�-HA), and the cells were detached from the cul-
ture dish using collagenase. The total HA/Glut4-GFP and
cell-surface AF647–labeled Glut4 were measured in the dis-
associated cells using flow cytometry. Adipocytes were dis-
tinguished from fibroblasts and necrotic cells in the cell cul-
tures based on light scatter (from the lipid droplets) and
cellular autofluorescence (17).

The distribution of total fluorescence per cell in a single sam-
ple (�5000 cells) is non-Gaussian (roughly log normal; Fig.
S1A). This is an inherent property of protein expression in cells
(35). Therefore, the geometric mean fluorescence (GMF) is
computed for each sample (Fig. S1B; the mean of the log10 fluo-
rescence per cell is determined and then the antilog10 of this
mean is calculated). These values are standardized relative to
the average GMF of the DMSO samples from the same 96-well
assay plate. In our system, the distribution of the relative GMF
(rGMF) values across a large population of control DMSO sam-
ples is Gaussian (Fig. S1C; solid line, n � 1005). Thus, the prob-
ability that a sample treated with compound is the same as
treatment with DMSO alone (lies within the same population as
the control samples) or is representative of a treatment that is
affecting cell-surface Glut4 can be estimated using the mean
and standard deviation of the rGMF values (mean of means) of
all control samples from each screen.
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Pilot screen

The Prestwick Chemical Library of FDA-approved drugs
(1120 compounds) was screened at a single concentration as a
single sample under two conditions. For activators, cells were
pretreated for 45 min with 0.05 nM insulin and then incubated
with compounds for 1 h. The positive reference for activators
(REFactivator, 100 nM insulin) increased cell-surface Glut4 an

additional 26-fold under these conditions. For inhibitors, cells
were pretreated with 1 nM insulin and then incubated with
compounds for 1 h. The positive reference for inhibitors (LYi)
decreased cell-surface Glut4 by 75% in these samples. Insulin
(100 nM) increased Glut4 3-fold in cells pretreated with 1 nM

insulin; thus activators could also be detected in the “inhibitor”
screen.

Figure 1. Assay. 3T3-L1 fibroblasts stably expressing HA–Glut4/GFP were differentiated into adipocytes in 96-well plates. The cells develop a three-dimen-
sional co-culture of adipocytes embedded in a collagen matrix, with a monolayer of fibroblasts on the plastic. The cultures were incubated in serum-free media
for 2 h (basal) at 37 °C. Insulin was added, and cells were incubated for 45 min. Compound was added, and cells were incubated for 1 h. Cells were placed on ice,
and surface Glut4 was labeled with AF647-conjugated anti-HA antibody. Cells were detached from the plate with collagenase and analyzed by flow cytometry.
A, insulin dose response. B, time course. C, pilot screen. D, identification of hits. For activators (green), relative geometric mean fluorescence (rGMF) was �1.5,
and for inhibitors (red), rGMF was �0.62. 64 activators and 65 inhibitors were verified by rescreening, and representative compounds were confirmed with pure
compound and validated by concentration response, SAR, and time course (Table S1).
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Of the 1120 compounds screened, 25 were “shifters” that
directly affected either autofluorescence or scatter of the cells
(e.g. Chicago sky blue, propidium iodide, and sanguinarine).
This could be detected in the uninfected cells present in each
sample (17, 30 –34). These compounds were not further
analyzed.

Compounds were selected for verification by retesting if the
sample had a relative geometric mean fluorescence (rGMF) �3
S.D. from the average rGMF of all control DMSO samples from
the screen. Using these criteria, hits lie outside the range of
99.7% of the control DMSO samples (�3 compounds per 1000
are expected to randomly screen as false positives). rGMFDMSO �
S.D. � 1 � 0.13 (n � 224 samples; eight samples/plate, 28
plates). Therefore, compounds with an rGMF �1.4 were
selected as potential “activators,” whereas compounds with an
rGMF � 0.6 were selected as potential “inhibitors.”

Using these criteria, 24 of the 1120 compounds screened pos-
itive as activators and none as inhibitors on cells pretreated
with 0.05 nM insulin. Two of the control DMSO samples (n �
112) falsely screened positive as activators under these condi-
tions. In cells pretreated with 1 nM insulin, 32 screened positive
as activators and 31 screened positive as inhibitors. None of
the control DMSO samples (n � 112) screened positive under
these conditions. Three of the activators were identified as pos-
itive hits on both plates. Hits were subjected to verification by
repeat testing in triplicate using compounds from the library.
Of the 42 activators that were rescreened, 10 were verified.
However, it was much more cost-effective to verify hits by
rescreening in triplicate than it would have been to screen all
compounds in triplicate to reduce false positives. Using two
plates increased sensitivity (increased true positives) but
decreased specificity (increased the number of false positives)
for activators. Of the 24 inhibitors that were rescreened, 23
were verified.

Z-factors

Z-factors are statistical parameters used to evaluate assay
robustness in high-throughput screens (36). They are depen-
dent on both the signal dynamic range (the difference between
known positive reference samples and untreated control sam-
ples) and the sample-to-sample variability (standard deviation)
using Equation 1,

z� � 1 �
3 � (S.D. REF � S.D. control)

�REF � control� (Eq. 1)

In an excellent assay, 0.5 � Z� � 1; if Z� � 0 – 0.5, the assay is
less robust but is still acceptable. In the pilot screen, Z� � 0.82
or 0.62 for activators when screened in cells pretreated with
either 0.05 or 1 nM insulin, respectively (REF: 100 nM insulin).
For inhibitors, Z� � 0.35 in cells pretreated with 1 nM insulin
but was below 0 in cells treated with 0.05 nM insulin, making
this condition unsuitable for discovery of inhibitors (REF: 50
�M LYi). However, despite the lower Z� score, the specificity
was higher for the inhibitor screen than for the activator screen
(there was a significantly lower false-positive rate).

Library screens

Based on the results of the pilot screen, compounds were
assayed as single samples on a single plate at an intermediate
insulin concentration (0.3 nM) in subsequent screens of the
Spectrum Collection of bioactive chemicals and natural prod-
ucts, the National Institutes of Health Clinical Collection, and
the Selleck natural product library (2000, 707, and 131 com-
pounds, respectively). Under these conditions, maximal insulin
(100 nM) increased cell-surface Glut4 an additional 3–5-fold,
whereas LYi decreased cell-surface Glut4 by 80 –90% (Fig. 1, A
and B). The Z�-factors calculated from a test experiment were
0.59 and 0.13 (n � 80 control DMSO and n � 8 each reference).
The average Z� scores from the completed screens were 0.52
and 0.17 (n � 224 DMSO and 68 of each reference sample from
34 plates). To reduce the number of false-positive activators
and false-negative inhibitors, the criteria for selection of hits
were made more stringent (activators, rGMF �1.5, and inhibi-
tors, rGMF �0.65).

The distribution of rGMF values for all unknown samples in
the screens (2769 total after elimination of shifters) was approx-
imately Gaussian (Fig. 1, C and D). 85 activators and 99 inhibi-
tors screened positive and were verified. A number of these
were redundant, found in multiple libraries.

Using a lower concentration of insulin for pretreatment (0.3
nM) significantly increased the assay sensitivity (decreased false
negatives) for activators. Nine compounds were identified in
the subsequent screens that were present in the Prestwick
library, but not hits in the initial screen in cells pretreated with
higher insulin (1 nM). However, these screening conditions sig-
nificantly increased the false-negative rate for inhibitors: seven
compounds identified as hits in the initial screen at 1 nM insulin
did not screen positive as hits in subsequent screens at 0.3 nM

insulin. Although all significantly decreased cell-surface Glut4
when assayed as pure compounds, their effects were too small
at the lower insulin concentration to screen positive. Thus,
screening in cells pretreated with 0.3 nM insulin is optimized for
finding compounds that increase but not that decrease cell-
surface Glut4.

Structure/activity relationships (SAR)

Overall, 64 activators and 65 inhibitors were identified in the
combined screens and were verified in replicate assays using
compounds from the libraries (Table S1). The hits can be sorted
into drug classes based on structure, targets, and pathways.
Multiple hits from a single drug class and multiple structurally
unrelated hits for a single target provide additional verification
for compounds. Eight classes of activators and seven classes of
inhibitors were identified (Table 1). Representative compounds
from each class were selected for further analysis. Thirty two
activators and nine inhibitors were validated using pure com-
pound. Based on the drug classes, five additional activators and
three additional inhibitors were identified by testing related
compounds. Hits from each class were verified by determining
their concentration response (EC50) and time course.

Insulin sensitizers

All of the thiazolidinediones present in the libraries (piogli-
tazone, ciglitazone, and rosiglitazone) screened positive and
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were verified as activators. Thiazolidinediones improve insulin
sensitivity in cultured adipocytes, as well as in humans, through
activation of the transcription factor PPAR	 (37). The concen-
tration response of pioglitazone is consistent with an effect
through PPAR	 (Fig. 2A; EC50 � 0.6 �M for increased cell-
surface Glut4 and EC50 � 1 �M for increased differentiation in
3T3-L1 cells) (38). As expected for an insulin sensitizer, addi-
tion of a saturating concentration of pioglitazone (10 �M) to
cells stimulated with submaximal insulin caused a left shift in
the insulin dose response (Fig. 3A). The cells responded as if
they had been treated with a 4-fold higher concentration of
insulin (EC50 insulin � 0.8 nM with DMSO, 0.2 nM with piogli-
tazone). Thiazolidinediones had little effect in quiescent cells or
in cells treated with saturating insulin (0.003 or 100 nM; Fig. 3B).
Thiazolidinediones act as insulin sensitizers in cells and ani-
mals through changes in adipocyte differentiation (chronic
long-term exposure). An acute effect of these drugs, within
minutes of treatment, on insulin sensitivity and/or glucose
transport has not previously been reported. However, rapid
(within minutes), non-genomic effects of PPAR	 activators
have previously been reported in cells and in animals (39, 40).
These affects were blocked by GW9662, a PPAR	 antagonist.
Interestingly, the acetaldehyde dehydrogenase inhibitor disul-
firam also acts like an acute insulin sensitizer in cultured adi-
pocytes (Fig. 3A).

Insulin mimetics

Thiazolidinediones are not acting as insulin mimetics. Their
effect on the shape of the insulin concentration–response curve
is different. Insulin mimetics elevate surface Glut4 in cells
treated with low doses of insulin, to the same extent at all con-

centrations below the “effective” insulin concentration (sub-
maximal insulin, 0.6 nM, is used as an example). An insulin
mimetic will shift the dose response to the right (Fig. 3A; in this
example from 1 to 2 nM) and have no effect in cells treated with
saturating insulin (Fig. 3B).

To further distinguish the mechanism of action of insulin-
sensitizers versus insulin mimetics, time-course experiments
were performed (Fig. 4A). In cells pretreated with submaximal
insulin (0.3 nM), 0.6 nM insulin increased cell-surface Glut4 sig-
nificantly more rapidly than pioglitazone (t1⁄2 � 4 min insulin
and 35 min pioglitazone), consistent with different mecha-
nisms of action. Disulfiram showed kinetics very similar to
pioglitazone. Although we did not identify any insulin mimetics
in our screen, small molecule insulin mimetics were discovered
in targeted screens for activators of the tyrosine kinase activity
of the isolated insulin receptor (41, 42), providing proof of con-
cept that they exist in small-molecule libraries.

Dis-inhibitors

The mechanistic target of rapamycin complex 1 (mTORC1)
inhibitor rapamycin also screened positive and was verified as
an activator. The concentration response of rapamycin is con-
sistent with a direct effect on mTORC1 (Fig. 2A; EC50 for
increased cell-surface Glut4 � 0.16 nM, IC50 for mTORC1 inhi-
bition in tissue culture cells � 0.1 nM) (43). Rapamycin acutely
enhances Glut4 translocation in 3T3-L1 adipocytes through
inhibition of an mTORC1-catalyzed feedback inhibition loop
for insulin signaling via S6 kinase (44). Consistent with this
mechanism, rapamycin had little effect in quiescent cells (0.003
nM) and was synergistic with insulin at saturating concentra-
tions (Fig. 3, A and B). In cells pretreated with submaximal

Table 1
Summary of hits: mechanisms of action, drug classes, and representative compounds

Activators Inhibitors

Insulin sensitizers Thiazolidinediones: pioglitazone, ciglitazone, and
rosiglitazone

Disulfiram (thiuram)
Dis-inhibitors Inhibitors of mechanistic target of rapamycin

complex 1 (mTORC1): rapamycin
�-Adrenergic Agonists: isoproterenol, metaproteranol,

terbutiline, and epinephrine
Inverse agonists/antagonists: propranolol

Adenylate cyclase activator: forskolin
Adenosine receptor Agonists: 2-chloroadenosine Inverse agonists/antagonists: CGS 15943, IBMX
Steroids Corticosteroids: flumethasone, halcinonide,

prednicarbate, and dexamethasone
Androgenic: flutamide Androgenic: testosterone

Na�/K�-ATPase inhibitors Cardiotonic steroids: proscillaridin A,
medrysone, strophanthidin, and ouabain

Antibiotics Proguanil, niclosamide, amsacrin
Protein synthesis inhibitors Puromycin, cycloheximide, anisomycin, cephaeline,

ementine, lycorine
Heterocyclic amines Antihistamines: homochlorcyclizine, azelastine

Antipsychotics: haloperidol, bromperidol
Phenothiazine anti-psychotics: promazine,

promethazine, thioridazine
Dibenzazepines: tricyclic antidepressants;

imipramine, desipramine, protriptyline
Tetracyclic anti-depressants: maprotiline

Lysosomotropic amines Chloroquine, ammonium chloride
Phytochemicals: supplements and medicinal

herbal extracts
Tanshinone I, dihydrotanshinone I,

cryptotanshinone, GSPE
Parthenolide, piperlongumine, resveratrol,

LY294002/LYi, Akti
Flavonoids Icariin, myricetin, and dihydromyricetin Kaempferol, quercitin, geraldol
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insulin (0.3 nM), rapamycin increased cell-surface Glut4 more
slowly than insulin (Fig. 4A; t1⁄2 � 12 min). Thus, reversal of
inhibition of signaling is slower than direct stimulation of the
insulin receptor. However, rapamycin acted significantly faster
than pioglitazone and disulfiram, again consistent with their
different mechanisms of action. Rapamycin acutely enhances
insulin sensitivity and effectiveness in humans, making it an
attractive potential therapeutic (45). However, chronic rapa-
mycin treatment inhibits insulin activity and causes hypergly-
cemia due to indirect effects on mTOR complex 2 (46 –48).

�-Adrenergic receptor agonists and antagonists/inverse
agonists

Activators also include 10 
-adrenergic agonists (e.g. isopro-
terenol, metaproterenol, and terbutaline). The 
-agonist epi-
nephrine and the adenylate cyclase activator forskolin also
increase cell-surface Glut4. The concentration responses for
the 
-agonists (isoproterenol �� metaproterenol and epineph-
rine, EC50 � 14 nM versus 4.5 and 6.5 �M; Fig. 2B) are consistent
with an effect via 
3-adrenergic receptors (49). In contrast to

the insulin sensitizers, 
-agonists had their maximal effect in
quiescent cells, with a synergistic effect that was additive to
insulin at all insulin concentrations (Fig. 3, A and B). Thus, the

-agonists have an effect on Glut4 trafficking that is indepen-
dent of signal transduction through the insulin receptor. Like
insulin, the effect of the 
-agonists is very fast (t1⁄2 � 5 min),
consistent with an effect via signal transduction (Fig. 4B). For-
skolin also rapidly increased cell-surface Glut4 (t1⁄2 � 10 min),
although it is slower than isoproterenol.

The 
-adrenergic antagonist propranolol screened positive
as an inhibitor in insulin-stimulated cells. Propranolol is acting
as an inverse agonist, rapidly decreasing cell-surface Glut4 even
in the absence of added 
-agonist (t1⁄2 � 8 min; Figs. 4B and 7A).
Propranolol had little effect on cell-surface Glut4 in quiescent
cells (data not shown). Activation of 
-adrenergic receptors
acutely increases glucose transport in isolated adipocytes, car-
diomyocytes, and skeletal muscle (50 –55). In muscle, this
increase is through insulin-independent activation of the
mTORC2 pathway and translocation of Glut4 (56). 
-Agonists
and antagonists affect glucose transport in primary adipocytes
through effects on Vmax and not transporter affinity (57). They
also induce translocation of glucose transport activity from
microsomes to the plasma membrane fraction in adipocytes.
We have verified that these compounds directly effect Glut4
translocation in adipocytes.

Adenosine receptor agonists and antagonists/inverse agonists

Activators also included the adenoreceptor agonist 2-chloro-
adenosine (Fig. 4C). The nonxanthine �1/�2 adenosine recep-
tor antagonist CGS 15943 screened positive as an inhibitor, and
the adenosine receptor antagonist isobutylmethylxanthine
(IBMX) is an inhibitor when assayed as a pure compound. The
dose response observed for IBMX (EC50 � 0.5 mM; Fig. 6A)
indicates that its effects are due to adenoreceptor inverse ago-
nism and not to effects on cAMP as a phosphodiesterase inhib-
itor (IC50 PDE � 2–50 �M) (58). Because of this low affinity,
IBMX would not have screened positive as an inhibitor if it had
been in the libraries (Fig. 6A). This is a limitation of screening
compounds at a single concentration (25 �M). This can contrib-
ute to false negatives.

Like propranolol, IBMX also rapidly decreased cell-surface
Glut4 even in the absence of added adenosine receptor agonist
(t1⁄2 � 10 min; Figs. 4C and 7A). Interestingly, adenosine recep-
tor stimulation transiently increased cell-surface Glut4 (maxi-
mal increase at 10 min), while 
-adrenergic agonist stimulation
was sustained (Fig. 4, B and C). Xanthines, including caffeine,
induce acute insulin resistance in humans, decreasing whole-
body glucose disposal �30% when measured in either an oral
glucose tolerance test or insulin clamp (59). Acute effects of
IBMX on glucose transport in isolated human and rat adi-
pocytes have also been reported (57, 60). Consistent with our
results, IBMX inhibited glucose transport in adipocytes at con-
centrations inconsistent with effects on cAMP. However, this
may be due to direct effects of IBMX on the activity of the
glucose transporters. Effects of IBMX on Glut4 translocation
have not previously been reported.

Figure 2. Validation of activators, concentration response. Verified hits
were assigned into drug classes based on shared structures and targets (Table
S1). Representative compounds from each group were chosen for further
analysis. For confirmation, representative hits were confirmed by ordering
pure compound and rescreening. For concentration response, cells were pre-
treated with insulin (0.3 nM), and compounds were added at increasing con-
centrations, and cells were incubated for 1 h. Cells were placed on ice, and
cell-surface Glut4 was determined. A, insulin sensitizers and dis-inhibitors. B,

-adrenergic receptor agonists. C, glucocorticoids. To verify targets, the mea-
sured EC50 values (Table S1) were compared with published values.
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Corticosteroids

13 steroids screened positive as activators (e.g. halcinonide,
flumethasone, and prednicarbate). The corticosteroid dexam-
ethasone was also an acute activator when assayed as a pure
compound. Interestingly, the androgen receptor agonist testos-
terone screened positive as an inhibitor, whereas the nonstero-
idal androgen receptor antagonist/reverse agonist flutamide
screened positive as an activator. The steroids showed a
U-shaped concentration-response curve with maximal effects
at concentrations lower than the screening concentration (�25
�M), and decreasing effects at higher concentrations (Fig. 2C).
Acute effects of dexamethasone on Glut4 translocation have
not previously been reported. Chronic treatment with dexam-
ethasone and other corticosteroids inhibits insulin signaling in
primary adipocytes and 3T3-L1 adipocytes and causes hyper-
glycemia in humans (61).

Cardiotonic steroids

Three cardioglycoside inhibitors of the Na�/K�-ATPase
screened positive as activators (proscillaridin A, medrysone,
and strophanthidin). Ouabain also increased Glut4 transloca-
tion when assayed as a pure compound. The ouabain dose
response (EC50 � 13 �M; Fig. 5A) is consistent with an effect via
the ubiquitously expressed �1 isozyme (IC50 � 40 –50 �M)
rather than the tissue-specific �2 isozyme (IC50 � 50 nM),
although both are expressed in adipocytes and muscle (�1 in
rodents is very low affinity relative to other species (62)). As
observed for insulin sensitizers, ouabain has no effect in quies-
cent cells (0.05 nM insulin; Fig. 5A).

The kinetics of the ouabain-induced increase in insulin-stim-
ulated cells were significantly slower than insulin, insulin sen-

sitizers, the dis-inhibitor rapamycin, and the 
-adrenergic ago-
nists, indicating a novel mechanism of action (t1⁄2 � 60 min;
Fig. 5B). Ouabain increased cell-surface Glut4 in cells pre-
treated with 1 nM insulin �80 –90% under screening conditions
(1 h treatment) and nearly 3-fold with longer incubation times.
Consistent with a unique mechanism of action, the kinetics
profile of ouabain shows a very distinctive shape. Initially, there
is a rapid decrease in cell-surface Glut4, which is followed by a
slow rise. The kinetics of the slow rise is comparable with the
rate constant for Glut4 exocytosis at 1 nM insulin (30, 31), sug-
gesting that ouabain may be effecting Glut4 trafficking directly
rather than through signaling. In support of this idea, ouabain
has acute effects on endocytic trafficking through the effects on
endosomal pH (63, 64). Glut4 traffics through insulin-sensitive
acidic compartments in adipocytes (26, 65– 68).

Cardiotonic steroids were originally isolated from plant
extracts, but highly related compounds are endogenously
expressed in experimental animals and humans (69). These
endogenous ligands have been implicated in both normal and
disease processes. Interestingly, insulin stimulates the translo-
cation of the Na�/K�-ATPase from intracellular compart-
ments to the cell surface in a number of cell types, including
muscle (70 –72).

Protein synthesis inhibitors

Inhibitors included 12 antibiotics/anti-neoplastics (e.g.
proguanil, niclosamide, and amsacrin). Five of these affect the
same pathway, protein synthesis, via distinct mechanisms
(puromycin, cycloheximide, anisomycin, cephaeline, and
ementine). Loss of Glut4 from the cell surface using a saturating
concentration of puromycin (Fig. 6A) was slow compared with

Figure 3. Mechanism of action of activators, insulin concentration response. Cells were pretreated with increasing concentrations of insulin; compounds
were added at saturating concentrations, and cells were incubated for 1 h. Cells were placed on ice, and cell-surface Glut4 was determined. The shapes of the
curves distinguish insulin mimetics, insulin-sensitizers, dis-inhibitors, and drugs that work through parallel (insulin-independent) pathways. A, all compounds
increase cell-surface Glut4 �2-fold at sub-maximal (0.3 nM) insulin (red oval). B, drug classes are distinguished by their effects on cells preincubated at low (0.003
nM) and saturating (100 nM) insulin (summarized in Table 2).
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inhibition of proteins known to be important for insulin signal-
ing (t1⁄2 � 35 min for puromycin versus 5 min for LYi and 10 min
for the Akt inhibitor Akti; Fig. 7A). The protein synthesis inhib-
itors did not decrease cell-surface Glut4 in quiescent cells (data
not shown). The plant phytochemical lycorine shows nearly
identical kinetics to puromycin (slow, t1⁄2 � 30 – 40 min). Lyco-
rine is a protein synthesis inhibitor (73). Lycorine has also been

reported to inhibit Akt. However, the kinetics of inhibition of
glucose transporter translocation by lycorine is inconsistent
with Akt inhibition as its major mechanism of action.

A requirement for continuous protein synthesis to maintain
Glut4 translocation has not been previously reported; however,
a requirement for continuous protein synthesis for insulin
receptor trafficking has been described (74). Interestingly,
Glut4 trafficking utilizes a protein component that is consumed
during the process, TUG (Tether containing UBX domain, for
Glut4). Both expression of full-length TUG and proteolytic
cleavage of TUG is required for proper Glut4 targeting in adi-
pocytes (75, 76). Insulin-induced proteolytic cleavage of TUG
(TUG consumption) occurs with kinetics similar to those
observed for inhibition of Glut4 trafficking after addition of
protein synthesis inhibitors.

Figure 4. Mechanism of action of activators, time course. Cells were pre-
treated with insulin (0.3 nM); compounds were added at saturating concen-
trations, and cells were incubated for increasing times. Cells were placed on
ice, and cell-surface Glut4 was determined. At saturating concentrations,
compounds with the same mechanism of action will have similar time
courses. Differences in the shape of the time courses indicate a different
mechanism of action. A, insulin mimetics (t1⁄2 � 4 min), dis-inhibitors (t1⁄2 � 12
min), and insulin sensitizers (t1⁄2 � 35 min) increase cell-surface Glut4 at dif-
ferent rates. B, 
-adrenergic receptor agonists and forskolin show kinetics
similar to insulin (t1⁄2 � 5–10 min), consistent with effects on a parallel signal
transduction pathways. C, adenosine receptor agonists transiently increase
cell-surface Glut4 with a maximal effect at 10 min that slowly decreases. B and
C, propranolol and IBMX act as reverse agonists, rapidly decreasing cell-sur-
face Glut4 (t1⁄2 � 8 –10 min) in the absence of agonists.

Figure 5. Novel mechanisms of action, Na�/K�-ATPase inhibitors (car-
diotonic steroids) and GSPE. Cells were treated as described in Figs. 2– 4.
A, concentration response. The increase in cell-surface Glut4 was dose-de-
pendent and saturable for both ouabain and GSPE. Unlike other activa-
tors, GSPE had its largest effect in quiescent cells (filled symbols), increas-
ing cell-surface Glut4 to the same extent as 1 nM insulin (open symbols).
Ouabain had no effect in quiescent cells. B, time course. The effect of GSPE
was slow relative to insulin (t1⁄2 � 20 min) but much faster than ouabain
(t1⁄2 � 60 min). Ouabain had a complex kinetics profile, with an initial rapid
decrease in cell-surface Glut4, followed by a slow increase (black filled
symbols). C, insulin concentration response. GSPE increased cell-surface
Glut4 at sub-maximal insulin (�3 nM) but inhibited translocation at satu-
rating insulin (black filled symbols).
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Heterocyclic amines

Inhibitors also include two antihistamines (homochlorcycl-
izine and azelastine), two “typical” antipsychotics (haloperidol
and bromperidol), three phenothiazine antipsychotics (proma-
zine, promethazine, and thioridazine), five dibenzazepines
(tricyclic antidepressants; e.g. imipramine, desipramine, and
protriptyline), and the tetracyclic antidepressant maprotiline.
The antihistamines, antipsychotics, phenothiazines, dibenzaz-
epines, and heterocyclic antidepressants act as antagonists or
inverse agonists for multiple overlapping receptors (e.g. hista-
mine, dopamine, and muscarinic acetylcholine), with differ-
ences in relative potencies. However, the relative concentration
responses of these compounds on Glut4 translocation are not
consistent with effects on any of these receptors (Table S1).
Compounds with hundreds of fold differences in affinity for
particular receptors have similar effects on Glut4 translocation,
and compounds with similar affinities for specific receptors
have very different effects on Glut4 translocation.

Although their targets are diverse, the heterocyclic amines
are structurally similar. Their planar, hydrophobic ring struc-
tures allow them to cross lipid bilayers. Their amines bind pro-
tons (pKa values are listed in Table S1). Thus, all would be
expected to act as lysosomotropic amines and dissipate pH gra-
dients in acidic endosomal compartments (63, 77, 78). Consis-
tent with this, the kinetics of the effects of the heterocyclic
amines on Glut4 translocation are very similar to those of the
vacuologenic amine chloroquine, and different from other
classes of inhibitors (Fig. 7B; maprotiline). There is a very rapid
but only partial decrease in cell-surface Glut4 at saturating drug
concentrations (t1⁄2 � 3 min; maximal inhibition 50%). The
vacuologenic amine NH4Cl also inhibits Glut4 trafficking with
very similar kinetics and to a similar extent (data not shown).
All three of these compounds decrease cell-surface Glut4 in
quiescent as well as insulin-stimulated cells (0.05 nM insulin;
data not shown). Consistent with the idea that the heterocyclic
amines affect surface Glut4 through effects on endosomal pH,
toxicology studies have shown that many therapeutic drugs in
this class, including several of the hits in this screen, are lysoso-
mogenic in humans and mice (79). They accumulate in acidic
compartments in cells, particularly in adipose tissue. Phe-
nothiazines and dibenzazepines cause acute insulin resistance

Figure 6. Validation of inhibitors, concentration response. Verified hits
were assigned into drug classes based on shared structures and targets (Table
S1). Representative hits were confirmed using pure compound and validated
by dose response. A, drugs with known targets/mechanisms of action. Note:
IBMX (EC50 � 0.5 mM) is acting via adenoreceptor inverse agonism and not
through effects on cAMP as a phosphodiesterase inhibitor (IC50 PDE � 2–50
�M). Because of its low affinity, IBMX would not have screened positive as an
inhibitor (25 �M). B, inhibitors identified in the screen with unknown mecha-
nism of action.

Figure 7. Mechanism of action of inhibitors, time course. Cells were
treated as described in Fig. 4. The shapes of the curves distinguish four differ-
ent mechanisms (summarized in Table 3). A, protein synthesis inhibitors
(slow, 80%; e.g. puromycin) and inhibitors of signal transduction (intermedi-
ate, 80%; e.g. Akti). B, inhibitors of Glut4 exocytosis (fast, 80 –90%; e.g. LYi) and
inhibitors of endosomal acidification (very fast, 50%; e.g. chloroquine).
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(hyperinsulinemia and normoglycemia) in humans, through
unknown mechanisms (80 –82). Because of this side effect, tri-
cyclic and tetracyclic antidepressants are no longer first line
therapeutics for treatment of individuals with depression,
although they are still used in patients that fail to respond to
other drug classes. It is possible that alternative dosing regi-
mens can be identified that ameliorate the adverse effects of this
class of drugs on glucose homeostasis.

Supplements and medicinal herbs

All four of the libraries include natural products/phyto-
chemicals in addition to FDA-approved drugs. 42 of these com-
pounds screened positive, 16 as activators and 26 as inhibitors.
Of the 16 activators identified, eight are available as highly con-
centrated nutraceuticals and eight are active ingredients iso-
lated from medicinal herbal extracts. Activators include three
compounds related to tanshinone I (tanshinone I, dihydrotan-
shinone I, and cryptotanshinone). Tanishinone IIA, which is an
additional bioactive compound found in the same extracts, did
not screen positive. Dihydrotanshinone I decreases blood glu-
cose in diabetic rodents, via an unknown mechanism (83–86).

The nutritional supplement grape seed proanthocyanidin
extract (GSPE) was also identified as an activator. GSPE
induced a saturable, dose-dependent increase in cell-surface
Glut4. However, unlike other activators such as ouabain, GSPE
had its largest effect at low insulin (0.05 nM), increasing cell-
surface Glut4 to the same extent as 1 nM insulin (Fig. 5A). GSPE
had a smaller effect at submaximal insulin (1 nM). The time
course of the effect of GSPE on quiescent cells (0.05 nM insulin;
t1⁄2 � 20 min) was slow relative to insulin but much faster than
ouabain. At higher concentrations (200 �g/ml), GSPE elevated
basal cell-surface Glut4 but inhibited Glut4 translocation at
saturating insulin (Fig. 5C), indicating a complex mechanism.
GSPE has previously been shown to acutely increase 2-deoxyg-
lucose transport and Glut4 translocation in quiescent 3T3-L1
adipocytes at comparable concentrations (140 �g/ml) and to
improve glucose homeostasis in animal models of metabolic
disease (87–89).

Of the 26 phytochemicals that were identified as inhibitors in
this screen, 17 are available in highly concentrated form as
nutraceuticals, and five others are active ingredients isolated
from medicinal herbal extracts. Inhibitors include 13 fla-
vonoids (e.g. kaempferol, quercitin, and geraldol). Interestingly,
three structurally related flavonoids screened positive as acti-
vators (icariin, myricetin, and dihydromyricetin). There were
also flavonoids that had no effect on cell-surface Glut4. These
compounds are often found together in plants and herbal
extracts, and differences in their relative abundance could
potentially cause significant variability in the biological re-
sponses seen with these extracts/supplements. Interestingly,
two phytochemical flavonoids structurally very similar to ica-
riin promote adipogenesis (increase lipid droplet and triglycer-
ide content) in 3T3-L1 cells. They also up-regulate expression
of aP2 and Glut4 (both mRNA and protein) to the same extent
as rosiglitazone (used as a positive control in these experi-
ments) (90). A third related flavonoid isolated from the same
medicinal herbal extract had little to no effect on these
parameters.

The biological targets of many of these inhibitory supple-
ments remain unclear. To explore the mechanisms of action of
a selection of these compounds, time-course studies were done.
As noted above, the transition kinetics of the inhibitors showed
several distinct phenotypes (Fig. 7). These can be used to ten-
tatively assign the novel phytochemical inhibitors of Glut4
translocation to specific mechanistic groups. For example,
known inhibitors of signal transduction, including propranolol
and IBMX, show kinetics and extent of inhibition very similar
to Akti (t1⁄2 � 8 –12 min). The kinetics and extent of inhibition
by parthenolide are consistent with an effect on signal trans-
duction (Fig. 7A). Parthenolide has been reported to have anti-
tumor and anti-inflammatory activities through inhibition of
signal transduction pathways, including HDAC1, NF-�B, and
Akt (91).

In contrast to inhibitors of signal transduction, the PI 3-ki-
nase inhibitor LYi very rapidly clears 90% of Glut4 from the cell
surface in insulin-stimulated cells (fast, t1⁄2 � 5 min; Fig. 6B). PI
3-kinase inhibition causes rapid loss of cell-surface Glut4
through effects on membrane trafficking. LYi rapidly and
nearly completely blocks Glut4 exocytosis without effecting
endocytosis (30, 31). The nutritional supplements piperlongu-
mine and resveratrol show kinetics and extent nearly identical
to LYi. Consistent with this, these supplements acutely inhibit
PI 3-kinase both in cultured cells and in vitro at micromolar
concentrations (IC50 Glut4 translocation � 3–5 �M and IC50 PI
3-kinase � 10 –25 �M; Fig. 6B) (92, 93). Thus, piperlongumine
and resveratrol likely decrease cell-surface Glut4 through inhi-
bition of endosomal membrane trafficking. LYi, piperlongu-
mine, and resveratrol all decrease cell-surface Glut4 in both
quiescent and insulin-stimulated cells, indicating an effect on
constitutive and well as insulin-stimulated trafficking path-
ways. Resveratrol has previously been shown to inhibit insulin
action in isolated human adipocytes at micromolar concentra-
tions (94).

Discussion

Previous work in our lab and others utilized reverse genetics
to identify proteins and pathways that affect cell-surface Glut4
levels and insulin action. In reverse genetics, the phenotype of
an organism or cell is determined following the disruption of a
known candidate gene. The candidate genes tested were found
either biochemically (e.g. by co-localization or co-immunopre-
cipitation) or by analogy to other trafficking processes. The role
of these candidate genes in Glut4 trafficking and insulin signal-
ing was tested using a combination of chemical reagents (small
molecule inhibitors and activators) and DNA-based reagents
(shRNA/siRNA-induced knockdown and expression of exoge-
nous proteins). This work yielded a framework outlining both
the trafficking itinerary of Glut4 and signal transduction path-
ways linking activation of the insulin receptor to regulation of
this trafficking. However, significant gaps in our understanding
of these processes remain.

The goal of this small molecule screen was to discover novel
probes and new proteins/pathways that affect Glut4 trafficking
and insulin action in highly insulin-responsive cells (adi-
pocytes) using forward chemical genetics. Forward genetics is
an approach used to identify genes/groups of genes responsible
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for a particular phenotype in cells/organisms. Classically, for-
ward genetics involves selection of cells/organisms exhibiting a
specific phenotype after random DNA mutagenesis (spontane-
ous or induced) and identification of the genes by mapping. As
an alternative to random mutagenesis, shRNA, siRNA, and
CRISPR–Cas9 libraries have been used. In these experiments,
the targets are identified by the sequence of the probes and
verified using multiple sequences from the same protein. In
chemical forward genetics, compounds that produce a specific
phenotype are discovered and then the targets of hits identified.
When libraries of approved drugs are used, the targets of the
compounds are known. Targets are verified by their pharma-
cology and by using chemically unrelated compounds affect-
ing the same protein/pathway. The power of forward genet-
ics is the ability to develop a comprehensive, systems-level
map of all proteins affecting a selected phenotype, in an
unbiased way. This facilitates the discovery of novel, unpre-
dicted relationships.

We identified, confirmed, and validated 64 compounds that
acutely increase cell-surface Glut4 and 65 compounds that rap-
idly decrease cell-surface Glut4 in adipocytes stimulated with
sub-maximal concentrations of insulin. These hits could be
organized into 11 groups based on their targets and chemical
classes (Tables 1 and Table S1). Targets were verified by their
pharmacology (EC50, time course; Figs. 2–7), and by SAR iden-
tification of multiple hits of the same chemical class and chem-
ically unrelated compounds affecting the same protein/path-
way. With the exception of the dis-inhibitor rapamycin, all
groups contained multiple hits identified in more than one of
the independent screens of the four libraries. Several of the
groups include both agonists and antagonists of specific targets
(e.g. the 
-adrenergic and adenosine receptors) with opposite
effects on cell-surface Glut4. Based on these groupings, we dis-
covered an additional eight compounds that affect cell-surface
Glut4 that were not identified in the screens. These include the
four components of the standard cell culture adipocyte differ-
entiation mixture: insulin, IBMX, dexamethasone, and thiazo-
lidinediones. All four showed acute effects on cell-surface Glut4
at concentrations equivalent to those used during adipogenesis.

As a further verification of the screen, the hits included a
number of compounds known to affect glucose transport or
insulin action in cells, animals, and/or humans. However, with
the exception of rapamycin, the details of how these com-
pounds exert their effects on glucose uptake/homeostasis were
incompletely understood. None had previously been reported
to directly and acutely effect Glut4 translocation in adipocytes.
This is due in part to the technical difficulty of screening Glut4
translocation in adipocytes. Previous Glut4 translocation
screens used nonphysiological, insulin-insensitive fibroblasts
(HEK293 and CHO) expressing Glut4 reporter constructs as
their cell culture model (95–97). The pathways identified in our
screen would not be expected to affect Glut4 trafficking in
fibroblasts. Adipocytes have been used previously in screens for
compounds that affect differentiation (long-term treatment)
(98 –101), but not for acute effects on insulin signaling. We
overcame these difficulties by carefully optimizing our cell cul-
ture conditions and by utilizing a novel detection system, flow
cytometry. This technique allows the rapid collection of five (or

more) individual attributes per cell, 5000 cells per sample, and
hundreds of samples per experiment (Fig. 1). The sensitivity
and reproducibility of our screening assay allowed the identifi-
cation of compounds that affect cell-surface Glut4 under sub-
optimal conditions for many of the compounds (e.g. at a single
incubation time and a single concentration of drug and insulin).

In addition to identifying distinct chemical classes and tar-
gets that affect cell-surface Glut4, we were able to determine
the mechanisms underlying a number of these groups based on
their distinctive phenotypes (Tables 2 and 3). Compounds can
increase cell-surface Glut4 by acting as insulin mimetics (0.6 nM

insulin), insulin sensitizers (thiazolidinediones, disulfiram),
and dis-inhibitors of feedback regulatory loops of insulin sig-
naling (rapamycin) (Figs. 3 and 4). We also identified signal
transduction pathways that stimulate Glut4 translocation that
are independent of insulin signaling (
-adrenergic), as well as
compounds that affect Glut4 trafficking directly (ouabain) (Fig.
5). Compounds that affect trafficking can increase cell-surface
Glut4 through either increasing exocytosis or decreasing endo-
cytosis. Furthermore, compounds can effect Glut4 trafficking
either through insulin-dependent processes or via constitutive
pathways. Consistent with the mechanisms identified for acti-
vators, inhibitors were identified that decreased cell-surface
Glut4 through effects on signal transduction (propranolol,
IBMX, and parthenolide) and effects on Glut4 trafficking (PI
3-kinase inhibition, LYi, resveratrol, and piperlongumine) (Fig.
7). Two novel pathways regulating Glut4 trafficking were iden-
tified: protein synthesis (puromycin and lycorine) and endo-
somal pH (lysosomogenic heterocyclic amines: chloroquine
and maprotiline; Na�/K�-ATPase inhibitors/cardiotonic ste-
roids, e.g. ouabain).

The mechanisms of action of the groups of compounds were
determined based on the effects of representative compounds
on insulin concentration-response curves (Fig. 3), their time
course of action (Figs. 4, 5, and 7), known biochemical targets
(Table 1), and effects on Glut4 trafficking kinetics (data not
shown).Forseveralof thesemechanisms,compoundswith inde-
pendent targets that affect the same processes were identified,

Table 2
Phenotypes of activators: effects on cell-surface Glut4

0.003 nM,
quiescent

0.3 nM,
1/3 maximal

100 nM,
maximal

Mechanism
Insulin mimetic a a f
Insulin sensitizer f a f
Dis-inhibition f a a
Insulin-independent a a a

Trafficking
Regulated f a f
Constitutive a a a

Table 3
Phenotypes of inhibitors: effects on cell-surface Glut4

Time course (t1⁄2) Extent

Mechanism
Signal transduction Intermediate (8–12 min) 80%
Protein synthesis Slow (30–40 min) 80%

Trafficking
Endosomal pHa Very fast (3 min) 50%
Exocytosiss Fast (5 min) 80–90%
Endocytosisa Fast (5 min) Variable (�40%)
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including signal transduction, protein synthesis, and endo-
somal pH. Importantly, these assays defined specific pheno-
types that allowed tentative assignment of novel compounds
whose targets are less well established to mechanistic catego-
ries. For the novel compounds tested in this study (e.g. disul-
firam, lycorine, parthenolide, resveratrol, piperlongumine, and
heterocyclic amines), published biochemical analysis of their
effects on specific targets support their assignment to specific
mechanistic categories.

Two preclinical strategies are used to find new drugs: 1) mod-
ification of natural substances/biologics, and 2) screening,
either target-based or phenotypic. Modified biologics and nat-
ural products are central to the treatment of diabetes (e.g. insu-
lin, incretins, amylin, phlorizin/SGLT2 inhibitors, and DPP4
inhibitors). In target-based screening, potential drugs are
identified based on effects on isolated proteins, and then
their effects in cells/animals/humans are examined (their
phenotype is determined; e.g. �-glucosidase inhibitors and
small molecule activators of the insulin receptor tyrosine
kinase). In phenotypic screens, compounds that cause a
desired outcome in cells or organisms are discovered, and
then their targets are identified. For example, sulfonylureas
were discovered during World War II when typhoid fever
patients treated with sulfonamides developed hypoglycemia
(102). Metformin was discovered as the active ingredient in a
plant extract used since the Middle Ages to relieve frequent
urination (in what we now know was diabetes) (103). A study
of new drugs approved by the FDA over a 10-year period
showed that although less common than target-based
screening, phenotypic screening contributed twice as many
first-in-class small-molecule drugs with new molecular
mechanisms of action (104). The first thiazolidinediones
were discovered by screening for hypoglycemic action in
ob/ob mice (105). The first cystic fibrosis drugs that specif-
ically target genetic defects in the cystic fibrosis transmem-
brane regulator (CFTR) were discovered by screening for
translocation of the 	F508-CFTR expressed in NIH3T3 cells
(106).

Our screen for compounds that target acute insulin action is
phenotypic and not target based. Insulin-stimulated Glut4
translocation was used as a surrogate readout for activation of
the insulin receptor, as well as effects on downstream pathways
in a physiologically relevant target cell (adipocytes). This
ensured that the compounds identified were active in a com-
plex cellular signaling network on native receptors in their nat-
ural environment (membranes). Our chemical genetics screen
showed that Glut4 translocation was the mechanistic target for
a number of drug classes known to affect glucose homeostasis
in humans through incompletely understood pathways. We
also identified two novel, previously unknown pathways affect-
ing cell-surface Glut4: protein synthesis and endosomal pH.
Future work with chemically diverse libraries containing com-
pounds not currently used as drugs will identify additional
unknown regulatory pathways that are potential future thera-
peutic targets. It will also identify inhibitory drug classes and
targets that may exacerbate insulin resistance and should be
avoided in patients with diabetes.

Experimental procedures

Libraries

We used the following libraries: Prestwick Chemical Library
of off-patent, approved drugs and natural products (1120 com-
pounds); Spectrum Chemical collection of bioactive chemicals
and natural products (2000 compounds); National Institutes of
Health Clinical Collection (707 compounds); and Selleck
Chemical natural products library (131 compounds).

Cells

3T3-L1 adipocytes have been used extensively to investigate
Glut4 trafficking and acute insulin action. This model was opti-
mized for maximal insulin sensitivity and responsiveness (Fig.
1). Low-passage 3T3-L1 fibroblasts stably expressing a Glut4
reporter at low levels were used (17, 30 –34). Low-level expres-
sion is required for proper trafficking. The Glut4 reporter is a
C-terminal GFP fusion protein with an exofacial HA epitope
(HA–Glut4/GFP). HA–Glut4/GFP has been well characterized
and traffics with endogenous Glut4 when expressed at the low
levels used in our assay (17). The cells were differentiated into
adipocytes on standard tissue culture 96-well plates. Differen-
tiation produces a collagen based three-dimensional (3D) co-
culture that contains adipocytes (suspended in the collagen
gel), fibroblasts (attached to the tissue culture plate), and highly
fluorescent necrotic cells (17). All experimental treatments and
labeling were done with cells maintained in the 3D co-culture
developed during differentiation. This is critical: Glut4 traffics
differently when the adipocytes are detached from the plates or
are replated (17).

Screening

Cells were incubated for 2 h at 37 °C in serum-free (sf)
DMEM (with 1% BSA). Insulin (0.05, 0.3, or 1 nM, as indicated)
was added for the final 45 min of the preincubation. Com-
pounds in DMSO were diluted into warm sfDMEM with insulin
and were added as a 2
 stock (final concentration 25 �M, 0.25%
DMSO). Incubation was continued for 1 h at 37 °C. After
treatment with insulin and compounds, the culture plates
were placed on ice, and cell-surface Glut4 labeled using
Alexafluor647-conjugated antibody against the HA epitope
(AF647–�-HA), as described previously (17, 30 –34). After
labeling, cells were treated with collagenase to dissociate the
cells from the plates, and samples were analyzed by flow
cytometry.

Reference samples

For control, DMSO (0.25%) was used; for activators, insulin
(100 nM) was used; and for inhibitors, the PI 3-kinase inhibitor
LYi (50 �M) was used. Reference samples were included on each
plate. All samples were standardized to the control DMSO sam-
ples from the same plate (4 – 8 samples; values are reported as
relative mean fluorescence, see below).

Flow cytometry

The presence of multiple cell types in the 3T3-L1 adipocyte
cultures precludes their use in “whole plate” assays (17). To
distinguish among the three cell types, single cell analysis was
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done using flow cytometry. After treatment and antibody label-
ing, cells were detached using collagenase and resuspended in
buffer. Data were collected from all cells in the culture. Insulin-
sensitive, lipid droplet-filled adipocytes are distinguished from
the fibroblasts, and necrotic cells present in the co-culture
based on light scatter (forward and side scatter) and cellular
autofluorescence (488 excitation/�670 emission). Two param-
eters are used to identify hits, AF647–�-HA (cell-surface
Glut4) and GFP (total Glut4). In true positive hits, there will be
a correlation between the cell-surface Glut4 and GFP for all
cells within a treated sample (both fluorescence values are de-
pendent on the levels of expression of HA–Glut4/GFP in each
cell).

The distribution of fluorescence values per cell in a popula-
tion of cells is non-Gaussian (approximately log normal; Fig.
S1A) (35). A Gaussian fit of data from a population of cells
plotted on a logarithmic scale yields the sample geometric
mean fluorescence or GMF (Fig. S1B). To compare samples run
on different plates, sample GMF values (�5000 cells per sam-
ple) were standardized to the average GMF of control DMSO
samples run on the same plate (4 – 8 samples/96-well plate),
and data for each sample were analyzed as relative GMF or
rGMF as shown in Equation 2.

rGMFsample � GMFsample/average GMFDMSO (Eq. 2)

Hits

Compounds that increased or decreased cell-surface Glut4
by more than three standard deviations from the average of all
control (DMSO) samples across the screen were selected as hits
as shown in Equation 3.

rGMFactivator � 1.5; rGMFinhibitor � 0.62 (Eq. 3)

Validation (Table S1)

Verification—Hits were rescreened in triplicate using com-
pounds from the libraries.

SAR—Hits were assigned into drug classes based on shared
structures and targets. Representative hits from each group
were chosen for further analysis.

Confirmation—Representative hits were confirmed by order-
ing pure compound and rescreening in triplicate.

Concentration response—Cells in triplicate were pretreated
with insulin as indicated; compounds were added at increasing
concentrations, and cells were further incubated for 1 h. Cells
were placed on ice, and cell-surface Glut4 was determined. To
verify targets, the measured EC50 value was compared with
published EC50 values for cell-based assays in adipocytes and
other cell types (Figs. 2, 5, and 6).

Mechanism of action

Insulin dose response—Cells in triplicate were pretreated
with increasing concentrations of insulin for 45 min; the com-
pounds were added at saturating concentrations, and the cells
were incubated for an additional 1 h. The shapes of the curves
distinguish insulin mimetics, insulin sensitizers, dis-inhibitors,
and drugs that work through parallel (insulin-independent)
pathways (Figs. 3 and 5C).

Time course

Cells in triplicate were pretreated with insulin as described,
and then compounds were added, and cells were further incu-
bated for increasing times. Cells were placed on ice, and cell-
surface Glut4 was labeled and analyzed. Hits were sorted into
classes based on the kinetics of response to compounds and the
shape of the transition curves (Figs. 4 and 7). At saturating
concentrations, compounds that work through the same mech-
anism will show similar responses.

Author contributions—P. D. B. and C. C. M. conceptualization;
P. D. B., I. R., and C. C. M. investigation; P. D. B., I. R., and C. C. M.
methodology; P. D. B., I. R., and C. C. M. writing-review and editing;
I. R. and C. C. M. data curation; C. C. M. formal analysis; C. C. M.
funding acquisition; C. C. M. writing-original draft.
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Metabolic fate of glucose on 3T3-L1 adipocytes treated with grape seed-
derived procyanidin extract (GSPE). Comparison with the effects of in-
sulin. J. Agric. Food Chem. 53, 5932–5935 CrossRef Medline
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